
Ordinary Math in Everyday
Life

Jesse Walker, Ph.D.

Intel Corporation – Intel Labs – Security and Privacy Research

jesse.walker@intel.com

1

Academia v. Industry

Academic math is like fine dining … Industrial math is more of a smorgasbord …

2

Agenda

• Wi-Fi

• Random Number Generation

• Anonymous Authentication

3

WEP: the original Wi-Fi
encryption

4

Wi-Fi

IEEE 802.11b, the original Wi-Fi specification, was published in 1999

Wi-Fi used Wired Equivalent Privacy for encryption

• Or WEP for short

One day in 2000 Duncan Kitchin, then Vice Chairman of the IEEE 802.11
Working Group, walked into my office

• Duncan: <describes 802.11 authentication> “Does 802.11
authentication work?”

• Jesse: “No; this is a bad design. Is there anything else to know?”

• Duncan: “Here is the spec.”

5

How WEP works

6

Access
Point

Station

Station

Internet

How WEP works

7

Data Frame

Data Frame CRC

RC4 Key RC4 Encryption

Encrypted Data FrameIV

24 bit IV

WEP key

IV

How RC4 encryption works

8

RC4 is a stream cipher

encryption key
= IV || RC4 key

Pseudo-Random Number
Generator

1 byte p of plaintext data

1 byte k of key stream

+ 1 byte c of ciphertext data, c = k + p

+ = addition in the vector space (F2)
8

Fundamental property of addition in (F2)
n: k + (k + p) = p

Decryption generates same key stream byte k, adds it with ciphertext byte c to
recover the plaintext byte p

Thought experiment

What happens if the same key stream byte k is used to encrypt
different plaintext bytes p1 and p2?

• c1 = k + p1 and c2 = k + p2

Answer: Then c1 + c2 = (k + p1) + (k + p2) = p1 + p2

• If the attacker knows p1, then he can recover p2 without knowing the
key stream byte k or the encryption key

Hence, a stream cipher implies we must NEVER reuse the same key
stream to encrypt different plaintext

• For WEP, we must have a new IV for every frame or else change the
encryption key

9

WEP cryptanalysis

How many frames before key must be changed?

• The IV is 24 bits  the key must be changed after at least 224 frames

The number and identities of devices can change as client roam

The most reasonable strategy picks the WEP IV randomly

• If N = 224, the birthday problem says there should be a collision after
about 212  4000 frames

• 4000 frames  1 second on a busy LAN, about 20 seconds on a normal
LAN

WEP keys must be manually reconfigured – oops!

10

Polynomials and message representation

Often useful to represent messages as polynomials:

• Represent the s-bit message M as a sequence of bits

M = m0 m1 … ms–2 ms–1, where mi  {0,1}

• Each bit of M can be considered the coefficient of the polynomial

M(X) = m0X
s–1 + m1X

s–2 + … + ms–2X
1 + ms–1, where mi  F2

Let F2[X] denote the polynomials in X with coefficients in F2 = the field
with two elements {0,1}

Then every message M can be considered a polynomial in F2[X]

11

Cyclic redundancy check (CRC)

Choose an irreducible polynomial p(X)  F2[X] of degree n

For any G(X)  F2[X] an n-cyclic redundancy check (CRC) is the n–1
degree polynomial g(X) satisfying g(X) = G(X) (mod p(X))

• crc32(X) = X32+X26+X23+X21+X20+X16+X12+X11+X10+X7+X5+X2+X+1
is the irreducible polynomial used by WEP

Shannon introduced CRCs to detect random bit errors on
communications channels

• An n-CRC can detect up to n random bit errors on the channel

• Not designed to detect malicious errors

12

How WEP works redux

• An s bit message M corresponds to the polynomial

M(X) = m0X
s–1 + m1X

s–2 + … + ms–2X
1 + ms–1

• WEP step 1: append a 32-CRC based on an irreducible polynomial crc32(X) to
M(X) prior to encryption:

