
Ordinary Math in Everyday
Life

Jesse Walker, Ph.D.

Intel Corporation – Intel Labs – Security and Privacy Research

jesse.walker@intel.com

1

Academia v. Industry

Academic math is like fine dining … Industrial math is more of a smorgasbord …

2

Agenda

• Wi-Fi

• Random Number Generation

• Anonymous Authentication

3

WEP: the original Wi-Fi
encryption

4

Wi-Fi

IEEE 802.11b, the original Wi-Fi specification, was published in 1999

Wi-Fi used Wired Equivalent Privacy for encryption

• Or WEP for short

One day in 2000 Duncan Kitchin, then Vice Chairman of the IEEE 802.11
Working Group, walked into my office

• Duncan: <describes 802.11 authentication> “Does 802.11
authentication work?”

• Jesse: “No; this is a bad design. Is there anything else to know?”

• Duncan: “Here is the spec.”

5

How WEP works

6

Access
Point

Station

Station

Internet

How WEP works

7

Data Frame

Data Frame CRC

RC4 Key RC4 Encryption

Encrypted Data FrameIV

24 bit IV

WEP key

IV

How RC4 encryption works

8

RC4 is a stream cipher

encryption key
= IV || RC4 key

Pseudo-Random Number
Generator

1 byte p of plaintext data

1 byte k of key stream

+ 1 byte c of ciphertext data, c = k + p

+ = addition in the vector space (F2)
8

Fundamental property of addition in (F2)
n: k + (k + p) = p

Decryption generates same key stream byte k, adds it with ciphertext byte c to
recover the plaintext byte p

Thought experiment

What happens if the same key stream byte k is used to encrypt
different plaintext bytes p1 and p2?

• c1 = k + p1 and c2 = k + p2

Answer: Then c1 + c2 = (k + p1) + (k + p2) = p1 + p2

• If the attacker knows p1, then he can recover p2 without knowing the
key stream byte k or the encryption key

Hence, a stream cipher implies we must NEVER reuse the same key
stream to encrypt different plaintext

• For WEP, we must have a new IV for every frame or else change the
encryption key

9

WEP cryptanalysis

How many frames before key must be changed?

• The IV is 24 bits the key must be changed after at least 224 frames

The number and identities of devices can change as client roam

The most reasonable strategy picks the WEP IV randomly

• If N = 224, the birthday problem says there should be a collision after
about 212 4000 frames

• 4000 frames 1 second on a busy LAN, about 20 seconds on a normal
LAN

WEP keys must be manually reconfigured – oops!

10

Polynomials and message representation

Often useful to represent messages as polynomials:

• Represent the s-bit message M as a sequence of bits

M = m0 m1 … ms–2 ms–1, where mi {0,1}

• Each bit of M can be considered the coefficient of the polynomial

M(X) = m0X
s–1 + m1X

s–2 + … + ms–2X
1 + ms–1, where mi F2

Let F2[X] denote the polynomials in X with coefficients in F2 = the field
with two elements {0,1}

Then every message M can be considered a polynomial in F2[X]

11

Cyclic redundancy check (CRC)

Choose an irreducible polynomial p(X) F2[X] of degree n

For any G(X) F2[X] an n-cyclic redundancy check (CRC) is the n–1
degree polynomial g(X) satisfying g(X) = G(X) (mod p(X))

• crc32(X) = X32+X26+X23+X21+X20+X16+X12+X11+X10+X7+X5+X2+X+1
is the irreducible polynomial used by WEP

Shannon introduced CRCs to detect random bit errors on
communications channels

• An n-CRC can detect up to n random bit errors on the channel

• Not designed to detect malicious errors

12

How WEP works redux

• An s bit message M corresponds to the polynomial

M(X) = m0X
s–1 + m1X

s–2 + … + ms–2X
1 + ms–1

• WEP step 1: append a 32-CRC based on an irreducible polynomial crc32(X) to
M(X) prior to encryption:

