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Abstract

This paper investigates whether people optimally value tools that reduce at-
tention costs. We call these tools bandwidth enhancements (BEs) and character-
ize how demand for BEs vary with the pecuniary incentives to be attentive, under
the null hypothesis of correct perceptions and optimal choice. We examine if the
optimality conditions are satisfied in three experiments. The first is a field ex-
periment (n = 1373) with an online education platform, in which we randomize
incentives to complete course modules and incentives to utilize a plan-making
tool to complete the modules. In the second experiment (n = 2306), participants
must complete a survey in the future. We randomize survey-completion incen-
tives and how long participants must wait to complete the survey, and we elicit
willingness to pay for reminders. The third experiment (n = 1465) involves a
psychometric task in which participants must identify whether there are more
correct or incorrect mathematical equations in an image. We vary incentives for
accuracy, elicit willingness to pay to reduce task difficulty, and examine the im-
pact of learning and feedback. In all experiments, demand for reducing attention
costs increases as incentives for accurate task completion increase. However, in
all experiments—and across all conditions—our tests imply that this increase
in demand is too small relative to the null of correct perceptions. These results
suggest that people may be uncertain or systematically biased about their atten-
tion cost functions, and that this is not necessarily eliminated by experience and
feedback.
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A large and rapidly growing body of work in economics and cognitive science shows that
attention is costly and at least partly controlled (for recent reviews in economics, see Caplin,
2016; Maćkowiak et al., forthcoming; Gabaix, 2019). There is a growing recognition that,
like many other types of costly effort decisions that economists have analyzed for decades,
mental effort is also costly and deliberately deployed (Shenhav et al., 2017). A powerful
modeling approach taken by the rational inattention literature is to assume that individuals
choose their attention strategies optimally.

In this paper, we move beyond the question of whether people optimize attention within
an environment, to investigate whether people optimally choose their attention environment.
Specifically, we study whether individuals optimally invest in tools that reduce attention
costs. This is a fundamental question for three reasons. First, because decisions over atten-
tion environments are pervasive. For example, people can choose whether to set reminders
for themselves to reduce the cognitive costs of keeping things top of mind; how much to
avoid distraction in their work environment because it impacts the cost of focusing men-
tal effort; whether to avoid sellers with non-transparent and difficult-to-calculate fees; and
whether to obtain outside advice for complex and cognitively-demanding tasks such as man-
aging an investment portfolio, selling a home, or filing taxes. Second, because any dynamic
model of costly attention (e.g., Sims, 2003; Matejka et al., 2017; Mackowiak et al., 2018)
must be closed with an assumption about people’s beliefs about their attention cost functions,
empirical evidence on whether people are uncertain or systematically biased about their at-
tention costs is a critical input into such modeling.1 Third, failing to optimally choose an
attention environment raises the possibility that individuals may fail to optimize their atten-
tion strategies even in static environments, due to uncertainty or systematic misperceptions
about their attention cost functions.

The first contribution of this paper is a a methodology for testing whether people properly
value tools to reduce demands on their mental bandwidth, i.e., the cost of being attentive. To
fix terminology, we call these tools bandwidth enhancements (BEs). We then deploy this
methodology in three complementary experiments. The first two experiments focus on peo-
ple’s ability to remain attentive to a future task. The third experiment explores an attention-
demanding psychometric task, as in recent experiments on rational inattention models (Dean
and Neligh, 2018; Caplin et al., 2020; Ambuehl et al., 2020). The BEs we study are a plan-
making tool in the first experiment, a reminder tool in the second experiment, and making a

1See also de Oliveira et al. (2017), who provide an axiomatic treatment of rational inattention models by
studying choices over menus. Such a characterization mechanically requires the assumption that people choose
between attention environments optimally.

2



psychometric task easier in the third experiment.
Our theoretical approach builds on the Caplin et al. (2020) characterization of costly

attention models with a competitive supply framework, and the insights that link bounded
rationality and Slutsky symmetry introduced by Gabaix (2014). Our approach clarifies the
difficulty with assessing whether people optimally value attention-cost reductions just by
examining willingness to pay for BEs and how BEs affect behavior: individuals may par-
ticularly like or dislike a given BE for reasons unrelated to its impact on behavior, such as
the nuisance of additional reminders. The main idea of our approach is to examine how pe-
cuniary incentives to complete a task affect demand for BEs that aid task completion. The
first prediction from our model is a precise condition on how willingness to pay for BEs
changes with the pecuniary rewards for the task, under the null of correct perceptions. The
second prediction is a form of a Slutsky symmetry condition, which states that the impact
of task-completion incentives on take-up of the BE is equal to the impact of the price of the
BE on the propensity to complete the task.2 Our model is sufficiently general to apply to
both dynamic and static settings, as well as to various assumptions about the set of feasible
attention strategies, ranging from the flexible strategy spaces in rational inattention models
to much more restrictive assumptions about how people choose attention. We obtain sharp
results with minimal assumptions by utilizing the generalized envelope theorems developed
by Milgrom and Segal (2002).

Guided by this framework, we carry out three experiments. The first experiment was run
in the field with 1373 students and alumni from six Philadelphia-area colleges who enrolled
in an 8-week online coding course. The experiment randomized incentives to complete three
15-minute coding lessons each week and randomized incentives to make a plan to complete
three 15-minute course modules each week. Making a plan, the BE in this experiment,
involved clicking a link that automatically created three 15-minute events in the participant’s
online calendar of choice for the following week and allowed the participant to rearrange the
planned events to suit their schedule.

We document three key facts in our first experiment. First, use of our plan-making tool
increased the likelihood of completing coding lessons, especially in the initial weeks. Sec-
ond, take-up of our plan-making tool was elastic to the direct incentives for plan-making,
but remained below 100 percent, even with the incentives. The combination of incomplete
take-up and the positive elasticity suggests that the use of our tool imposes internal or “nui-

2See Gabaix (2019) for a discussion about exploiting Slutsky symmetry as an empirical strategy for testing
limited attention. See Gabaix (2014) and Abaluck and Adams-Prassl (2021) for an implementation of such a
test in the context of misperceived product attributes.
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sance” costs on at least some individuals. Third, we find that take-up of our plan-making
tool increased with incentives for completing coding lessons.

This third result is consistent with the qualitative prediction that optimizing individuals
should value BEs more as the rewards for completing a task increase. At the same time,
we estimate that the impact of completion incentives on plan-making is quantitatively too
small relative to the Slutsky symmetry condition, suggesting that participants undervalue the
plan-making tool. However, our confidence intervals are wide and do not permit us to reject
the null of full optimality under correct perceptions.

Our second experiment is an online survey-completion experiment that elicits richer data
that allows us to fully quantify the demand for a reminder technology and to test the first
prediction from our model. The study was conducted on Amazon Mechanical Turk (MTurk)
with 2306 participants. Study participants were offered a bonus (either $3, $4, $11, or $12)
for completing a survey that would only be accessible for a week-long period after a de-
lay (either 2 days, 1 week, 3 weeks, or 6 weeks). Prior to randomizing participants into
one of the four possible delays and one of the four possible survey-completion rewards, we
elicited participants’ willingness to pay (WTP) for a set of three reminder emails, the BE in
this experiment, for each possible delay-reward pair. Our procedure also generated exoge-
nous variation in whether participants actually received the reminder emails, allowing us to
estimate the effect of reminder emails on survey completion.

We find that survey completion increased with incentives and decreased with delay, while
the impact of reminders decreased with incentives and increased with delay. The average
impact of reminders on completing the survey was 29 and 16 percentage points for low
($3 or $4) and high ($11 or $12) task-completion incentives, respectively. Across the eight
different possible delay-reward pairs, the impact of reminders ranged from −7 percentage
points (se = 6.00) to 40 percentage points (se = 5.88).

This set of findings informs several hypotheses about attention in this type of setting.
First, the negative effect of delay on task completion and the positive effect of delay on
the impact of reminders is consistent with the attention/memory decay curves proposed by
cognitive psychologists (see, e.g., Mullainathan, 2002; Ericson, 2017 for reviews). Second,
the fact that, at high incentives, task completion was higher but the impact of reminders was
lower is consistent with individuals exerting more costly attention to keep the task top of
mind when stakes are higher.

Our second set of findings from our second experiment is that, while WTP for reminders
increased with the size of the bonus for survey completion, the increase was too small relative
to the null of correct perceptions of attention costs. The theory implies that under this null,
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an extra $1 of task-completion incentives should increase WTP by approximately $0.29 and
$0.16 in the low and high incentive groups, respectively.3 Instead, WTP increased by $0.07
(se = 0.017) and $0.02 (se = 0.047) in those two groups. Using the variation in WTP and
the effects of reminders across all eight conditions, we estimate a model of how people’s
perceived effects of reminders vary with the actual effects. We find that people uniformly
underestimate the effects of reminders by 84 percent, rather than underestimating the effects
when they are small and overestimating them when they are large.

Our third experiment, conducted on Prolific Academic with 1465 participants, expands
the scope of our analysis in two ways. First, it involves a different domain of decision-
making, illustrating the breadth and portability of our methods. Second, it allows us to study
how learning and feedback affect people’s perceptions of the value of BEs. Specifically,
this experiment involved a series of tasks, first utilized by Ambuehl et al. (2020), in which
participants were shown an image with a set of arithmetic equations that were either correct
(e.g., 10+ 12 = 22) or incorrect (e.g., 10+ 12 = 23). Participants were asked to indicate
whether an image contained more correct or more incorrect equations, and were rewarded for
accuracy. All participants completed baseline tasks, in which the image had 100 equations
and either 60 or 40 percent of equations were correct.

We randomly assigned participants to also do one of two less cognitively demanding
versions of the task, the BEs in this experiment. In the length condition, the easier task
involved only 10 equations. In the discernibility condition, the easier task had either 95
or 5 correct equations. Participants completed two blocks of seven tasks, with each block
containing three baseline tasks, three easier tasks, and one task that might be affected by
the participants’ preferences. Analogous to the second experiment, we varied incentives for
task completion (i.e., accuracy in this case) and, prior to each block, we elicited individuals’
WTP to make the remaining task easier for the different incentive levels. Additionally, prior
to the WTP elicitation in the second block, we randomly gave some participants feedback
about their performance in the first block on the hard and easy tasks.

We find that participants were 19 (se = 0.647) and 26 (se = 0.607) percentage points
more likely to accurately answer the easier tasks in the length and discernibility conditions,
respectively, and these differences were nearly identical across both blocks. Under the null of
correct perceptions, participants’ WTP to decrease difficulty in the length and discernibility
conditions should thus increase by approximately $0.19 and $0.26 with each extra dollar
of accuracy incentives.4 However, we find that in the first block, the WTP increases are

3This approximation is valid if an additional $1 has negligible effects on behavior.
4See footnote 3.
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only $0.10 (se = 0.034) and $−0.01 (se = 0.030) in the length and discernibility conditions,
respectively. Thus, as in the other experiments, participants undervalue the BEs.

Our data from this experiment provide two additional lessons that complement the in-
sights from the first two experiments. First, in the first block, participants’ valuations of the
discernibility BE are significantly more biased than their valuations of the length BE. This
fact illustrates the potential context-specificity of BE valuations, and the need for portable
methods that can quantify them across contexts. Second, we study the effects of learning
and feedback. We find that in the second block, participants’ WTP to make the task eas-
ier increases by only $0.03 (se = 0.025) and $0.03 (se = 0.024) for each extra dollar of
accuracy incentives in the length and discernibility conditions, respectively. In the length
condition, this result reflects a significant decrease relative to the first block. We show that
this decrease is concentrated among people who received feedback that they performed at
least as well in the longer version of the task than the shorter version, which suggests that—
on average—people overweighted experiences in which the length-decreasing BE did not
improve performance. This pattern is consistent with recent work on mis-specified learning
(e.g., Heidhues et al., 2018; Gagnon-Bartsch et al., 2021), which suggests that experience
and feedback do not necessarily eliminate mistakes.

Our results contribute to the literature in several ways. First, we build on the supply the-
ory framework developed by Caplin et al. (2020) to develop methods for assessing whether
individuals optimally choose their attention environment. Broadly speaking, models of ratio-
nal inattention—particularly when applied to dynamic environments—assume that individ-
uals know their attention cost functions and thus would optimally invest in BEs. Thus, our
method allows researchers to test key assumptions in models of rational inattention. Despite
the recent proliferation of work on rational inattention, surprisingly little work in the eco-
nomics literature has been devoted to individuals’ understanding of the limitations of their
attention.5 Our experiments illustrate how our method can be applied both to the kinds of
psychometric settings where rational inattention models have traditionally been tested, as
well as to settings concerning behaviors such as education and health investments where the

5There is more work in economics on the optimality of individuals’ information acquisition strategies. See,
e.g., Gabaix et al. (2006); Hanna et al. (2014); Bartoš et al. (2016); Martin (2016); Dean and Neligh (2018);
Ambuehl et al. (2020); Caplin et al. (2020); Morrison and Taubinsky (forthcoming). There is also a large psy-
chological literature on metacognition, including work on how individuals act on their environments to create
external triggers (e.g., calendar events or reminders) for delayed intentions (Gilbert, 2015a,b). This work finds
that whether individuals utilize such tools depends on what they perceive to be the required internal cognitive
demands that would otherwise be necessary, as well as the expected value of achieving the goal (Shenhav et al.,
2013). These evaluations may be erroneous(Gilbert et al., 2020), leading to suboptimal decisions. We provide a
quantitative toolbox for exact quantitative tests of whether people value BEs optimally, which can help advance
the more qualitative psychological work on metacognition.