X32M(X) + g(X) =

(m0X
s+31 + m1X

s+30 + … + ms–1X
32) + (g0X

31 + g1X
30 + … + g31)

where g(X) = M(X) (mod crc32(X)) and g(X) = g0X
31 + g1X

30 + … + g31

• WEP step 2: encrypts by adding a key stream polynomial K(X) = k0X
31+s + … +

ks+31:

WEP(M) = K(X) + (X32M(X) + g(X)) =

(k0+m0)X
s+31 + (k1+m1)X

s+30 + … + (ks–1+ms–1)X
32 + (ks+g0)X

31 + (ks+1+g1)X
30 + … +

(ks+31 + g31)

13

Thought experiment 2

We can change bit mi of the encrypted message WEP(M) by adding
Xi+32 to WEP(M), but then the CRC is wrong after decryption

Idea: add i(X), where i(X) = Xi+32 (mod crc32(X)), to WEP(M) as well!

• Change
WEP(M) = K(X) + (X32M(X) + g(X))

to
WEP(M) = K(X) + (X32M(X) + Xi+32 + g(X) + i(X))

• This decrypts to M(X) + Xi and crc32(M(X) + Xi) = g(X) + i(X)

We can forge WEP messages by bit flipping and patching the CRC
14

Random number generation

15

Randomness’ role in crypto

Implicit Expectation: “Secure” systems work as specified, independent of what the
environment (i.e., any attacker) can do to it (i.e., without any constraints on the
environment)

Question: How can we defeat ALL computationally bounded adversaries?

• Even the ones we haven’t thought about?

Strategy: Use randomness to wall off attack below a computational complexity
threshold

• Crypto algorithm designers embed O(2n) random search problems into its designs

• If n is sufficiently large, then O(2n) operations is beyond anyone’s computational resources

16

Crypto’s randomness must be perfect

17

1 2 3 4 5 3 2 4 1 5

Deviation from uniform decreases the attacker’s work

Traditional approach to RNGs

Find an entropy source in nature

• Johnson thermal noisy

• Radioactive decay

Engineer the source and its sampling method to make the output as
close to uniform as possible

This has always failed in practice

• Our engineered sources age – silicon characteristics change over time

• Our engineered sources exhibit different behavior across
environmental conditions – as thermal and electrical conditions
change, so does the source and the sampling method

18

How is Randomness Represented?

• A random variable X : S Rmodels measurements of some random process

• The information of a random variable X is itself a random variable defined as
–log2(X) = log2(1/X)
• The information log2(1/X(s)) says how many bits are needed to unambiguously represent

state s
• If the number of bits of X(s) exceeds log2(1/X(s)), then X contains redundant information

• The entropy H(X) of a random variable X is the negative of the expected value of
X’s information: H(X) = EX(–log2(X)) = sS X(s)log2 (1/X(s))
• The entropy measures the randomness or unpredictability of X in bits

• The min-entropy is H(X) = – minsS{log2 (X(s))}

• H(X)  H(X), with equality if and only if X(s) = 1/|S| for all s  S
• Every sample from X has at least bits H(X) bits of entropy

19

Example

20

s X(s) log2(1/X(s)) X(s)log2(1/(X(s))

1 1/16 4 1/4

2 1/4 2 1/2

3 3/8 3 – log2(3)  1.415 3(3 – log2(3))/8  0.531

4 1/4 2 1/2

5 1/16 4 1/4

H(X) = EX(log2(1/X)) = sS X(s)log2 (1/X(s))  1/4 + 1/2 + 0.531 + 1/2 + 1/4 =

2.031, so
H(X) = – minsS{log2 (X(s))} = log2(minsS{1/(X(s)}) = 3 – log2(3)  1.415

Every sample of X has at least H(X) = 1.415 bits of entropy

1 2 3 4 5

H (X) = minsS{log2 (1/X(s))}

X

The Privacy Amplification Problem

21A New Design: The Conditioner

Alice and Bob share a 2000 bit
secret key K to secure their

communication against their arch-
nemesis Eve

Alice Bob

They learn that Eve has
learned part of K, say
200 bits . . .