X32M(X) + g(X) =

(m0X
s+31 + m1X

s+30 + … + ms–1X
32) + (g0X

31 + g1X
30 + … + g31)

where g(X) = M(X) (mod crc32(X)) and g(X) = g0X
31 + g1X

30 + … + g31

• WEP step 2: encrypts by adding a key stream polynomial K(X) = k0X
31+s + … +

ks+31:

WEP(M) = K(X) + (X32M(X) + g(X)) =

(k0+m0)X
s+31 + (k1+m1)X

s+30 + … + (ks–1+ms–1)X
32 + (ks+g0)X

31 + (ks+1+g1)X
30 + … +

(ks+31 + g31)

13

Thought experiment 2

We can change bit mi of the encrypted message WEP(M) by adding
Xi+32 to WEP(M), but then the CRC is wrong after decryption

Idea: add i(X), where i(X) = Xi+32 (mod crc32(X)), to WEP(M) as well!

• Change
WEP(M) = K(X) + (X32M(X) + g(X))

to
WEP(M) = K(X) + (X32M(X) + Xi+32 + g(X) + i(X))

• This decrypts to M(X) + Xi and crc32(M(X) + Xi) = g(X) + i(X)

We can forge WEP messages by bit flipping and patching the CRC
14

Random number generation

15

Randomness’ role in crypto

Implicit Expectation: “Secure” systems work as specified, independent of what the
environment (i.e., any attacker) can do to it (i.e., without any constraints on the
environment)

Question: How can we defeat ALL computationally bounded adversaries?

• Even the ones we haven’t thought about?

Strategy: Use randomness to wall off attack below a computational complexity
threshold

• Crypto algorithm designers embed O(2n) random search problems into its designs

• If n is sufficiently large, then O(2n) operations is beyond anyone’s computational resources

16

Crypto’s randomness must be perfect

17

1 2 3 4 5 3 2 4 1 5

Deviation from uniform decreases the attacker’s work

Traditional approach to RNGs

Find an entropy source in nature

• Johnson thermal noisy

• Radioactive decay

Engineer the source and its sampling method to make the output as
close to uniform as possible

This has always failed in practice

• Our engineered sources age – silicon characteristics change over time

• Our engineered sources exhibit different behavior across
environmental conditions – as thermal and electrical conditions
change, so does the source and the sampling method

18

How is Randomness Represented?

• A random variable X : S Rmodels measurements of some random process

• The information of a random variable X is itself a random variable defined as
–log2(X) = log2(1/X)
• The information log2(1/X(s)) says how many bits are needed to unambiguously represent

state s
• If the number of bits of X(s) exceeds log2(1/X(s)), then X contains redundant information

• The entropy H(X) of a random variable X is the negative of the expected value of
X’s information: H(X) = EX(–log2(X)) = sS X(s)log2 (1/X(s))
• The entropy measures the randomness or unpredictability of X in bits

• The min-entropy is H(X) = – minsS{log2 (X(s))}

• H(X) H(X), with equality if and only if X(s) = 1/|S| for all s S
• Every sample from X has at least bits H(X) bits of entropy

19

Example

20

s X(s) log2(1/X(s)) X(s)log2(1/(X(s))

1 1/16 4 1/4

2 1/4 2 1/2

3 3/8 3 – log2(3) 1.415 3(3 – log2(3))/8 0.531

4 1/4 2 1/2

5 1/16 4 1/4

H(X) = EX(log2(1/X)) = sS X(s)log2 (1/X(s)) 1/4 + 1/2 + 0.531 + 1/2 + 1/4 =

2.031, so
H(X) = – minsS{log2 (X(s))} = log2(minsS{1/(X(s)}) = 3 – log2(3) 1.415

Every sample of X has at least H(X) = 1.415 bits of entropy

1 2 3 4 5

H (X) = minsS{log2 (1/X(s))}

X

The Privacy Amplification Problem

21A New Design: The Conditioner

Alice and Bob share a 2000 bit
secret key K to secure their

communication against their arch-
nemesis Eve

Alice Bob

They learn that Eve has
learned part of K, say
200 bits . . .