6



study of attention has been more reduced-form.
Second, a large body of work looks at the impact of BEs, such as planning prompts and

reminders, on behaviors such as medical compliance, educational attainment, savings, loan
repayment, wage reporting, voting, and charitable donation.6 We advance this literature by
studying individuals’ demand for BEs. Our approach sheds light on whether provision of
such BEs is efficient. If individuals valued these BEs optimally, then external provision of
the BEs would be inefficient because the market already provides individuals with many op-
portunities to acquire reminder technologies and plan-making tools in the form of various
smartphone and computer applications, online calendars, smart caps on pill bottles, and so
on. As noted above, incomplete take-up of BEs does not by itself imply that people un-
dervalue them, because in addition to any pecuniary costs, reminders and plan-making tools
may carry private nuisance costs (Damgaard and Gravert, 2018), time costs, or detract scarce
attention from other important tasks (Nafziger, 2020; Altmann et al., forthcoming).

Closest to our second experiment, Ericson (2011) and Tasoff and Letzler (2014) con-
duct lab experiments and find that individuals’ willingness to pay for a rebate exceeds the
expected returns. Their results suggest overestimation of future attention to the rebate and
thus follow-through, although other biases, such as Tasoff and Letzler’s (2014) proposed
weak cost-salience, plausibly also play a role. Our approach and results from the second
experiment complement Ericson (2011) and Tasoff and Letzler (2014) in a few ways. First,
overconfidence about one’s baseline level of attention need not imply under-appreciation of
the incremental impact of BEs, and vice versa. Second, by directly estimating individuals’
(mis)valuations of BEs, our method allows us to directly speak to how much take-up of BEs
should be encouraged through subsidies or other interventions. Third, the richness of our
second experiment provides new insights about variation in attention, such as our result that
people are more attentive at higher stakes.

Last, our work relates to the broader literature that studies whether individuals’ beliefs
are well-calibrated. A common approach is to directly elicit individuals’ beliefs. However,
the beliefs that individuals state in an abstract elicitation are not necessarily the decision
weights that individuals apply in all real-stakes decisions because of salience and context
effects (see, e.g., Bernheim and Taubinsky, 2018 for a recent discussion). For example,
many individuals know how large sales taxes are and what products they apply to, but still
neglect to incorporate them into their decisions (Chetty et al., 2009; Taubinsky and Rees-

6See, e.g., Nickerson and Rogers (2010); Milkman et al. (2011); Altmann and Traxler (2014); Castleman
and Page (2016); Bronchetti et al. (2015); Karlan et al. (2016a); Calzolari and Nardotto (2017); Damgaard and
Gravert (2018); Marx and Turner (2019); Zhang et al. (2021). See also Carrera et al. (2018) and Oreopoulos
et al. (forthcoming) for examples of null effects.
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Jones, 2018). Similarly, individuals might have an abstract understanding of how BEs affect
behavior yet still undervalue them in real-stakes decisions. Our approach is thus a useful
complement to this other work.

Methodologically, this paper also contributes to recent work that tests for behavioral
biases by measuring consumer surplus using two different approaches: (i) inferring it from
how behavior responds to incentives and (ii) directly eliciting consumers’ WTP to engage in
the behavior at different incentives. In different domains where bounded self-control rather
than bounded rationality is plausibly implicated, Allcott et al. (2022) and Carrera et al. (2022)
follow this strategy to estimate the degree of time inconsistency.7

The paper proceeds as follows. Section 1 presents our theoretical framework. Sections
2-4 present the designs and results from our three experiments. Section 5 concludes.

1 Theoretical Framework

1.1 Attention Strategies and Payoffs

We consider individuals who are faced with a task, the successful completion of which re-
quires both attentional inputs and possibly other auxiliary inputs. For example, in our first
two experiments, individuals first choose attention strategies that determine their likelihood
of being attentive to the task in the future, and conditional on being attentive to the task they
choose whether or not to provide auxiliary inputs to complete the task. In our third experi-
ment, individuals’ choice of attention strategy affects their likelihood of correctly solving a
cognitively-demanding task, and there are no auxiliary actions.

Formally, let Sa denote the set of possible attention strategies, with generic element sa,
and let So denote the set of strategies over auxiliary actions, with generic element of so. Let
z = 1 indicate that the task is completed successfully, with z = 0 otherwise. The likelihood
of z = 1 is given by Q(sa,so,ω) where ω ∈ Ω is a state of the world drawn from a prior
µ . Individual i’s utility function is given by Ui = rz−Ki(sa,so,ω), where r is the financial
reward for completing the task, and Ki is the net utility cost of choosing (sa,so) in state ω .8

To ease exposition, we assume that the state is given by ω = (ωa,ωo) ∈ Ωa ×Ωo and
that Q(sa,so,ω) = Qa(sa,ωa) ·Qo(so,ωo). For example, we conceptualize our first two ex-

7See also DellaVigna and Malmendier (2004) and Acland and Levy (2015) for early precursors to this
strategy in the time-inconsistency context, and see Strack and Taubinsky (2022) for formal results about the
robustness of this strategy for measuring limited self-control.

8Note that any non-pecuniary benefits from completing the task can be incorporated into the net utility cost
function K.
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periments settings where individual take actions to maintain attention to the task, with Qa

giving the probability that individuals are attentive to the task. If individuals are not attentive
to the task, they cannot complete it. If they are attentive to the task, they can take auxiliary
actions to complete the task. Thus, Q(sa,so) is multiplicatively separable. We also assume
that Ki is additively separable, given by Ki = Kai(sa)+Koi(so,ωo), where it is without loss
of generality to assume that Kai does not depend on the state. The general framework covers
a variety of settings where attention is implicated, as the examples below illustrate.

Dynamic decisions and sustained attention Suppose that in periods t = 1, . . .T , individu-
als realize an attention outcome αt , and choose an attention action at . Let ht =(α1, . . .αt−1,a1, . . .at−1)

denote the period-t history, and let At(ht ,αt) denote the period t set of available actions, al-
lowing for the possibility that αt is itself endogenous to ht (and to an underlying state ωa).
Then strategies sa are feasible plans for a choice of at after each realized history. For ex-
ample, let αt ∈ {0,1} encode whether an individual is attentive to the task at the beginning
of period t, so that Qa = Pr(αT = 1). At each point in time t, suppose that Pr(αt = 1) is a
function of the history ht , and suppose that At = A if αt = 1 and At = /0 otherwise. That is,
as in Ericson (2017) and Taubinsky (2014), individuals can take actions to affect their future
attention to the task if they are presently attentive to it, but if they forget about the task than
they cannot take action. The attention-sustaining actions might involve setting reminders for
oneself, asking others for reminders, or engaging in internal “rehearsal” (e.g., Mullainathan,
2002).

If the individual is inattentive to the task in period T then she does not complete it;
otherwise auxiliary actions so determine whether the individual completes the task. Suppose
that the cost of completing the task is given by ωo, which is observed in period T (if the
individual is attentive), so that an individual’s incremental utility from completing the task is
r−ωo. Strategies so are then functions so : ωo → {0,1}, with 1 an indicator for choosing to
complete the task conditional on being attentive. The individual’s optimal strategy so is then
a cutoff rule, where so(ωo) = 1 if and only if r ≥ ωo.

Rational inattention in cognitively-demanding tasks Consider a cognitively demanding
task, like the kind employed in experiments testing rational inattention (Dean and Neligh,
2018; Caplin et al., 2020; Caplin, 2021), where the person must allocate mental effort to
identify the state ω ∈ {1, . . .N}. The possible actions are messages m ∈ M = {1, . . . ,N}, and
z = 1 if and only if m = ω . The decision maker can receive signals γ from a set of cardinality
at least N, and an attention strategy is any joint distribution s over signals and states that is
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consistent with the prior, so that
∫

γ
s(γ,ω)dγ = µ(ω). The cost of the information strategy is

Ka(s), which for tractability is sometimes assumed to be proportional to the expected mutual
information between the state and the signal. The message m sent by the decision maker is
the most likely state given the realized posterior.

As shown by Matějka and McKay (2015) and others, such rational inattention models
can be equivalently reformulated such that a feasible strategy is any joint distribution over
actions and states that is consistent with the prior. That is, Sa is the set of all probability
distributions s over Ω×M such that ∑m s(m,ω) = µ(ω) for each ω . Under this definition,
Q(sa,ω) = s(m,ω)/µ(ω).

1.2 A Simplifying Restatement

Building on Caplin et al. (2020), we perform a change-of-variable to reduce the dimension-
ality of the individual’s optimization problem, which leads to a particularly straightforward
interpretation of attention costs.

In the framework we have presented thus far, individual i solves the optimization problem

max
(sa,so)∈Sa×So

E [rQa(sa,ωa)Qo(so,ωo)−Kai(sa)−Koi(so,ωo)] (1)

where the expectation is taken with respect to the prior µ . Define qa := infsa EQa(sa,ωa) and
q̄a := supso

EQa(sa,ωa), and define qo and q̄o analogously. Define K̄ai(q)= infsa{Kai(sa)|EQa(sa,ωa)≥
q} and K̄oi(q) = infso{EKoi(so,ωo)|EQo(so,ωo)≥ q}. Then the optimization problem in (1)
is equivalent to

max
(qa,qo)∈[qa,q̄a]×[qo,q̄o]

[rqaqo − K̄ai(qa)− K̄oi(qo)] (2)

We formalize the notion of equivalence in Lemma 1 below.

Lemma 1. Suppose that (s∗a,s
∗
o) is a solution to (1). Then (q∗a = EQ(s∗a,ωa),q∗o = EQ(s∗o,ωo))

is a solution to (2). Conversely, if (q∗a,q
∗
o) is a solution to (2) then there exist (s∗a,s

∗
o) that are

a solution to (1), with q∗a = EQ(s∗a,ωa) and q∗o = EQ(s∗o,ωo).

In other words, we can reformulate the individual’s decisions as a two-dimensional opti-
mization problem, with a one-dimensional attentional input qa and a one-dimensional auxil-
iary input qo, at costs K̄ai(qa) and K̄oi(qo), respectively. Lemma 1 shows that the functions
K̄ai, K̄oi are sufficient statistics for an individual’s surplus: there are many different economic
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environments that can generate the same aggregate cost functions K̄ai and K̄oi, and an in-
dividual’s surplus depends only on these aggregate cost functions. This result allows us to
focus all discussion below on K̄ai and K̄oi, and to omit other details of the attention proces.

We refer to K̄ai as the attention production function, which parallels standard models of
competitive supply (Caplin et al., 2020). For example, if the aggregate cost functions are
differentiable, then the optimal choice of (qa,qo) equates marginal benefits and marginal
costs, so that K̄′

ai(qa) = rqo and K̄′
oi(qo) = rqa.

We make one regularity assumption, which is that there exists a solution to (1), and
therefore (2). We do not make additional assumptions about differentiability, continuity, or
convexity, but Lemma 2 below shows that the aggregate cost functions K̄ will be convex
whenever the individual’s objective function in (1) is concave. For example, in the special
case of rational inattention in cognitively demanding tasks, the individual’s optimization
problem is concave under the common assumption that attention costs are proportional to
mutual information (e.g., Sims, 2003; Matějka and McKay, 2015). In Appendix Lemma
A.1, we show that convexity of the cost functions is sufficient to ensure differentiability of
many statistics of interest, which facilitates the first-order conditions in Theorem 1 in the
next subsection.

Lemma 2. Suppose that Sa ×So is a convex subset of Rn. K̄ai(qa) is strictly convex in qa if
EQa(sa,ωa) is concave in sa and Kai(sa) is convex in sa, with one of these strict. K̄oi(qo) is
strictly convex in qo if EQo(so,ωo) is concave in sa and EKoi(so) is convex in so, with one of
these strict.

1.3 Choice of Attention Technology

We now introduce an initial choice of whether to simplify the attentional demands required to
successfully complete the task. In our first two experiments, this involves planning prompts
and reminders, respectively. In our third experiment this is a choice of whether to make
the task less cognitively demanding. In addition to our specific experimental settings, this
formalism can also apply to settings where people exert mental effort under a piece-rate
incentive scheme (e.g., Dean, 2019; Kaur et al., 2021; Bessone et al., forthcoming), and may
have a choice of task difficulty, decision aids, or the level of distraction in the environment.

Formally, individual i first makes a choice j ∈ {0,1} between attention cost functions K̄0
ai

and K̄1
ai.

9 We think of K̄1
ai as constituting a bandwidth enhancement (BE) over K̄0

ai. We let p

9In principle, we could formalize this choice as part of the attention strategy sa. However, because this
is initial choice is the main choice that is observable to the analyst, we formally distinguish it from the other
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denote the incremental cost of choosing j = 1 over j = 0, and we assume—consistent with
our experiments—that it is incurred at the same time as the variable reward r. In our first
experiment, −p corresponds to the incentives we create for choosing our plan-making tool,
while in our second and third experiments, p is the price of reminders or making the task
easier. 10 We think of the BEs in our experiments as increasing the likelihood of success
for a given attention cost, which is equivalent to decreasing the marginal cost of attentional
inputs: K̄1

ai(q
′
a)− K̄1

ai(qa) < K̄0
ai(q

′
a)− K̄0

ai(qa) for all q′a > qa. The decrease in marginal
costs does not preclude the possibility that the BEs may cary nuisance costs, formalized as
K̄1

ai(0)> K̄0
ai(0).

Define
V j

i (r) := max
(qa,qo)∈[qa,q̄a]×[qo,q̄o]

[
rqaqo − K̄ j

ai(qa)− K̄oi(qo)
]

as the indirect utility given attention production function j and incentives r. It is optimal for
i to choose attention technology j = 1 if and only if V 1

i (r)− p ≥ V 0
i (r). Our main result

characterizes testable restrictions of optimal choice using measurable statistics of aggregate
behavior. The first statistic is the willingness to pay (WTP) for technology j = 1; that is, the
highest p at which j = 1 is preferred to j = 0. If the nuisance cost of j = 1 is sufficiently
high, this statistic can be negative, even if j = 1 lowers the marginal cost of attention and
thus increases task-completion probability. Average WTP is given by

W̄ (r) := Ei
[
V 1

i (r)−V 0
i (r)

]
.