. . . but they don’t
know which 200 bits

Is there some way they can still use K?

Alice and Bob know:
H(K) = 2000 – 200 = 1800

Privacy Amplification Solution
The Leftover Hash Lemma of Impagliazzo, Levin, and Luby (1989) solves
the privacy amplification problem

• Definition. A family H of functions h : S  {0,1}n is -universal if for all s, t  S

PrhH[h(s) = h(t)]  

• Theorem (Leftover Hash Lemma). Assume H = {h : X  {0, 1}n} is a (1+)/2n-
universal hash family. Then if h is selected uniformly over H then

sS |h(X(s)) – Un(X(s))|  ( + 2n/2m)1/2/2

where H(X)  m

• Un denotes the uniform distribution on {0,1}n

Translation: universal hash families are efficient entropy extractors

22

Central Idea
Even though ideal entropy sources are hard to find in nature

• We may still hope to find sources that produce significant amounts of entropy,
i.e., find X with H(X)  m

• If an entropy source X satisfies H(X)  m for some m > 0, then we can apply the
Leftover Hash Lemma to extract indistinguishable from ideal entropy from min-
entropy

23

Min-entropy
source

min-entropy samples

Randomly
selected

universal hash
function

ideal entropy

Requirements

Want a source that can be faithfully modeled

• Must be simple enough to model with a random variable X

• X must admit a computable min-entropy

• If the entropy source empirically acts like X there is no reason to doubt it has the min-
entropy of X

All digital, no analog components

• No redesign and revalidation for new process technologies

Produce bits at a rate directly useful to applications

• e.g., at least 100 Mbps for argument’s sake, not 75 Kbps

24

Intel’s entropy source

Invented by Intel hardware engineer Charles Dike

It is latch built from a pair of cross-coupled inverters

• Circuit assumes two stable (0/1) and one unstable state (meta-stable)

• At power-on circuit enters the meta-stable state

• Circuit held in meta-stable state until Johnson thermal noise resolves circuit’s value to 0 or 1

• After the circuit resolves and outputs one bit value, power it off

• Repeat at device clock rate

25

Entropy source model

We modeled our source as an Ornstein-Uhlenbeck stochastic process

• The Ornstein-Uhlenbeck process is the only stationary, Gaussian, and Markovian
process
• It models a mean-reverting random walk

• A digital latch tends to resolve to its previous state, so our circuit slightly biases
the next output to be different from the previous

• Has a computable min-entropy

26

Anonymous authentication

27

Signature schemes

A signature scheme is a collection of three algorithms

• KeyGen(k): produces a pair of k bit keys (sk, pk) for the scheme
• sk is called the secret or private key, pk the public key

• Sign(sk, msg): for any message msg produces a signature  using sk

• Verify(pk, msg, ): returns TRUE if  was produced by the Sign operation using sk
and msg and FALSE otherwise

Example: RSA

• KeyGen(2n): Choose independent randomly generated n bit primes p, q, and
choose 0 < e < (pq) = (p – 1)(q – 1) satisfying gcd(e, (pq)) = 1, sk = e, pk = (N,
d), where d = e–1 mod (pq) and N = pq

• Sign(sk, msg): m  hash(msg), m  pad(m),   (m)e (mod N)

• Verify(pk, msg, ): mm  d (mod N), mm  unpad(mm), return (mm =
hash(msg))?

28

Conventional authentication protocols

29

Alice Bob
RA || idAlice

RA || RB || sigBob(RA || RB || idAlice) || certBob

RB || sigAlice(RB || RA || idBob) || certAlice

Alice commits to her identity (and to her signing key key) in message 1

This commitment binds message 3 to message 1

DAA

In 2004 my Intel colleague Ernie Brickell invented Direct Anonymous
Attestation (DAA)

• A new type of signature scheme

• All group members share the same public key but have distinct secret
keys

• A DAA signature does not reveal which group member created it, only
that some group member created it

DAA promise privacy preserving authentication

30

Attempt 1 to use DAA

31

Alice Bob
RA || idGroup

Oops

What can replace identities to provide the binding function when using DAA?