. . . but they don’t
know which 200 bits

Is there some way they can still use K?

Alice and Bob know:
H(K) = 2000 – 200 = 1800

Privacy Amplification Solution
The Leftover Hash Lemma of Impagliazzo, Levin, and Luby (1989) solves
the privacy amplification problem

• Definition. A family H of functions h : S {0,1}n is -universal if for all s, t S

PrhH[h(s) = h(t)]

• Theorem (Leftover Hash Lemma). Assume H = {h : X {0, 1}n} is a (1+)/2n-
universal hash family. Then if h is selected uniformly over H then

sS |h(X(s)) – Un(X(s))| (+ 2n/2m)1/2/2

where H(X) m

• Un denotes the uniform distribution on {0,1}n

Translation: universal hash families are efficient entropy extractors

22

Central Idea
Even though ideal entropy sources are hard to find in nature

• We may still hope to find sources that produce significant amounts of entropy,
i.e., find X with H(X) m

• If an entropy source X satisfies H(X) m for some m > 0, then we can apply the
Leftover Hash Lemma to extract indistinguishable from ideal entropy from min-
entropy

23

Min-entropy
source

min-entropy samples

Randomly
selected

universal hash
function

ideal entropy

Requirements

Want a source that can be faithfully modeled

• Must be simple enough to model with a random variable X

• X must admit a computable min-entropy

• If the entropy source empirically acts like X there is no reason to doubt it has the min-
entropy of X

All digital, no analog components

• No redesign and revalidation for new process technologies

Produce bits at a rate directly useful to applications

• e.g., at least 100 Mbps for argument’s sake, not 75 Kbps

24

Intel’s entropy source

Invented by Intel hardware engineer Charles Dike

It is latch built from a pair of cross-coupled inverters

• Circuit assumes two stable (0/1) and one unstable state (meta-stable)

• At power-on circuit enters the meta-stable state

• Circuit held in meta-stable state until Johnson thermal noise resolves circuit’s value to 0 or 1

• After the circuit resolves and outputs one bit value, power it off

• Repeat at device clock rate

25

Entropy source model

We modeled our source as an Ornstein-Uhlenbeck stochastic process

• The Ornstein-Uhlenbeck process is the only stationary, Gaussian, and Markovian
process
• It models a mean-reverting random walk

• A digital latch tends to resolve to its previous state, so our circuit slightly biases
the next output to be different from the previous

• Has a computable min-entropy

26

Anonymous authentication

27

Signature schemes

A signature scheme is a collection of three algorithms

• KeyGen(k): produces a pair of k bit keys (sk, pk) for the scheme
• sk is called the secret or private key, pk the public key

• Sign(sk, msg): for any message msg produces a signature using sk

• Verify(pk, msg,): returns TRUE if was produced by the Sign operation using sk
and msg and FALSE otherwise

Example: RSA

• KeyGen(2n): Choose independent randomly generated n bit primes p, q, and
choose 0 < e < (pq) = (p – 1)(q – 1) satisfying gcd(e, (pq)) = 1, sk = e, pk = (N,
d), where d = e–1 mod (pq) and N = pq

• Sign(sk, msg): m hash(msg), m pad(m), (m)e (mod N)

• Verify(pk, msg,): mm d (mod N), mm unpad(mm), return (mm =
hash(msg))?

28

Conventional authentication protocols

29

Alice Bob
RA || idAlice

RA || RB || sigBob(RA || RB || idAlice) || certBob

RB || sigAlice(RB || RA || idBob) || certAlice

Alice commits to her identity (and to her signing key key) in message 1

This commitment binds message 3 to message 1

DAA

In 2004 my Intel colleague Ernie Brickell invented Direct Anonymous
Attestation (DAA)

• A new type of signature scheme

• All group members share the same public key but have distinct secret
keys

• A DAA signature does not reveal which group member created it, only
that some group member created it

DAA promise privacy preserving authentication

30

Attempt 1 to use DAA

31

Alice Bob
RA || idGroup

Oops

What can replace identities to provide the binding function when using DAA?