The other key statistics, which are also at the population level, are Pr( j = 1|p,r), the
probability of individuals choosing technology j = 1 given financial incentives p and r;
Pr(z = 1|p,r), the probability of individuals successfully completing the task given incen-
tives p and r; and Pr(z = 1| j,r), the probability of successfully completing the task when
exogenously assigned attention technology j.

Lemma A.1 in Appendix A.1 shows that the statistics defined above are (almost every-
where) differentiable under mild assumptions. Differentiability of the cost functions K̄ j is
not necessary for these statistics to be differentiable.

attention-affecting choices allowed by our general model.
10Individual differences in K0

i and K1
i could result from individual differences in baseline attentiveness;

differences in how well-suited the BE is to an individual’s needs; differences in the nuisance costs of reminders,
and the personal and social costs of failing to execute a plan that one creates; or (in reduced-form) differences
in the indirect costs of having one’s attention to other activities reduced.
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Theorem 1. Assume that individuals choose attention strategies optimally. Define

D(z = 1|r) := Pr(z = 1| j = 1,r)−Pr(z = 1| j = 0,r).

For any r and ∆ > 0, average WTP for the BE satisfies

W̄ (r+∆)−W̄ (r) =
∫ r+∆

x=r
D(z = 1|x)dx. (3)

Moreover, W̄ (r) is differentiable almost everywhere, differentiable at any point where D(z =
1|r) is continuous, differentiable everywhere if the cost functions K̄ j

ai, K̄oi are strictly convex,
and satisfies

d
dx

W̄ (x)|x=r = D(z = 1|r). (4)

at any point of differentiability. At any pair (p,r) where Pr(z = 1|p,r) and Pr( j = 1|p,r) are
continuously differentiable, the likelihood of choosing technology j = 1 and the likelihood of
completing the task satisfy

d
dr

Pr( j = 1|p,r) =− d
d p

Pr(z|p,r) (5)

=− d
d p

Pr( j = 1|p,r)D(z = 1|r). (6)

Although we make minimal assumptions about the economic environment and individu-
als’ utility functions, we obtain the sharp characterization of Theorem 1 by utilizing Milgrom
and Segal’s (2002) envelope theorems for general choice sets. Equation (4) of Theorem 1
states that, if technology j = 1 increases individuals’ likelihood of choosing z = 1 by, e.g.,
10 percentage points under incentive r, then a small increase dr in r should increase indi-
viduals’ average willingness to pay for j = 1 by approximately dr×0.1. Equation (3) is an
integral version of equation (4) that does not require differentiability. Appendix A.4 provides
an instructive graphical illustration of this result, using standard concepts from competitive
supply.

However, the condition in equation (4) requires rich data that is difficult to collect in some
field settings, and that we do not have in our first experiment. Equation (5) builds on equation
(4) by characterizing how the probability of choosing j = 1 and the probability of z = 1 are
related to each other. The condition in equation (5) formalizes the basic intuition that if
attention is allocated optimally, then increasing the incentives for z = 1 should increase the
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desire to adopt a technology that increases the likelihood of z = 1. But while the qualitative
comparative static could be consistent with individuals under- or overvaluing the benefits of
BEs, the quantitative condition clarifies exactly how much individuals should seek BEs that
increase task completion. The condition in equation (6) is a restatement of the condition in
(5) that reveals the connection to equation (4) by utilizing the function D(z = 1|r).

The condition in (5) is a variation on the Slutsky symmetry condition that cross-price
elasticities of compensated demand functions must be equal to each other, and is anal-
ogous to the tests of sparse-max decision making derived in Gabaix (2014). Intuitively,
− d

d pPr(z = 1|p,r) is an indication of how adoption of technology j = 1 affects the proba-
bility of choosing z = 1. In our online education experiment, this derivative is the average
impact of our plan-making incentives on the likelihood of completing course modules. The
higher this number is, the higher the impact of our plan-making tool on the likelihood of
completing the course modules will be. And the higher the impact of the plan-making tool,
the higher the impact of a small change in r on its value, as formalized in the first part of
Theorem 1. This translates to a higher derivative d

dr Pr( j = 1|p,r).11

The first condition in Theorem 1 is a limit result in the sense that it applies to marginal
changes in the task-completion incentive. Corollary 1 below clarifies how this condition can
be used to evaluate “small” but not “vanishing” changes.

Corollary 1. Assume that agents choose attention technologies optimally. Then

∆ min
x∈[r,r+∆]

D(z = 1|x)≤ W̄ (r+∆)−W̄ (r)≤ ∆ max
x∈[r,r+∆]

D(z = 1|x). (7)

If D(z = 1|x) is smooth on [r,r+∆] and terms of order d
dr2 D(z = 1|r)(∆3) are negligible, then

W̄ (r+∆)−W̄ (r)≈ ∆

2
· (D(z = 1|r)+D(z = 1|r+∆)) . (8)

Corollary 1 shows that if the change ∆ in incentives is sufficiently small, then, roughly
speaking, we can take a first-difference approximation to condition (4) by replacing d

dxW̄ (x)|x=r

11Note that any data set that can be used to test condition (4) can be used to test the Slutsky symmetry
condition as well. To see this, first note that eliciting individuals’ WTP for j = 1 at incentive r is equivalent to
eliciting the demand curve for j = 1 at incentive r, which means that this data set identifies Pr( j = 1|p,r) for
all p and for each task-completion incentive r utilized in the experiment. Thus, d

dr Pr( j = 1|p,r) and d
d p Pr( j =

1|p,r) are identified in this data set. Second, the right-hand-side term of (4), D(z = 1|r), is identified by
assumption. Thus, all of the statistics necessary to test (6), and therefore also (5), are available. Note, however,
that the Slutsky symmetry conditions use strictly less data than condition (4): these conditions consider the
function Pr( j = 1|p,r) only in a neighborhood around a single incentive level p, while condition (4) considers
Pr( j = 1|p,r) across all possible values p for which Pr( j = 1|p,r) ∈ (0,1).
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with (W̄ (r+∆)−W̄ (r))/∆. For example, if, as in our second and third experiments, the an-
alysts finds that the change ∆ negligibly affects the likelihood of successful task completion,
then condition (7) implies that W̄ (r+∆)−W̄ (r)≈ ∆D(z = 1|r) for optimizing agents.

The heuristic approximation above can be further refined in several ways. First, un-
der the assumption that D(z = 1|x) is monotonic on [r,r + ∆], condition (7) shows that
∆min{D(z = 1|r),D(z = 1|r+∆)} is a robust lower bound for W̄ (r+∆)−W̄ (r), which is
helpful for analysis attempting to rigorously show that W̄ (r+∆)−W̄ (r) is too low relative to
the optimizing benchmark. Second, under the assumption that D(z = 1|x) is locally linear on
[r,r+∆]—which is a justifiable assumption whenever the impacts of ∆ are “small—condition
(8) provides a better approximation to W̄ (r+∆)−W̄ (r). 12

1.3.1 Remarks and Qualifications

Differences in fixed costs, K̄1
i (0)− K̄0

i (0), may result from the potential nuisance costs of
attention-improving technologies, which is consistent with negative WTP for reminders by
some individuals in our second experiment. Thus, the value of a BE cannot be equated with
its impact on the change in expected earnings, rPr(z = 1). Simply documenting that, for
example, individuals’ valuations for a reminder that increases their chance of earning $10 by
10% is smaller than $1 is not a rejection of correct valuation of the reminder, because nui-
sance costs could decrease the value of the reminder. Our more robust test focuses instead on
how individuals’ valuations of the BE change as the pecuniary incentives for being attentive
change.

Second, note that condition (4) is a test of whether individuals correctly value the BE on
the margin: whether individuals correctly perceive the effects of the BE at the current incen-
tive level r. The statistic W̄ (r), however, captures individuals’ perceptions of the difference
in total costs, which includes K1

i (0)−K0
i (0). The impact on W̄ (r) of additional treatments

like opportunities for learning and feedback—as in our third experiment—can provide some
insight about biases in the perception of total costs, and how those might differ from biases
about the effects of the BE on the margin.

Third, note that we have assumed that utility is quasi-linear in the financial incentives.
This is a plausible assumption for the small stakes featured in our experiment, as non-
negligible deviations from this assumption would imply implausible levels of risk aversion
for higher incentives (Rabin, 2000). Appendix E shows that incorporating standard estimates
of risk aversion in our model negligibly impacts the quantitative implications of Theorem 1,

12Note that ∆ need not necessarily be small. What is important is that D(z = 1|r+∆)−D(z = 1|r) is small.
For example, if this statistic is zero, then the condition in Corollary 1 is exact even for large ∆.
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and thus does not confound our empirical conclusions.

1.4 Empirical Tests of Theorem 1 and Their Interpretation

A failure to verify the optimality conditions in Theorem 1 could result for the following
reasons, which we discuss in turn below.

E1. Individuals mischaracterize (either due to incorrect beliefs or other forms of bounded
rationality) their attention production process. That is, they mischaracterize Q(sa,so,ω)

or Ki(sa,so,ω) on a positive measure of states ω .

E2. Individuals have biased priors µ .

E3. In a given experiment, the states ω are not realized independently across individuals.
For example, there is uncertainty about a fixed parameter of the economic environ-
ment.13

Deviations due to E1 or E2 imply systematic misperceptions. Systematic biases have been
documented in a variety of domains of decision making, including other types of costly effort
decisions (e.g., DellaVigna and Pope, 2017; Hoffman and Burks, 2020). These explanations
are also equivalent in the simplified representation (2), as both lead to biased beliefs about the
aggregate cost functions K̄ j. In experiments such as our first two, it is difficult to differentiate
between E1 and E2 because the state space is not specified or observed by the analyst. In
our third experiment, which follows standard protocols that test rational inattention models,
E2 may be less likely as the experimenter specifies the state space, the prior distribution
over states, and the mapping from states and actions to financial rewards. The only way
in which E2 can apply to such experimental protocols is if the state space is, contrary to
the experimenter’s efforts, richer than the one specified by the experimenter, for reasons we
discuss below in reference to E3.

Deviations due to E3 do not necessarily involve systematic biases. To formalize E3, let ξ

denote an environmental parameter such that the effects of the BE are given by D(z = 1|r,ξ ).
Let each individual i receive a signal ζi about D(z = 1|r,ξ ), which is affiliated with ξ accord-
ing to some joint distribution H(ζ ,ξ ), with marginals Hζ and Hξ . Suppose that individuals
have an unbiased prior about the effects of the BE, centered around D̄(z = 1|r) :=

∫
D(z =

1|r,ξ )dHξ (ξ ), the average effect of the BE across the different possible environments. Then,

13We thank an anonymous referee for pointing out this mechanism and motivating our discussion of it.
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if individuals are Bayesian, the martingale property of beliefs implies that individuals’ pos-
terior beliefs after receiving signal ζi, the perceived effect of the BE, D̃i(z = 1|r,ζi), must
also be unbiased on average: Ei,ξ

[
D̃i(z = 1|r,ζi)

]
= D̄(z = 1|r).

For example, ξ could capture environmental features that determine the efficacy of a
reminder. As shown in our second experiment, reminders have larger effects when the task is
further off into the future. Individuals may have a correct prior about how effective reminders
are on average, but may not have learned how effective reminders are for a specific task-
completion delay. In our third experiment, individuals may have a correct understanding of
how generally difficult it is to identify whether there are more correct or incorrect arithmetic
calculations, based on similar tasks they have done in the past, but there may be correlated
uncertainty about exactly how much more difficult it is to complete the task with one hundred
rather than ten equations. Formalizing this type of uncertainty requires specifying a richer
state space.

An analyst applying Theorem 1 to an experiment that features only one particular realiza-
tion of ξ would fail to verify the the condition of the Theorem, since individuals’ decisions
would satisfy d

drW̄ (r) = Ei
[
D̃i(z = 1|r,ζi)|ξ

]
rather than d

drW̄ (r|ξ ) = D(z = 1|r,ξ ). Con-
cretely, suppose that individuals have a normal prior with variance σ2

0 , and that they receive
a signal about D(z = 1|r,ξ ) that is normally distributed around D(z = 1|r,ξ ) with variance
σ2

1 . Then individuals’ perceptions, and thus by Theorem A.1 their WTPs, satisfy

d
dr

W̄ (r|ξ ) = Ei
[
D̃i(z = 1|r,ζi)|ξ

]
= (1−θ)D̄(z = 1|r)+θD(z = 1|r,ξ ), (9)

where 1− θ = σ2
1/(σ

2
0 +σ2

1 ) is the degree of Bayesian shrinkage toward the prior mean
D̄(z = 1|r). This implies that individuals undervalue the BE when it is more effective than
average, in the sense that D(z = 1|r,ξ )> D̄(z = 1|r). But individuals also overvalue the BE
when it is less effective than average, in the sense that D(z = 1|r,ξ ) < D̄(z = 1|r). Thus,
showing that individuals overestimate or underestimate the effects of a BE in one particular
decision environment does not imply that the miscalibration is systematic.

Importantly, if the assumption that D̄(z = 1|r) is an unbiased prior mean is relaxed, then
equation (9) is mathematically equivalent to a “meta-inattention” model in the spirit of the
attribute-misperception model of Gabaix (2014). In this interpretation, D̄ is some default
perception that people “anchor” on. Thus, equation (9) is a convenient parametrization that
can also capture systematic biases as in E1 and E2.