What should “secure” mean?

RA || RB || sigBob(RA || RB || idGroup) || certBob

RB || DAA-sigEve(RB || RA || idBob) || certGroup

Eve

Model for reasoning about Protocols

The players

• A group consisting of principals P1, . . ., Pn, each with a DAA signature
scheme for the group

• Each principal Pi is represented in instance s of the protocol by an
oracle Oi,s

• A verifier Q (Q = Pi for some i) using a classical signature scheme

• An oracle accepts and outputs a session descriptor (P,s,Q) if the
oracle’s protocol instance s completes successfully

• An network-adversary A is the environment through which
principals and their oracles interact

32

Modeling the adversary’s capabilities

• A network-adversaryA interacts with the principals/oracles through
queries
• Send(P,Q,s,m): P’s oracle OP,s sends message m to Q’s oracle OQ,s

• Session-Key-Reveal(P,Q,s): P’s oracle OP,s gives its session key sk to A
• State-Reveal(P,s): P’s oracle OP,s gives its entire session state to A
• Corrupt(P): P and all its oracles give their internal state to A
• Expire-Session(P,Q,s): P’s oracle OP,s deletes its state

• Test(P,Q,s): P’s oracle OP,s randomly chooses a bit b. If b = 1 OP,s gives A its
session key; otherwise OP,s gives A a randomly generated string. Used at
most once by A

33

Security

• Definition 1. Suppose an oracle OP,s has accepted with output (P,s,Q).
The oracle OQ,s is the matching session if
• OQ,s has accepted with output (Q,s,P) or

• OQ,s has not completed the execution of the session

• Definition 2. A protocol  is secure if for all probabilistic polynomial
time network-adversaries A the following hold
• If two uncorrupted parties P and Q complete matching sessions OP,s and OQ,s

with outputs (P,s,Q) and (Q,s,P), then the corresponding session keys are the
same except with negligible probability

• A succeeds in distinguishing the output from its Test query with probability
no more than ½ plus a negligible function

34

Diffie-Hellman
Let G be an Abelian group with

• A cyclic subgroup <g> of prime order q in which the Decision Diffie-Hellman problem is hard, i.e.,
it is computationally intractable to distinguish (ga, gb, gab) and (ga, gb, gc), c random

• e.g., the points on an elliptic curve y2 =x3 + sx + t with s  0 over a finite field Fp, with p a well-
chosen prime

35

Alice Bob

ga

gb

K gba K gab

a $ Zq
*

b $ Zq
*

Bob knows K can only be computed by itself and the party that knows a (which Bob doesn’t know)
Alice knows K can only be computed by itself and the party that knows b (which Alice doesn’t know)

The DAA-Sigma protocol

36

Alice Bob

This protocol uses Diffie-Hellman for commitment and proof

ga || idGroup

MACK(ga || idGroup || DAA-sigGroup(g
b || ga)) || DAA-sigGroup(g

b || ga) || certGroup

ga || gb || MACK(idBob) || sigBob(g
a || gb) || certBob

K  prf(0, gba || 1)

K  prf(0, gab || 1)

Theorem

Theorem (Walker-Li). Let G be a group in which the DDH assumption is true, and suppose
the DAA signature scheme, PRF, and MAC are secure. Then DAA-Sigma is secure against any
probabilistic polynomial time network-adversary.

Idea behind proof:

• If the protocol does not meet the definition of secure, then an adversary A exists that
can cause two uncorrupted parties to disagree about an unrevealed session, and we can
use A to design an algorithm breaking one of the underlying primitives:
• The signature scheme
• The PRF
• The MAC or
• Diffie-Hellman

• If the underlying primitives are secure, this is a contradiction

DAA-Sigma is part of TPM 2.0 and ISO 20009

37

Summary

• Math is everywhere and is varied as life itself

• Theory is a good guide to practice

• Proof is still needed in the real world
— Good definitions lead us to good algorithms

38

Feedback?

39