What should “secure” mean?

RA || RB || sigBob(RA || RB || idGroup) || certBob

RB || DAA-sigEve(RB || RA || idBob) || certGroup

Eve

Model for reasoning about Protocols

The players

• A group consisting of principals P1, . . ., Pn, each with a DAA signature
scheme for the group

• Each principal Pi is represented in instance s of the protocol by an
oracle Oi,s

• A verifier Q (Q = Pi for some i) using a classical signature scheme

• An oracle accepts and outputs a session descriptor (P,s,Q) if the
oracle’s protocol instance s completes successfully

• An network-adversary A is the environment through which
principals and their oracles interact

32

Modeling the adversary’s capabilities

• A network-adversaryA interacts with the principals/oracles through
queries
• Send(P,Q,s,m): P’s oracle OP,s sends message m to Q’s oracle OQ,s

• Session-Key-Reveal(P,Q,s): P’s oracle OP,s gives its session key sk to A
• State-Reveal(P,s): P’s oracle OP,s gives its entire session state to A
• Corrupt(P): P and all its oracles give their internal state to A
• Expire-Session(P,Q,s): P’s oracle OP,s deletes its state

• Test(P,Q,s): P’s oracle OP,s randomly chooses a bit b. If b = 1 OP,s gives A its
session key; otherwise OP,s gives A a randomly generated string. Used at
most once by A

33

Security

• Definition 1. Suppose an oracle OP,s has accepted with output (P,s,Q).
The oracle OQ,s is the matching session if
• OQ,s has accepted with output (Q,s,P) or

• OQ,s has not completed the execution of the session

• Definition 2. A protocol is secure if for all probabilistic polynomial
time network-adversaries A the following hold
• If two uncorrupted parties P and Q complete matching sessions OP,s and OQ,s

with outputs (P,s,Q) and (Q,s,P), then the corresponding session keys are the
same except with negligible probability

• A succeeds in distinguishing the output from its Test query with probability
no more than ½ plus a negligible function

34

Diffie-Hellman
Let G be an Abelian group with

• A cyclic subgroup <g> of prime order q in which the Decision Diffie-Hellman problem is hard, i.e.,
it is computationally intractable to distinguish (ga, gb, gab) and (ga, gb, gc), c random

• e.g., the points on an elliptic curve y2 =x3 + sx + t with s 0 over a finite field Fp, with p a well-
chosen prime

35

Alice Bob

ga

gb

K gba K gab

a $ Zq
*

b $ Zq
*

Bob knows K can only be computed by itself and the party that knows a (which Bob doesn’t know)
Alice knows K can only be computed by itself and the party that knows b (which Alice doesn’t know)

The DAA-Sigma protocol

36

Alice Bob

This protocol uses Diffie-Hellman for commitment and proof

ga || idGroup

MACK(ga || idGroup || DAA-sigGroup(g
b || ga)) || DAA-sigGroup(g

b || ga) || certGroup

ga || gb || MACK(idBob) || sigBob(g
a || gb) || certBob

K prf(0, gba || 1)

K prf(0, gab || 1)

Theorem

Theorem (Walker-Li). Let G be a group in which the DDH assumption is true, and suppose
the DAA signature scheme, PRF, and MAC are secure. Then DAA-Sigma is secure against any
probabilistic polynomial time network-adversary.

Idea behind proof:

• If the protocol does not meet the definition of secure, then an adversary A exists that
can cause two uncorrupted parties to disagree about an unrevealed session, and we can
use A to design an algorithm breaking one of the underlying primitives:
• The signature scheme
• The PRF
• The MAC or
• Diffie-Hellman

• If the underlying primitives are secure, this is a contradiction

DAA-Sigma is part of TPM 2.0 and ISO 20009

37

Summary

• Math is everywhere and is varied as life itself

• Theory is a good guide to practice

• Proof is still needed in the real world
— Good definitions lead us to good algorithms

38

Feedback?

39