Estimating equation (9) can provide at least suggestive evidence for differentiating be-
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tween E3 and systematically-biased perceptions. In data sets where there is exogenous vari-
ation in conditions ξ that generate variation in the efficacy of the BE, equation (9) can be
estimated simply through the linear regression model

d
dr

W̄ (r|ξ ) = β0 +β1D(z = 1|r,ξ ). (10)

The coefficient β1 identifies θ , which implies that D̄(z = 1|r) = β0/(1 − β1). That is,
β0/(1− β1) is a sufficient statistic for the behavioral implications of the prior µ , includ-
ing any possible biases in the prior. To illustrate how the coefficients can help differentiate
between E3 and the systematic biases in E1 and E2, suppose that it is known that the effects
of reminders are generally non-negative.14 Then detecting strongly positive effects in some
conditions suggests that D̄(z = 1|r)> 0, and thus a finding that β0 = 0 suggests that people
systematically underestimate the effects of reminders because they anchor on the erroneous
default perception of null effects.

Implications for Models of Costly Attention To summarize, failure to verify the con-
ditions of Theorem 1 generates several possible implications. One is that individuals are
systematically mis-calibrated about their attention cost functions or have biased priors (E1
and E2). A different possibility, as captured by E3, is that even in highly-controlled empirical
studies where the experimenter attempts to specify the states and probabilities—such as our
third experiment—the individuals’ subjective state space is richer than what has typically
been assumed. Given that state-dependent stochastic choice (SDSC) data is a key empirical
object for testing and estimating rational inattention models (Caplin and Dean, 2015; Caplin,
2016), this possibility raises intriguing challenges for this agenda.

Direct Versus Indirect Reasons for Misperceptions of BE Effects Individuals might
misperceive the value of BEs for direct reasons—misperceiving K̄1

a − K̄0
a —or due to indi-

rect reasons—misperceiving K̄o in economic environments that involve auxiliary actions.
The latter possibility is not implicated in our third experiment, but is in principle possible in
our first two experiments. If individuals underestimate K̄o, then they will overestimate their
optimal choice of qo, and thus overestimate the returns to higher attention and thus to the BE.
The converse holds if individuals underestimate K̄o. However, because most plausible biases
about the costs of auxiliary actions in our first two experiments—such as underestimating
how busy one is in the future (e.g., the planning fallacy articulated in Kahneman and Tver-

14I.e., an unbiased prior puts little weight on negative effects.
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sky, 1982)—lead people to underestimate K̄o, under-valuation of BEs in these experiments
cannot be plausibly explained without direct misperceptions of K̄1

a − K̄0
a .

2 Online Education Experiment

Our first experiment was designed around the Slutsky symmetry test in equation (5) of The-
orem 1. It was run in the fall of 2018. We partnered with Code Avengers, an online platform
for learning to code, to offer participants a free, eight-week course in three different program-
ming languages (HTML/CSS, Javascript, and Web Dev).15 Screenshots of all experimental
instructions are in Screenshots Appendix F.1.

2.1 Design and Implementation

2.1.1 Participant Pool

We recruited students and recent alumni from six Philadelphia-area colleges using an email
campaign. Enrollees were eligible to be included in our study if they reported in the onboard-
ing survey that they regularly used either Google Calendar or Apple’s iCal as an electronic
calendar. Perhaps due to the relative youth of the participant pool, usage rates were high, at
around 60–70 percent. Recruitment resulted in a pool of 1373 study-eligible participants.16

2.1.2 Implementation

Just before the 8-week course began, participants received an introductory email with in-
formation on their treatment assignment. This email also contained a recommendation that
participants aim to complete three, 15-minute sessions of the coding course per week, a
prompt to encourage participants to make a plan for when they would do the coding lessons,
and a link to make plans for working on the coding lessons, which would be created in their
electronic calendars. Participants who were eligible for financial rewards were informed that
they would be paid their cumulative earnings in the form of an Amazon gift card at the end
of the 8-week period.

Over 90 percent of participants opened the initial emails informing them of the incentives
they faced (i.e., their treatment), giving us confidence that most were aware of the incentives

15These languages are commonly used tools for building modern web sites. See
http://www.codeavengers.com for more details.

16Appendix Table A.1 presents characteristics of the participant pool. Females, first-years, and seniors were
most likely to participate.
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for which they were eligible. As expected from random assignment of treatment, email
opening rates were very similar across treatments, ranging from 88 to 91 percent.

After the course had begun, all participants received a reminder email at the start of each
week. The reminder email contained the same recommendation, planning prompt, and link
to create plans as the initial email.

2.1.3 Experimental Design

The experiment consisted of a control group and five treatment arms, with varying levels of
incentives for plan making and/or coding task completion. Participants assigned to the con-
trol group received the initial and reminder emails encouraging them to plan and complete
the coding lessons and offering them the plan-making tool, but they were not eligible for
financial rewards.

Those randomly assigned to the two Pay-to-Plan treatments received either $1 or $2 for
making a plan for when to do their coding lessons that week (i.e., clicking the plan-making
link within the weekly email). In the two Pay-to-Code treatments, participants received
either $2 or $5 for completing three 15-minute sessions of the coding course during the
week. Finally, participants in the Combination treatment arm were paid $1 for making a
plan plus $2 if they completed three 15-minute sessions of the coding course during the
week. Participants could earn these amounts each week, regardless of what they had done
in previous weeks. In addition, making a plan did not restrict when a participant could do
the coding lessons (i.e., participants in the Pay-to-Code and Combination treatments could
complete the 15-minute sessions at any time during the week and still earn their coding-task
incentives, regardless of whether or not they made a plan or when they had scheduled the
three 15-minute sessions).

To measure plan making, we tracked whether a participant clicked on the provided plan-
making link to create calendar events for when they planned to complete the 15-minute
coding sessions.17 Consistent with our theoretical framework, this observable plan-making is
not the only available bandwidth enhancement (BE), or even the only available plan-making
opportunity. For example, some participants might have other means of making plans or
might directly edit their calendars without using our link. However, nearly 40 percent of
the control group clicked to make a plan in the first week, despite receiving no financial
rewards for doing so, and participants with higher incentives for completing the coding task
were more likely to use the plan-making tool, implying that our plan-making tool was not

17When participants clicked on the plan-making link, they were given three default times, which they could
change. This default ensured that as long as a participant clicked on the link, a calendar event would be created.
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a perfect substitute for the plan making individuals would do otherwise.18 This may be
because the act of making a plan by using our link generates an internal cue, as theorized in
the implementation intentions literature (Gollwitzer and Sheeran, 2006).

To measure completion of the coding coursework, we received real-time, backend data
from Code Avengers on the number of minutes participants spent actively working on their
coding coursework each day. The session timer stopped running after approximately 30 sec-
onds of inactivity within the course. Once they had completed 15 minutes of active work,
participants were notified with a pop-up that congratulated them but did not prevent or dis-
courage them from continuing.

2.2 Results

2.2.1 Empirical Framework

Our primary analysis focuses on measuring the effect of plan-making and coding-task in-
centives on plan making and coding task completion. We estimate treatment effects using
regressions of the form:

yict = βTict +αc +αt + γXi + εict , (11)

where yict measures either plan making or completing at least τ ∈{0,10,20,30,40,45,50,60}
minutes in week t for participant i at campus c. We include fixed effects αc for campus in-
teracted with student status (i.e., current student or alumni), which was the level at which
we randomized. We also control for course week αt and a vector of participant character-
istics Xi, but random assignment implies that these additional controls should not affect our
estimated treatment effects. Our preferred measure of treatment Tict is value in dollars of
the participant’s incentive, which assumes a linear relationship between the incentive and
behavior. We also consider a specification with indicators for different incentive sizes. We
estimate regressions separately for the Pay-to-Plan sample, which includes the control group
and the two Pay-to-Plan treatments, and the Pay-to-Code sample, which includes the control
group and the two Pay-to-Code treatments.

18Our theoretical framework only requires that the plan-making tool we offer is not a perfect substitute to
other forms of planning individuals already undertake. Heterogeneity in attention cost functions accommodates
the possibility that some participants who use our plan-making tool simply substituted from creating their own
calendar reminders while others who use our plan-making tool would not have created a plan themselves.
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2.2.2 Plan-making Incentives

In Table 1, we estimate the impacts of plan-making incentives on plan making and on coding
task completion. In the context of our model, these specifications measure d

d pPr(z = 1|p,r)
and d

d pPr( j = 1|p,r). The analysis sample includes 705 participants and eight pooled weekly
observations per participant. In Panel A, we estimate the effect of plan-making incentives on
the propensity to plan in week 1, weeks 1 to 4, and weeks 1 to 8. Multiple-week outcomes
average the indicator for whether a participant made a plan (or completed the coding task) in
each week. In Panel B, we estimate the effect of plan-making incentives on the propensity
to complete at least 20 minutes or at least 45 minutes of coding during week 1, weeks 1 to
4, and weeks 1 to 8, respectively. Although our financial incentives were specifically for
completing at least 45 minutes of the coding task (i.e., the three 15-minute sessions), we also
include the 20-minute benchmark in the main tables and text to show robustness. Appendix
Tables A.2 and A.3 consider other time thresholds: 0, 10, 30, 40, 50, and 60 minutes per
week. Our interpretation of the results is consistent with the evidence from these alternative
thresholds.

The results indicate strong impacts of plan-making incentives on plan making, and mod-
est impacts of plan-making incentives on coding task completion. For each $1 of plan-
making incentive, participants increase their plan making by 11.6 percentage points (se =

1.3) on average over the eight weeks of the study, an increase of 140% relative to the con-
trol group mean of 8.2 percentage points. Plan-making effects are 18.0 percentage points
(se = 2.0) in week 1, and 14.2 percentage points (se = 1.4) on average over weeks 1 to 4,
which suggests an attenuated response over the course of the study. However, the control
mean falls even more quickly, from 38.1% in week 1, to 15.0% in the first four weeks, to
8.2% over the full study, such that the relative impact of plan-making incentives increases
over time. Panel A of Appendix Table A.4 shows the effects of the $1 and $2 plan-making
incentives separately.

The treatment effect of plan-making incentives on coding task completion is more modest
but still meaningful. Focusing on course completion of at least 45 minutes a week, we
find that $1 of plan-making incentive increases coding task completion by 3.8 percentage
points (se = 1.8) in week 1, an increase of 22% relative to the control group mean of 17.4
percentage points. However, the effect declines to a marginally significant 1.7 percentage
points (se = 1.2) over weeks 1 to 4, and to a statistically insignificant 0.6 percentage points
(se = 0.9) over weeks 1 to 8. In Panel C, we combine the plan making and coding task
completion estimates in an instrumental variables estimation of the effect of plan making on
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Table 1: The Effect of Plan-Making Incentives on Plan Making and Task Completion

A. The Effect on Plan Making (First Stage)

(1) (2) (3)
Week 1 Weeks 1-4 Weeks 1-8

Plan Incentive 0.180*** 0.142*** 0.116***
(0.020) (0.014) (0.013)

Obs. 705 705 705
R2 0.137 0.163 0.131
Control Mean 0.381 0.150 0.082
Controls Yes Yes Yes
Campus FE Yes Yes Yes

B. The Effect on Coding Task Completion (Reduced Form)

(1) (2) (3) (4) (5) (6)
>20 (1) >20 (1-4) >20 (1-8) >45 (1) >45 (1-4) >45 (1-8)

Plan Incentive 0.040** 0.028** 0.013 0.038** 0.017 0.006
(0.020) (0.013) (0.011) (0.018) (0.012) (0.009)

Obs. 705 705 705 705 705 705
R2 0.057 0.049 0.051 0.036 0.035 0.041
Control Mean 0.280 0.212 0.158 0.174 0.156 0.116
Controls Yes Yes Yes Yes Yes Yes
Campus FE Yes Yes Yes Yes Yes Yes

C. The Effect of Plan Making on Coding Task Completion (IV)

(1) (2) (3) (4) (5) (6)
>20 (1) >20 (1-4) >20 (1-8) >45 (1) >45 (1-4) >45 (1-8)

Plan Making 0.221** 0.194** 0.114 0.213** 0.118 0.053
(0.105) (0.087) (0.086) (0.096) (0.076) (0.074)

Obs. 705 705 705 705 705 705
R2 0.147 0.174 0.133 0.092 0.120 0.085
Control Mean 0.280 0.212 0.158 0.174 0.156 0.116
Controls Yes Yes Yes Yes Yes Yes
Campus FE Yes Yes Yes Yes Yes Yes

This table estimates the effect of plan-making incentives (“Plan Incentive”) on plan making and coding task
completion. Panel A shows the effect of plan-making incentives (in dollars) on whether participants made a
plan. Column (1) shows the effect of plan-making incentives in week 1 of the experiment. Column (2) shows
the average effect for the weeks 1–4. Column (3) shows the average effect for all weeks. Panel B shows the
effect of plan-making incentives on coding task completion. Columns (1-3) show the effect on an indicator
variable for whether or not the participant worked on the task for more than 20 minutes: Column (1) estimates
the effect over week 1, Column (2) over weeks 1–4, and Column (3) over all weeks. Columns (4-6) show
analogous estimates for an indicator for whether or not the participant worked on the task for more than 45
minutes. Panel C shows the 2SLS estimates instrumenting for whether participants made a plan using the plan-
making incentive as an instrument. The dependent variables are the same as in Panel B. Standard errors are in
parentheses. *p < 0.1, **p < 0.05, ***p < 0.01.
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coding task completion. Making a plan increases the probability of coding task completion
by 21 to 22 percentage points in week 1, an 81% to 124% increase relative to control group
means. This large effect is precisely estimated for week 1 and weeks 1 to 4 but diminishes
over the full experimental period. Overall, the results point to the value of plan making
for people who have some intrinsic motivation to complete the coding sessions. Panel B of
Appendix Table A.4 shows the effects of the $1 and $2 plan-making incentives separately.

The decrease in treatment effects over time is not surprising, as many participants ap-
pear to attrit out of the coding course. Appendix Figure A.2 plots control group means for
plan-making and coding task completion over the weeks of the experiment. Engagement in
the first two weeks of the study is relatively high in the absence of monetary incentives—
control group participation hovers between 20 and 30 percent. However, many participants
disengage from both the plan-making tool, which falls close to zero by week 3, and from
continuing the coding course, which falls to 10 percent participation by week 5, suggesting
that motivation for the coding course diminished over time. In the context of our model, this
implies that participants’ estimates of B(r) diminished as participants received additional
signals about the course.19

2.2.3 Coding-task Incentives

Table 2 estimates the impacts of coding-task incentives on plan making and coding task
completion. In the context of our model, these specifications measure d

dr Pr(z = 1|p,r) and
d
dr Pr( j = 1|p,r). The analysis sample includes 714 participants and eight pooled weekly
observations per participant. Following the structure of Table 1, in Panel A we estimate the
effect of coding-task incentives on the propensity to plan in week 1, weeks 1 to 4, and weeks
1 to 8. In Panel B, we estimate the effect of coding-task incentives on the propensity to
complete at least 20 minutes or at least 45 minutes of coding during week 1, weeks 1 to 4,

19Note that this by itself does not imply a deviation from optimal Bayesian decision making. As a simple
illustration, suppose that for each participant, the beliefs about B(r) take the form of a Bernoulli random
variable that takes on the values B̄ > 0 with probability 0.2 and B < 0 with probability 0.8, such that 0.2B̄+
0.8B> 0. Then participants would initially sign up given the positive expectation of B(r). But if the realizations
of B are independently distributed across participants, 80 percent of them would attrit after discovering that
B = B. And if the realizations of B are positively correlated across participants, then in “bad” states the
number of participants attriting could be much larger than what participants initially expected. For example,
if the realizations are perfectly correlated, and the prior is that Pr(B = B̄) = 0.8, then in the state B = B the
participants who attrit will have ex-ante expected to complete the course with 80 percent chance. This does not
pose a threat to our theoretical results about tests of optimal valuation of BEs because the experiment involves
weekly measures of engagement with the planning tool. Thus, even if participants initially overestimated their
enthusiasm about the course, they had the opportunity to adjust those expectations before the next planning
decision.
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and weeks 1 to 8, respectively.
Coding-task incentives have substantial effects on coding task completion, as shown in

Panel B. We estimate that each $1 of coding-task incentive increases completion rates for
45-minutes in week 1 by 3.5 percentage points (se = 0.8), an increase of 20% relative to the
control group mean of 17.4 percentage points. For the $2-incentive and $5-incentive groups,

Table 2: The Effect of Coding-Task Incentives on Plan Making and Task Completion

A. The Effect on Plan Making

(1) (2) (3)
Week 1 Weeks 1-4 Weeks 1-8

Task Incentive 0.025*** 0.010** 0.007**
(0.009) (0.004) (0.003)

Obs. 714 714 714
R2 0.050 0.058 0.049
Control Mean 0.381 0.150 0.082
Controls Yes Yes Yes
Campus FE Yes Yes Yes

B. The Effect on Coding Task Completion

(1) (2) (3) (4) (5) (6)
>20 (1) >20 (1-4) >20 (1-8) >45 (1) >45 (1-4) >45 (1-8)

Task Incentive 0.038*** 0.031*** 0.025*** 0.035*** 0.024*** 0.020***
(0.009) (0.006) (0.005) (0.008) (0.006) (0.005)

Obs. 714 714 714 714 714 714
R2 0.043 0.059 0.069 0.041 0.057 0.075
Control Mean 0.280 0.212 0.158 0.174 0.156 0.116
Controls Yes Yes Yes Yes Yes Yes
Campus FE Yes Yes Yes Yes Yes Yes

This table estimates the effect of coding-task incentives (“Task Incentive”) on plan making and coding task
completion. Panel A shows estimates of the effect of coding-task incentives (in dollars) on whether or not
participants made a plan. Column (1) shows the effect of coding-task incentives week 1 of the experiment.
Column (2) shows the average effect over weeks 1–4. Column (3) shows the effect over all weeks. Panel B
shows the effect of coding-task incentives on coding task completion. Columns (1-3) show the effect on an
indicator variable for whether or not the participant worked on the task for more than 20 minutes: Column (1)
estimates the effect over week 1, Column (2) over weeks 1–4, and Column (3) over all weeks. Columns (4-6)
show analogous estimates for an indicator for whether or not the participant worked on the task for more than
45 minutes. Standard errors are shown in parentheses. *p < 0.1, **p < 0.05, ***p < 0.01.
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this coefficient implies an increase in the probability of coding task completion of 7 and
17.5 percentage points, respectively, or 40% and 101% relative to the control mean of 17.4
percentage points. Again, the treatment effects diminish over time to 2.4 percentage points
(se = 0.6) per $1 over weeks 1 to 4, and to 2.0 percentage points (se = 0.5) per $1 over the
eight weeks of the study.20

A more novel result is that coding-task incentives also increase the probability of plan
making, as shown in Panel A. Column 1 shows that for each $1 of coding-task incentive,
participants increase their plan making by 2.5 percentage points (se = 0.9) in week 1, by
1.0 percentage point (se = 0.4) in weeks 1 to 4, and by 0.7 percentage points (se = 0.3)
over the eight weeks of the study. Relative to the control group means of 38, 15, and 8
percentage points, these correspond to plan making increases of 6.6%, 6.7%, and 8.5% per
$1 of plan-making incentive.

2.2.4 Symmetry Test

Participants clearly recognize the potential value of plan making in helping them achieve
their coding course participation. But do they value plan making enough? To answer this
question, we compare the cross-price elasticities estimated in the Pay-to-Plan and Pay-to-
Code samples, implementing the test in Equation (5) of Theorem 1. The coefficients for $1
of plan-making incentives on coding task completion are 0.039, 0.017, and 0.006 in week 1,
weeks 1 to 4, and weeks 1 to 8, respectively. The analogous coefficients for $1 of coding-
task incentives on plan making are 0.025, 0.010, and 0.006. The difference in coefficients
provides our first test of under-planning, delivering estimates of 0.014 (se = 0.019), 0.007
(se = 0.012), and -0.0004 (se = 0.009), respectively.21 The positive sign of the differences,
particularly in the early weeks of the study, hints at the possibility that participants might un-
dervalue plan making. However, the standard errors are too wide to draw strong conclusions
from this data about whether participants plan optimally.

Figure 1 plots week-by-week coefficients for plan-making and coding-task incentives to

20We exclude the Combination treatment from our main analysis and separately evaluate whether this treat-
ment exhibits complementarity effects (i.e., whether combining a $1 plan-making incentive with a $2 coding-
task incentive induces plan making or coding effects that are significantly different from the $1 Pay-to-Plan
or $2 Pay-to-Code treatments in isolation). For weeks 1 to 8, the Combination treatment effect on plan mak-
ing is 26.7 percentage points (se = 2.6) compared to 23.9 percentage points (se = 2.7) for the $1 Pay-to-Plan
treatment (p-value of difference = 0.31). The Combination treatment effect on average course completion is
3.8 percentage points (se = 2.4) compared to 4.6 percentage points (se = 2.1) for the $2 Pay-to-Code treat-
ment (p-value of difference = 0.72). Thus, we find no statistically significant complementarity effect of the
Combination treatment.

21Standard errors for coefficient differences are estimated via seemingly unrelated regression.
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illustrate how the effect of incentives evolves over the course of the experiment. The effect of
coding-task incentives on plan making is consistently close to zero (after week 1) and tightly
estimated. In contrast, the effect of plan-making incentives on coding task completion is
positive for the first half of the study and then decays toward zero, with relatively wider
confidence intervals.22 This provides suggestive evidence of under-planning.

Findings from Experiment 1. Take-up of our plan-making tool increased with incentives for
completing coding lessons, but the ratio of cross-price effects for plan-making and task com-
pletion suggests that participants undervalued plan-making. The impact of task-completion
incentives on planning-prompt demand was 74% as large as the ex-post optimal benchmark
implies.

3 Online Survey-completion Experiment

Complementing our first experiment, we ran a survey-completion experiment on Amazon’s
Mechanical Turk platform (MTurk). The experiment is tightly tied to the test in equation
(4) of Theorem 1, described in Section 1. The test states that for individuals who optimally
invest in bandwidth enhancements (BEs), a $1 increase in the incentive for task completion
must increase willingness to pay for such a technology by $1 times its efficacy (i.e., by the
change in the probability of task completion due to the BE). Screenshots of all experimental
instructions are in Screenshots Appendix F.2.

3.1 Design and Implementation

Participants were recruited to complete part 1 of the study each weekday between September
7 and September 24 of 2021. Our recruitment material informed potential participants that
part 1 of the study would require 15 minutes of time immediately (for which participants
were paid a guaranteed $2.50 and had the possibility of earning a bonus), and that they would
be invited to participate in part 2 of the study at a later date for additional compensation by
accessing a website provided to them in part 1 of the study.

When participants clicked to begin the study, they were told that part 2 of the study—a
survey that needed to be completed in one sitting of approximately 20 minutes—would only
be available starting on some day in the future to be randomly determined during part 1.
Participants were told that they would have a one-week window to complete it.

22The difference in standard errors across treatments is due to higher variance in coding-task incentives ($0,
$2, and $5) relative to plan-making incentives ($0, $1, and $2).
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Figure 1: The Effect of Incentives on Plan Making and Coding Task Completion

A. The Effect of Incentives on Plan Making
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B. The Effect of Incentives on Coding Task Completion (>20 Minutes)
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C. The Effect of Incentives on Coding Task Completion (>45 Minutes)
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This figure shows estimates for the effect of incentives on plan making and coding task completion for each
week of the study. Panel A shows estimates of the effect of incentives on whether or not participants made a
plan. Panels B and C show the effect of incentives on completing at least 20 minutes and at least 45 minutes,
respectively, of coding during the week. Whiskers report 95% confidence intervals around each estimate.
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The first part of the study elicited participants’ willingness to pay (WTP) for a set of
three reminder emails (i.e., the BE in this experiment) that would come during the one-week
window in which participants would be able to complete the survey. The goal was to generate
data that would allow us to directly measure how much more participants were willing to pay
for reminder emails as the incentive to complete the survey increased.

To ensure that participants understood the specific details of the reminder emails, we
explained that the emails would come at 12 p.m. ET on the first, middle, and final days of
the one-week window in which they could complete the survey.23 Participants were told that
emails would be sent using the MTurk email system—which MTurk uses for communicating
with workers on its platform—so participants did not have to provide an email address and
so the reminder emails would be unlikely to go to spam. Participants were told that the link
to the survey would be included in the reminder emails so that initiating the survey would
be as easy as clicking a link in the email. Participants were also explicitly told that they
would not receive any reminders to complete the survey unless they were selected to receive
these three reminder emails. We also clarified what the part-2 survey would look like (i.e.,
answering 40 hypothetical questions about gambles), and provided two example questions,
in order to reduce ambiguity about the future tasks.24

Participants were informed that the survey would only be available starting in either 2
days, 1 week, 3 weeks, or 6 weeks, and that each delay was equally likely to be selected.
Participants also learned that their incentive for completing the survey would be either $3, $4,
$11, or $12. For ease of exposition, we refer to $3 and $4 as low incentives and $11 and $12
as high incentives. For each of the 16 combinations of the four possible incentive amounts
and four possible delays, participants faced an incentivized multiple price list (MPL) that
traded off part-1 bonus payments (up to $4, in 25-cent increments, for the low-incentive
MPLs and up to $12, in 75-cent increments, for the high-incentive MPLs) against being
sent the three reminder emails to complete the survey. Participants were informed that all
possible bonus rewards, including part-1 and part-2 bonus payments, would be paid at the
same point in time, after the one-week window to complete the survey ended.25 Participants

23For example, for participants who completed part 1 of the study on September 7, the 2-day-delay window
was open from September 9–15. To any participants in the 2-day-delay group who were selected to receive
reminder emails, we sent the emails at 12 p.m. ET on September 9, 12, and 15.

24In order to participate in the study, participants needed to correctly answer questions demonstrating their
understanding of the compensation structure, the tasks in part 2 of the study, and the conditions for receiving
reminders (i.e., they had to answer “True” to the statement: “You will not receive any reminders to complete
part 2 of the study unless you are selected to get them in this part of the study.”). Participants were also shown
an MPL attention check screen that was used to remove participants who might click through the MPLs without
reading the instructions.

25Part-1 bonus payments were paid out at the same time as any part-2 bonus payments, three days after
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were randomly selected to either first respond to the eight low-incentive MPLs (the “low-
incentive block”) or to the eight high-incentive MPLs (the “high-incentive block”). Within
each block, the eight MPLs were shown to participants in a random order.

Because nuisance costs can lead participants to have negative WTP for the reminders,
the MPL allowed participants to report both positive and negative willingness to pay for the
reminder emails.26 Participants were told that whichever incentive amount was randomly
selected for them ($3, $4, $11, or $12) would be the bonus they would receive for completing
the survey. In addition, they were told that for the randomly selected incentive amount, there
was a 10% chance that one of the rows of that MPL would be randomly selected (each with
equal probability) and that whatever the participant chose in that row would be implemented
(i.e., they would receive whatever part 1 bonus payment was indicated in their choice, and
they would receive the reminder emails if they chose the option on the left). Because testing
the optimality conditions in Theorem 1 also requires estimating the effect of the reminder
emails on completing the survey, we did not guarantee that one of the MPL rows would be
selected. Instead, we randomized 45% of participants to receive the reminder emails and
45% of participants not to receive the reminder emails, regardless of their MPL choices.
We use this random variation to estimate the effect of reminder emails on completing the
survey. We randomly assign reminder emails in this way, and estimate the effect of reminders
using this sample, in order to avoid potential selection bias that might arise if there were a
correlation between WTP for reminders and the rate at which individuals completed the
survey.

the end of the one-week window to complete the survey, mitigating concerns that part-1 bonuses would be
viewed as being paid immediately, which might have made them particularly valuable from the perspective of
a quasi-hyperbolic discounter.

26Consistency on an MPL requires a participant to always choose the option on the left, always choose the
option on the right, or switch from choosing the option on the left to choosing the option on the right in one
row of the MPL. Our MPL was implemented to allow participants to choose a single cross-over point, thus
enforcing consistency in choices. Use of single-cross-over MPLs is common in the experimental literature as
they make the decision faster and easier for participants. The main concern is failing to identify participants
who are clicking randomly through the study (i.e., those who would likely be identified as inconsistent on the
MPL if required to make a selection in each row). This concern is mitigated in our setting because of our
extensive attention checks.
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3.2 Results

3.2.1 Sample

A total of 2743 individuals fully completed the first part of the study.27 Additionally, we
make the conservative sample restriction to limit all of our analysis to individuals whose
WTPs were never top-coded at the smaller incentive (i.e., $3 or $11) or bottom-coded at the
larger incentive (i.e., $4 or $12).28 Mechanically, these top-coded and bottom-coded individ-
uals cannot increase WTP when the task-completion incentive rises, which could lead to an
attenuation bias in our estimates of how WTP for reminders changes with task-completion
incentives. Given the wide range of values offered in the MPL, only 8.37% and 8.12% of
responses were top-coded on the low-incentive and high-incentive MPLs, respectively, and
0.80% and 0.54% of responses were bottom-coded on the low-incentive and high-incentive
MPLs, respectively. In what follows, we report on data from the remaining 2306 partici-
pants. Our restriction is conservative because it can only increase our estimates of how WTP
for reminders varies with incentives; indeed, without this restriction, the point estimates are
slightly lower.

3.2.2 Impact of Reminders on Survey Completion

As described in Section 3.1, we randomized 90% of participants to either get or not get the
reminder emails, regardless of their reported WTP. This randomization allows us to generate
an estimate of the effect of the reminders on survey completion at each delay. In addition,
since we independently randomized the incentive level for completing the survey, we can
estimate the effect of reminders at low and high incentive levels.

Figure 2 presents this data. Panel A shows the rate at which participants complete the
survey at each delay, and by whether participants receive reminders. Panel B summarizes
the treatment effect of receiving reminders at each delay and incentive level. Without re-
minders, completion rates decrease with delay at both high and low incentives. With re-

27This number does not include the 1854 participants who were automatically screened out of the study (and
prevented from participating further) because they failed attention checks, ensuring our pool of participants
understood the instructions in our experiment. It also excludes 36 individuals who were excluded for having an
invalid MTurk ID or the 36 individuals who had technical issues in the display of MPL screens or recording of
the data (e.g., being shown the wrong combination of incentives and delays or not receiving a link to the part-2
survey).

28We define top-coded participants as those who chose the option on the right in each row, indicating a WTP
for reminders of more than $4 (on the low-incentive MPLs) or $12 (on the high-incentive MPLs). Bottom-
coded participants chose the option on the left in each row, indicating a WTP for reminders of less than −$4 or
−$12.
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minders, however, the impact of delay on completion rates is much smaller. This translates
into an increasing impact of reminders as delay increases, as shown in Panel B.

Table 3 quantifies these results. Column (1) shows that receiving the reminders increases
the likelihood that participants complete the survey by 23 percentage points. The estimate on
High Incentive shows that participants who receive high incentives to complete the survey
are 7 percentage points more likely to complete the survey than those who receive low incen-
tives. The coefficient on ln(P2 Delay) implies that participants are less likely to complete the
survey as the delay increases. Column (2) shows that reminders have a significantly smaller
effect at high incentives, but a significantly larger effect at longer delays. Column (3) shows
that because reminders have very small effects in the short-delay / high-incentive conditions
(Panel B of Figure 2), the impact of delay on the effects of reminders is particularly large in
the high-incentive condition.29 Columns (4) and (5) show that neither the point estimates nor
the standard errors of the column (2) and (3) models change when (i) including fixed effects
for when participants begin the study or (ii) doing two-way clustering by when participants
started part 1 and by when part 2 was available.30 Column (6) shows that a $1 change in
the incentives is small enough to not significantly affect behavior, which allows us to utilize
Corollary 1.

As formalized in Appendix A.5, the negative interaction between reminders and high
incentives suggests that the effect of the high incentives on survey completion was at least
in part due to individuals choosing a higher level of attention in the absence of reminders.
In our model, higher incentives increase the likelihood that individuals complete the task
conditional on being attentive. However, since reminders increase the likelihood of being
attentive, there would then be a positive interaction between reminders and incentives. In-
stead, if higher incentives increase individuals’ effort to be attentive even in the absence of
reminders, then there is less need for reminders, leading to a negative interaction.

3.2.3 How WTP Changes with the Incentive to Complete the Survey

Figure 3 presents the average WTP for reminder emails for each part-2 incentive level at each
of the four delays. Participants are willing to pay significantly more for reminders at the high
incentives (i.e., $11 and $12, shown on the right of each panel) than at the low incentives

29Appendix Table A.5 presents a less parametric regression analysis that separately estimates the effect of
each of the possible delays, as well as its interaction with reminders, on survey completion.

30We do not include fixed effects for part-2 survey availability because certain start dates are possible only
in the 2-day condition, which means that the full set of fixed effects is not separately identified from the other
covariates. However, because clustering by part-2 survey start date does not change standard errors, this is
unlikely to matter.
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Figure 2: Completion Rates and Treatment Effects of Reminders

A. Completion Rates by Incentive Level, Delay Type, and Reminders
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B. Treatment Effect of Reminders by Incentive Level and Delay
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Panel A shows the part-2 survey completion rate and how it varies with the incentive for completing
the survey, the amount of time after which part 2 of the survey became available (i.e., the part-2
delay), and whether the participant received reminders. Panel B shows the point estimates from a
regression of the part-2 survey completion rate on whether the participant received a reminder. Both
panels only include participants who were randomly assigned to receive or not receive reminders.
The lines represent 95% confidence intervals.
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Table 3: The Effect of Incentive, Delay, and Reminders on Part-2 Survey Completion

Completed Part-2 Survey

(1) (2) (3) (4) (5) (6)

Received Reminder 0.23∗∗∗ 0.12∗∗ 0.23∗∗∗ 0.12∗∗ 0.22∗∗∗ 0.23∗∗∗

(0.021) (0.051) (0.064) (0.055) (0.058) (0.021)

High Incentive 0.07∗∗∗ 0.13∗∗∗ 0.21∗∗∗ 0.13∗∗∗ 0.20∗∗∗ 0.07∗∗∗

(0.021) (0.029) (0.066) (0.031) (0.063) (0.021)

Ln(P2 Delay) -0.07∗∗∗ -0.10∗∗∗ -0.08∗∗∗ -0.10∗∗∗ -0.08∗∗∗ -0.07∗∗∗

(0.009) (0.013) (0.017) (0.020) (0.022) (0.009)

Received Reminder × High Incentive -0.13∗∗∗ -0.38∗∗∗ -0.11∗∗∗ -0.32∗∗∗

(0.042) (0.094) (0.039) (0.070)

Received Reminder × Ln(P2 Delay) 0.07∗∗∗ 0.02 0.07∗∗∗ 0.02

(0.018) (0.025) (0.020) (0.025)

High Incentive × Ln(P2 Delay) -0.03 -0.03

(0.025) (0.025)

Received Reminder × High Incentive 0.11∗∗∗ 0.09∗∗∗

× Ln(P2 Delay) (0.036) (0.031)

Extra $1 0.00

(0.021)

Constant 0.57∗∗∗ 0.62∗∗∗ 0.59∗∗∗ 0.62∗∗∗ 0.59∗∗∗ 0.57∗∗∗

(0.028) (0.036) (0.045) (0.054) (0.057) (0.029)

Observations 2,076 2,076 2,076 2,076 2,076 2,076

Number of Participants 2,076 2,076 2,076 2,076 2,076 2,076

S.E. Clustered by P1 & P2 Date X X

P1 Date FE X X

This table estimates how survey completion varies with reminders, the natural log of delay (in days), and
whether participants are offered high incentives (i.e., $11 or $12) or low incentives (i.e., $3 or $4) to com-
plete the survey. This table only includes participants who were randomly assigned to receive or not receive
reminders. Columns (4) and (5) reproduce Columns (2) and (3) with fixed effects for the date that part 1 of the
study was taken and with standard errors clustered for the date the participant completed part 1 and the date
part 2 was made available to them. Column (6) reproduces Column (1) but estimates the impact of an extra
$1 of incentive for completing the survey (i.e., the incentive being $4 or $12). Standard errors are shown in
parentheses. *p < 0.1, **p < 0.05, ***p < 0.01
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Figure 3: Willingness to Pay for Reminders
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This figure shows mean willingness to pay for the reminders across different experimental conditions.
The lines represent 95% confidence intervals with standard errors clustered at the participant level.

(i.e., $3 and $4, shown on the left of each panel). Additionally, WTP for reminders is higher
at the $4 incentive than at the $3 incentive.

We formalize the results from Figure 3 in Table 4, combining data from all four incen-
tive levels and all four delays to estimate how average WTP changes with the incentive to
complete the survey.31 The coefficient on Extra $1 is the impact on willingness to pay for
reminders of increasing the survey-completion incentive from $3 to $4. The coefficient on
High Incentive compares average WTP at $3 to average WTP at $11. The coefficient on
Extra $1×High Incentive compares the impact on WTP of increasing the incentive by $1
when the incentives are high (i.e., going from $11 to $12) to the impact when incentives are
low (i.e., going from $3 to $4).

Column (1) shows that as the incentive to complete the survey increases from $3 to $4,
participants are on average willing to pay around 7 cents more for the reminders. However,
the interaction on Extra $1×High Incentive is negative and similarly sized, implying that
when incentives are high, the extra dollar of incentive does not lead to an increase of WTP.

31Appendix Table A.6 replicates Table 4 for the 90% of participants who either receive or do not receive the
reminder emails based on random assignment. As one would expect from the fact that this 90% is randomly
selected, estimates are nearly identical to those in Table 4.
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That the coefficient on High Incentive is large and positive shows that WTP is on average
much higher when incentives are high.32

Column (2) includes a covariate for the delay until the part-2 survey, Ln(P2 Delay), as
well as the interaction Ln(P2 Delay) × Extra $1. The coefficient on Ln(P2 Delay) reveals
that participants are willing to pay less for reminders when the task is further out in the future,
although the coefficient on Ln(P2 Delay) × Extra $1 is directionally positive. Column (3)
shows that these affects are amplified at the high incentive level. Column (4) returns to the
specification in Column (1) but shows that controlling for the day participants completed
part 1 of the study does not impact our estimates. Finally, Columns (5) and (6) replicate
the specifications in (1) and (2) using a Tobit model to account for participants who were
top-coded at the higher incentive levels within each group ($4 or $12). The results are
quantitatively and qualitatively very similar in columns (5) and (6).33

3.2.4 Do Participants Invest in Reminders Optimally?

Taken together, the results show that, for a $1 increase in the incentive for completing the
survey, participants are on average willing to pay around 7 cents more for the reminders at
low incentive levels but only 2 cents more at high incentive levels.

Part 1 of Theorem 1 states that if participants are optimally investing in the BE, then a
small increase dr in incentives for completing the survey should increase WTP for the BE
by approximately dr times the increase in the likelihood of survey completion due to the BE.
As Column (6) of Table 3 shows, a $1 change in incentives does not have a large effect on
task completion, which implies that we can apply the test in part 1 of Corollary 1 to a $1
change in incentives. On average, reminders had a 29 and a 16 percentage point effect on
survey completion in the low-incentive and high-incentive conditions, respectively. This is
significantly larger than the respective $0.07 and $0.02 changes in WTP with respect to an

32While not as natural a test of the theory since it spans a much larger increase in incentives, the 93 cent
increase in WTP reflects an $8 increase in the incentive level, or 93

8 = 11.63 cents per dollar, which is not that
much larger than the 7 cent increase identified above. An additional difference that confounds this particular
analysis, however, is that the MPL we use to elicit WTP for the high incentive levels was different (i.e., con-
tained 33 rows where WTP increased in 75-cent increments) than the MPL for the low incentive levels (i.e.,
where WTP increased in 25-cent increments). For this reason as well, the estimate on Extra $1 is the more
natural test of the theory.

33Appendix Table A.7 shows that the results about WTP for reminders do not differ (at conventional levels of
statistical significance) when we restrict to the first 2, 4, 6, or 8 MPL screens that participants encountered. This
suggests that the within-subject design did not introduce demand or anchoring effects that altered our estimates.
Appendix Table A.8 presents a less-parametric regression analysis that separately estimates the effect of each
of the possible delays, as well as its interaction with the Extra $1 covariate, on WTP for reminders.
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Table 4: The Effect of Incentive and Delay on Willingness to Pay for Reminders

WTP for Reminders ($)

(1) (2) (3) (4) (5) (6)

Extra $1 0.07∗∗∗ 0.05 0.06∗ 0.07∗∗∗ 0.10∗∗∗ 0.07

(0.017) (0.051) (0.036) (0.017) (0.018) (0.052)

High Incentive 0.93∗∗∗ 0.93∗∗∗ 1.14∗∗∗ 0.93∗∗∗ 0.93∗∗∗ 0.93∗∗∗

(0.077) (0.077) (0.112) (0.077) (0.077) (0.077)

Extra $1 × High Incentive -0.06 -0.06 -0.08 -0.06 -0.07 -0.07

(0.048) (0.048) (0.109) (0.048) (0.048) (0.048)

Ln(P2 Delay) -0.08∗∗∗ -0.03∗∗∗ -0.08∗∗∗

(0.022) (0.012) (0.022)

Extra $1 × Ln(P2 Delay) 0.01 0.00 0.01

(0.021) (0.014) (0.021)

High Incentive × Ln(P2 Delay) -0.09∗∗

(0.035)

Extra $1 × Ln(P2 Delay) 0.01

× High Incentive (0.041)

Constant 0.51∗∗∗ 0.69∗∗∗ 0.59∗∗∗ 0.51∗∗∗ 0.50∗∗∗ 0.69∗∗∗

(0.032) (0.057) (0.041) (0.032) (0.032) (0.057)

Observations 36,896 36,896 36,896 36,896 36,896 36,896

Number of Participants 2,306 2,306 2,306 2,306 2,306 2,306

Specification OLS OLS OLS OLS Tobit Tobit

P1 Date FE X

This table estimates the effect of incentive, the natural log of delay (in days), and having an incentive in the
high-incentive pair on the willingness to pay for reminders. The extra $1 variable is an indicator for an incentive
of $4 or $12. Participants in the high-incentive pair had a completion incentive of $11 or $12, compared to
the low-incentive pair of $3 or $4. The “High Incentive” variable is an indicator for whether participants were
in the high-incentive pair group. Column (1) shows OLS estimates for incentive, having an incentive in the
high-incentive pair, and incentive interacted with having an incentive in the high-incentive pair; Column (2)
maintains the specification in Column (1) and adds the natural log of delay; Column (3) adds an interaction
between incentive, the natural log of delay, and an indicator for the high-incentive pair, as well as an interaction
between the natural log of delay and the high-incentive pair, and an interaction between the natural log of delay
and incentive; Column (4) shows Column (1) with fixed effects for the date that part-1 of the survey was taken;
Column (5) uses the same variates as in Column (1) and shows Tobit estimates with censors at -$4 and $4 for
the low-incentive group and censors at -$12 and $12 for the high-incentive group; Column (6) uses the same
variates as in Column (2) and shows Tobit estimates with censors at -$4 and $4 for the low-incentive group and
censors at -$12 and $12 for the high-incentive group. Standard errors, clustered at the participant level, are in
parentheses. *p < 0.1, **p < 0.05, ***p < 0.01
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additional $1 incentive in these conditions (Wald test p < 0.01).34

We can also apply approximation (8) of Corollary 1 across each of the eight different
incentive-delay pairs (i.e., {low and high} × {2 days, 1 week, 3 weeks, and 6 weeks})
generated in our experiment to estimate equation (10) from Section 1.4. A trivial application
of the corollary is that under those same assumptions, equation (10) can be rewritten as

W̄ (r+∆|ξ )−W̄ (r|ξ ) = β0 +β1
D(z = 1|r,ξ )+D(z = 1|r+∆,ξ )

2
. (12)

We estimate this equation by treating the eight different experimental conditions as variation
in ξ . We then regress the change in WTP with respect to a $1 change in incentives on the
estimated effect of reminders, D(z = 1|r,ξ ), in each condition. Formally, this procedure is
equivalent to a two-stage least squares (2SLS) estimator, where the eight different exper-
imental conditions are instruments for the effects of reminders, and where the dependent
variable is the change in WTP with respect to a $1 change in incentives.

Figure 4 provides a visualization of the second stage of this 2SLS estimator. On the
x-axis, this figure shows the estimated effect of reminders on survey completion rates as
reported in Panel B of Figure 2. On the y-axis, this figure shows the estimated increases in
willingness to pay for the reminders as the incentive increases by $1, together with the 95%
confidence intervals of the estimates. If participants were optimally valuing the reminder
technology, the WTP for the reminder would be on the 45-degree line (e.g., such that when
reminders increase survey completion by 25 percentage points, the willingness to pay for
the reminders increases by $0.25 with a $1 increase in incentives). Instead, our estimates
are far from the 45-degree line. Estimated WTP is below the 45-degree line for seven of the
eight estimates, and the 95% confidence intervals exclude the 45-degree line in six of the
estimates. An estimate of equation (12) yields β0 = 0.01 and β1 = 0.16. That is, perceptions
of the effects of reminders are attenuated toward a prior mean of approximately 0, by a
factor of 84 percent. In line with the discussion in Section 1.4, this evidence may be more
consistent with a model in which people’s prior (or “default,” in the sense of Gabaix, 2014)
perceptions of the effects of the BE in this setting are systematically biased. For a prior mean
of approximately 0 to be an unbiased prior, it would have to be that reminders often have no
effect, and sometimes even have negative effects on task completion.

34Appendix Table A.17 explores whether risk aversion can explain the deviations in experiment 2 between
willingness to pay and the effect of reminders on survey completion. We find no difference in willingness
to pay for reminders when comparing participants with relatively high versus low risk aversion, measured in
terms of the number of risky choices they select in gambles in the part 2 survey. These results hold both for the
low incentive and high incentive groups. Thus, risk aversion does not appear to drive our results.
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Findings from Experiment 2. Willingness to pay for reminders increased with the size of
the bonus for survey completion, but the increase was too small relative to the null of correct
valuation of attention costs. Specifically, the bias parameter θ from the parametric model in
(9) is estimated to be 0.16; that is, the responsiveness of valuations for reminders was 16%
as large as the ex-post optimal benchmark implies.

Figure 4: Effect of Reminders on Completion vs. Effect of Extra $1 on WTP
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This figure displays estimates and standard errors for the effect of reminders on whether part 2 of
the survey was completed, and the effect of an increase of $1 in the part-2 survey incentive on the
willingness to pay for reminders. The figure only includes participants who were randomly assigned
to receiving or not receiving reminders. The lines represent 95% confidence intervals, which are
computed from the standard errors clustered by the date part 1 of the study was taken.

4 Learning Experiment

Results from our first two experiments reveal that individuals appear to undervalue band-
width enhancements (BEs). A key question is whether individuals can learn to accurately
value BEs through experience with them. We examine this in our third experiment. In ad-
dition, we illustrate the versatility of our methods by deploying them in a very different
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setting: a design that builds on the Ambuehl et al. (2020) paradigm and resembles other
psychometric tasks that have been used to generate state-dependent stochastic choice data
for testing rational inattention theories (Dean and Neligh, 2018; Caplin et al., 2020; Caplin,
2021). Experimental instructions are in Screenshots Appendix F.3.

4.1 Design and Implementation

We ran the learning experiment on Prolific Academic in October and November of 2021.35

The study involved a series of tasks. In each task, participants were presented with an image
that showed a series of equations that were either correct (e.g., 10+ 12 = 22) or incorrect
(e.g., 10+12 = 23). Participants were asked to indicate whether the image contained more
correct or more incorrect equations with an incentive for accuracy. The baseline task in-
cluded an image with 100 equations about which participants were told that either 60% of
the equations were correct (and 40% incorrect) or 40% of the equations were correct (and
60% incorrect).36 Participants completed two blocks of seven tasks each, and at least three
tasks in each block were baseline tasks. One task of the 14 tasks the participant completed
was randomly selected, and participants were paid based on their accuracy in that task as
described below.

Before completing each block of seven tasks, participants were asked for their willing-
ness to pay to make the task easier (i.e., to take advantage of a BE). In the length arm,
participants could shorten the task so that there were only 10 equations in the image, rather
than 100 equations. In the discernibility arm, participants could make the fraction of correct
equations either 95% correct (and 5% incorrect) or 5% correct (and 95% incorrect), rather
than 60% or 40%. Of the seven tasks in the block, three were baseline tasks and three were
easy tasks (i.e., shorter tasks in the length arm and more discernible tasks in the discernibility
arm). If the remaining task in the block was randomly selected for payment, then the partic-
ipant’s choices (i.e., responses on a multiple price list, as described below) would determine

35In the recruitment materials, potential participants were informed that the study would require 20 minutes
of their time, for which they would receive a guaranteed $2.50. They were also informed that they would have
the possibility of completing a bonus, and that the study had to be completed on a desktop or laptop computer
using Chrome or Firefox as their web browser, which was necessary to ensure participants could see the tasks
that were part of this study.

36The images were automatically constructed with randomly generated equations following the protocol in
Ambuehl et al. (2020). The computer selected the number of equations (e.g., 100 in the baseline tasks) and
randomly selected one of the possible fractions to be the percentage of correct equations (e.g., either 60% or
40% in the baseline tasks). The two numbers on the left side of the equation were each randomly selected
from the range 1 to 99. For the correct equations, the true result appeared on the right side. For the incorrect
equations, a number was randomly drawn from the range 1 to 5, which was either added to or subtracted from
the true result at random. The equations were then shuffled for display.

40



whether that task was a baseline task an easier task.37

Following the design of our survey-completion experiment, we elicited willingness to pay
to reduce attention costs for different incentives for accuracy in the task. Participants were
informed that the computer would randomly and independently select an accuracy bonus—
paid to a participant for providing an accurate answer in the task—of either $2, $3, or $4
for each block of seven tasks.38 This procedure allowed us to elicit a participant’s WTP to
make the task easier for three different accuracy bonus levels (i.e., before they knew which
accuracy bonus would be relevant for that block). In particular, we elicited participants’
willingness to pay to make the task easier using a set of three multiple price lists (MPLs).
The interface of the MPLs was similar to that in the survey experiment.

A key design feature of this experiment is the opportunity to learn about the value of
making the task easier. We do this by having participants experience both baseline and easy
tasks in the first block of seven tasks (the baseline and easy tasks were presented in a random
order). Participants then repeat the exercise—providing willingness to pay to make the task
easier at each of the three accuracy incentive levels—for the second block of tasks.

The amount of feedback participants receive about their performance in the first block
varies by treatment. In the control treatment, participants were not provided with information
about their performance in the first block. In the feedback treatment, by contrast, participants
were told the fraction of baseline and easy tasks they answered accurately. Moreover, par-
ticipants were told how those accuracy levels translated to expected earnings at the three
different levels of incentives.

In all MPLs, the options for willingness to pay ranged from −$4 to $4. This range
is analogous to the range in the survey-completion experiment, where the highest possible
MPL amount corresponded to the highest reward for task completion. Analogous to the
survey-completion experiment, we make the same conservative sample restriction to limit to
individuals who were never top-coded at the smallest incentive (i.e., $2) or bottom-coded at
the largest incentive (i.e., $4). The logic behind this restriction is the same as in the previous
experiment: since these individuals cannot increase their willingness to pay as the accuracy
bonus increases, it is possible that including these participants could lead to an attenuation
bias in estimates of the effect of the accuracy bonus on willingness to pay for a BE.

37If the task was not randomly selected for payment, then the difficulty of the task would be chosen at
random. This protocol ensured that the multiple price list responses only affected the task and generated bonus
payments in the case when participants were going to be paid based on their accuracy on that particular task.

38At the start of the block, participants were told which accuracy bonus had been randomly selected to apply
for the block of seven tasks. Each task screen also reminded participants of the accuracy bonus. This bonus
was paid if the participant provided an accurate answer on the task randomly selected for payment.
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4.2 Results

Our analysis involves the 1465 participants who completed the study, and who were not top-
or bottom-coded as described above.39

4.2.1 Impact of Task Difficulty on Accuracy

To analyze the causal effect of task difficulty on performance, we exclude data from tasks
that were potentially endogenously determined by participants’ WTP. That is, we exclude
cases in which the “remaining task” in the block was selected to be the task that counts, and
thus was affected by participants’ preferences.

Table 5 presents OLS regressions that quantify the impacts of task difficulty on the like-
lihood of correctly identifying whether there are more correct or incorrect equations in the
picture. The first two columns analyze performance in the first block, while the latter two
columns analyze performance in the second block. Columns (1) and (3) show that per-
formance did not differ significantly between the two blocks. In both blocks, participants
correctly completed the baseline task approximately 70 percent of the time, were approx-
imately 26 percentage points more likely to complete it correctly when the task was more
discernible (i.e., had either 95% or 5% correct calculations), and were approximately 19 per-
centage points more likely to complete it correctly when the task was shorter (i.e., had only
10 equations). On average, the discernibility effect was moderately larger than the length
effect: by 6.5 percentage points in block 1 (Chi-square test p = 0.00) and by 4.9 percentage
points in block 2 (Chi-square test p = 0.00). Columns (2) and (4) show that variation in
our incentives did not have a significant effect on performance. This is consistent with the
survey-completion experiment, where a $1 change in incentives was too small to have a sig-
nificant effect, despite behavior being overall elastic (and thus responsive to large changes).
This result implies that the incentive changes we analyze are sufficiently small to utilize
Corollary 1.

Data on decision times is consistent with the baseline task being more difficult. On
average, participants spent 87 seconds, 44 seconds, and 37 seconds on the baseline, shorter,
and more discernible tasks, respectively. Appendix Figure A.4 presents the CDFs of response
times across the three types of tasks. Appendix Figure A.3 shows that participants who spent

39This number does not include the 125 participants who were automatically screened out of the study (and
prevented from participating further) because they failed attention checks, ensuring our pool of participants un-
derstood the instructions in our experiment. This number also does not include 13 individuals who encountered
technical glitches. In addition, 520 participants were excluded from the analysis because in at least one set of
their MPL elicitations they were either top-coded at the lowest incentive ($2) or bottom-coded at the highest
incentive ($4).
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Table 5: The Effect of Length and Discernibility on Getting a Task Correct

Answered Task Correctly

(1) (2) (3) (4)

More Discernible 0.26∗∗∗ 0.25∗∗∗ 0.26∗∗∗ 0.27∗∗∗

(0.010) (0.008) (0.010) (0.008)

Shorter 0.19∗∗∗ 0.20∗∗∗ 0.21∗∗∗ 0.19∗∗∗

(0.011) (0.009) (0.012) (0.010)

Length Arm 0.01 -0.04∗∗

(0.015) (0.015)

Incentive ($) -0.00 0.01

(0.006) (0.006)

Constant 0.71∗∗∗ 0.72∗∗∗ 0.71∗∗∗ 0.67∗∗∗

(0.010) (0.018) (0.010) (0.018)

Observations 10,143 10,143 10,157 10,157

Number of Participants 1,465 1,465 1,465 1,465

Block 1 1 2 2

This table estimates the effect of shorter length (i.e., 10 calculations) and increased discernibility (i.e., 95% or
5% correct) on getting a task correct in block 1 and block 2. Tasks that had their difficulty determined by a
participant’s MPL choices have been excluded. The columns correspond to different regression specifications
and blocks: Column (1) shows OLS estimates in block 1, Column (2) shows OLS estimates including the
incentive level in dollars in block 1, and Columns (3) and (4) show analogous specifications for block 2.
Standard errors, clustered at the participant level, are shown in parentheses. *p < 0.1, **p < 0.05, ***p < 0.01

more time on the tasks were more likely to answer them accurately, particularly in the more
difficult, baseline task.

4.2.2 Willingness to Pay to Simplify Tasks

Table 6 presents OLS regressions that estimate how participants’ WTP to make the tasks
easier varies with accuracy incentives and other experimental manipulations. Column (1)
shows that participants in the length arm increased their WTP to make the task shorter by
approximately $0.10 for every dollar of extra accuracy incentive in block 1. However, this
effect goes down to approximately $0.03 in block 2, which is a significant difference of
approximately $0.07 ( Chi-square p = 0.06). In the discernibility arm, each $1 of accuracy
incentive increases WTP by $−0.01 and $0.03 cents in blocks 1 and 2, respectively. Neither
of these is statistically significantly different from zero, nor are they different from each
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other. In block 1, the difference between the coefficients on incentive in the length and
discernibility arms is $0.11, which is statistically significant (se = 0.045, Chi-square p =

0.017).
Given that simplifying the task increased accuracy by approximately 19 to 26 percentage

points in both arms, Theorem 1 implies that WTP for simplifying the task should increase
by approximately $0.19 to $0.26. This is higher than the effects reported in Table 6. In each
of the four block-arm pairs, the WTP increase is significantly smaller than the theoretical
benchmark (Wald test p < 0.01 in all arms).

Columns (1) and (2) thus reveal three key insights. First, people in this experiment
undervalue BEs, as in our first two experiments. Second, participants initially undervalue
discernibility improvements more than length improvements. An ex-post rationalization is
that decreasing the length of a task is a simple and relatively common form of simplification
that most people are familiar with, whereas increasing discernibility is a more abstract and
less-common form of simplification. Third, experience does not bring people’s decisions
more in line with the correct-perceptions benchmark formalized in Theorem 1. Direction-
ally, people value discernibility improvements more in block 2, but this is not statistically
significant at conventional levels. In fact, there is stronger evidence that in block 2 of the
length arm, there is more deviation from the Theorem 1 benchmark than in block 1. The
difference between the coefficients on Incentive × Block 2 in columns (1) and (2) is −0.11
(se = 0.052, Chi-square p = 0.04).

Columns (3) and (4) provide insight into why the deviation increases with experience
in the length arm. As shown in column (3), the deviation increases primarily among the
participants who received the feedback treatment. For participants in the control treatment,
the coefficient on incentive increases by an insignificant 0.01 (se = 0.050). However, as
the coefficient on the interaction Incentive × Block 2 × Feedback shows, the impact of
experience is a statistically significant −0.16 (se = 0.074, p =0.034) for participants in the
feedback treatment. By contrast, feedback has no effect on participants in the discernibility
arm, suggesting that participants in that arm have a very strongly held prior that discernibility
would not affect their performance.

Columns (5) and (6) further explore the negative effect of feedback in the length arm.
Column (5) restricts to participants who did not perform better on the shorter tasks than on
the baseline tasks in block 1; column (6) restricts to participants who did perform better. The
coefficient on Incentive × Block 2 is nearly identical in those two columns, implying that
these two groups of participants were not differentially affected by experience in the control
condition. However, the negative coefficient on Incentive × Block 2 × Feedback is twice as
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Table 6: The Effect of Incentive, Block, and Feedback on Willingness to Pay for Easier Tasks

Willingness to Pay ($)

(1) (2) (3) (4) (5) (6)

Incentive ($) 0.10∗∗∗ -0.01 0.04 0.02 0.07 0.02

(0.034) (0.030) (0.045) (0.042) (0.049) (0.072)

Incentive ($) × Block 2 -0.07∗ 0.04 0.01 0.03 0.00 0.01

(0.037) (0.037) (0.050) (0.052) (0.063) (0.074)

Incentive ($) 0.11 -0.07 0.12 0.10

× Feedback (0.067) (0.060) (0.089) (0.099)

Incentive ($) × Block 2 -0.16∗∗ 0.01 -0.22∗∗ -0.11

× Feedback (0.074) (0.074) (0.100) (0.108)

Block 2 0.15 -0.18 -0.09 -0.20 -0.16 -0.04

(0.125) (0.123) (0.177) (0.176) (0.235) (0.259)

Block 2 × Feedback 0.49∗ 0.05 0.87∗∗ 0.17

(0.249) (0.247) (0.341) (0.355)

Feedback -0.22 0.22 -0.36 -0.11

(0.248) (0.213) (0.342) (0.353)

Constant 0.20 0.53∗∗∗ 0.31∗ 0.42∗∗∗ 0.32 0.31

(0.124) (0.107) (0.172) (0.147) (0.212) (0.260)

Observations 3,996 4,794 3,996 4,794 1,788 2,208

Number of Participants 666 799 666 799 298 368

Block 1 Acc. Diff. All All All All ≤ 0 > 0

Arm Length Discernibility Length Discernibility Length Length

This table estimates the effect of accuracy incentives, block order, and whether the participant received per-
formance feedback on willingness to pay for an easier task (i.e., a shorter task in the length arm and a more
discernible task in the discernibility arm). Columns (5) and (6) restrict participants by their block-1 accuracy
difference between the baseline and easy tasks, which equals the difference between the percentage of easy
tasks and baseline tasks answered correctly in block 1. The mean block-1 accuracy differences for participants
in Columns (5) and (6) are −0.06 and 0.40, respectively. Column (1) shows OLS estimates for incentive,
block, and the interaction of incentive and block order for participants in the length arm; Column (2) repeats
this analysis in the discernibility arm; Column (3) maintains the specification in Column (1) and the restriction
to participants in the length arm while adding whether feedback was received and the interactions between
feedback, block, and incentive; Column (4) shows the OLS estimates in Column (3) for participants in the
discernibility arm; Column (5) shows the OLS estimates in Column (3) for participants in the length arm who
had a block-1 accuracy difference of less than or equal to 0; Column (6) shows the OLS estimates in Column
(3) for participants in the length arm who had a block-1 accuracy difference of greater than 0. Standard errors,
clustered at the participant level, are shown in parentheses. *p < 0.1, **p < 0.05, ***p < 0.01
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large in magnitude in column (5) than in column (6). This result suggests that a reason for
the negative effect of the feedback treatment is participants being disappointed to learn that
their block-1 performance was not higher on shorter tasks.40

The results about WTP in columns (3)–(6) of Table 6 cannot be explained by differences
in block-2 performance among the different groups analyzed in those columns. Columns (1)
and (2) of Appendix Table A.11 show that neither experience nor feedback altered partici-
pants’ performance on the baseline versus easy tasks. Columns (3) through (5) of Appendix
Table A.11 restrict to the length arm, and show that: (i) consistent with mean reversion,
participants who did not perform better on the shorter tasks than on the baseline tasks in
block 1 improved their relative performance on the easy tasks in block 2, and (ii) feedback
did not reduce the difference in block-2 performance between the easy and baseline tasks
among these participants. The overall negative effect of the feedback treatment suggests par-
ticipants updated their beliefs in a quasi-Bayesian manner by overweighting disappointing
experiences.

Interestingly, columns (3) and (5) of Table 6 also suggest that, while experience and feed-
back led participants to underestimate the effect of task simplification on their performance
at the incentives in the experiment, it did increase their overall WTP to simplify the task.
This result illustrates the theoretical discussion in Section 1.3.1 about how accurate percep-
tions of total costs (including fixed costs) are not characterized in Theorem 1—perceptions
of the effects of the BE at the current incentive level r is not a sufficient statistic for percep-
tions of total costs. Appendix Table A.12 shows that participants who did not perform better
on the shorter tasks than on the baseline tasks in block 1 spent almost two minutes longer on
the baseline versus easy tasks in block 1. Subsequently, they spent approximately 30 to 45
seconds less time on the baseline versus easy tasks in block 2, relative to the participants who
did perform better on the shorter tasks in block 1. This suggests that the participants who
did not perform better on the shorter tasks in block 1 also incurred significantly larger total
costs on the baseline tasks. The feedback treatment may have helped prime this realization
by inducing participants to further reflect on the differences between the baseline and shorter
tasks.41 This illustrates the Section 1.3.1 discussion about how additional treatments such
as our feedback treatment can provide additional insights into perceptions about total costs,

40Alternatively, it could be consistent with the suggestive evidence from column (6) of Appendix Table A.11
that feedback may have decreased performance for these participants—which suggests that these participants
overall chose to adopt attention strategies that would decrease relative performance in the shorter task.

41Appendix Table A.12 also shows that feedback treatment had a small negative effect on the time taken on
the baseline tasks in block 2 for participants who performed better on the shorter tasks than on the baseline
tasks in block 1. There is no effect on participants who did not perform better on the shorter tasks in block 1.
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complementing the tests in Theorem 1.42

Findings from Experiment 3. The responsiveness of willingness to pay for the length BE
was 50% as large as the ex-post optimal benchmark implies. Willingness to pay for the dis-
cernibility BE did not respond to incentive size at all, implying a responsiveness 0% as large
as the ex-post optimal benchmark implies. Experience via feedback on past performance did
not bring people’s decisions more in line with the correct-valuations benchmark.

5 Conclusion

While a large and growing literature shows that attention-increasing interventions such as
reminders and plan-making tools can have significant effects on economically important
behaviors, this literature rarely asks the question of whether individuals value and deploy
these tools optimally. This paper addresses this question with three theory-driven, quanti-
tative tests. We find that individuals’ demand for attention-increasing tools is qualitatively
consistent with the predictions of optimal management of limited attention,but is quantita-
tively inconsistent with fully optimizing choice of attention. This suggests that individuals
are uncertain and/or systematically biased about their attention cost functions. While this
under-valuation of bandwidth enhancements may be context dependent, our methods can
be applied more broadly to explore how individuals value attention-increasing technologies
across various domains.

Our methods are immediately portable to other settings where the impact of reminders
and planning prompts has already been documented, such as in medical compliance, savings,
loan repayment, and voting (see footnote 6 for references). In addition, as exemplified by
our third experiment, our methodology can be used to test whether people understand their
production functions for attention-consuming tasks in field settings such as those of Dean
(2019), Kaur et al. (2021), or Bessone et al. (forthcoming). More generally, our tests could be
applied to any setting that involves domains of behavior that feature “intermediate” actions.
For example, our methods could be used to quantify whether students fully understand the
relationship between studying and test performance, whether individuals understand the link
between education and earnings, or whether individuals properly invest in “good habits.”

Finally, our results that people do not select their attention environments optimally are
consistent with the hypothesis that people might misoptimize their attention strategies in

42Appendix Tables A.9 and A.10 replicate Table 6 using Tobit models and dropping participants with the 10
percent fastest average task times by the length and discernibility arms separately. The results are quantitatively
and qualitatively similar.
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other ways. For example, people might misoptimize their choice of decision boundaries
in sequential information acquisition problems (Reshidi et al., 2022); or people might not
choose their signal structure optimally in complex games with asymmetric payoffs (as in,
e.g., Suen, 2004). These and other possibilities suggest an exciting research agenda on the
question of whether attention is produced optimally.
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Online Appendix

A Mathematical appendix

A.1 Additional Technical Results

We first introduce an additional lemma that characterizes the differentiability and continuity
properties of the statistics employed in Theorem 1. The proof is given in Appendix A.3.

Lemma A.1. Assume that individuals choose attention strategies optimally. Then

1. W̄ (r) is differentiable almost everywhere.

2. Pr(z = 1| j,r) is increasing in r and differentiable almost everywhere.

3. Suppose that K̄1
ai(q

′
a)− K̄1

ai(qa)< K̄0
ai(q

′
a)− K̄0

ai(qa) for all i and q′a > qa, meaning that
the marginal costs to increasing attention are always lower under technology j. Then,
Pr( j = 1|p,r) and Pr(z = 1|p,r) are both increasing r, decreasing in p, and almost
everywhere differentiable in r and p.

4. W̄ (r) is differentiable at any point r where Pr(z = 1| j = 1,r)−Pr(z = 1| j = 0,r) is
continuous in r.

5. Suppose that K̄ai and K̄oi are strictly convex for all i. Then W̄ (r) is everywhere contin-
uously differentiable.

6. Suppose that at (p,r), Pr( j = 1|p,r) is continuously differentiable in p and that W̄ (r)
is continuously differentiable in r. Then Pr( j = 1|p,r) is continuously differentiable
in r and Pr(z = 1|p,r) is continuously differentiable in p.

Lemma A.1 allows us to express some of our main results in terms of marginal condi-
tions without much loss of generality. This is for three reasons. First, because parts 1 and
2 of the lemma show that without any additional assumptions, two of they key statistics are
differentiable everywhere except on a set of Lebesgue measure zero. Second, part 3 of the
lemma shows that under the assumption that the BEs in our experiments work as intended—
by increasing the likelihood of success for a given attention cost—the remaining statistics
are differentiable almost everywhere as well. Part 4 of the Lemma concerns the condition
that Pr(z = 1| j = 1,r)−Pr(z = 1| j = 0,r) is continuous in r. This is a plausible condition
in our experiments, where we find that Pr(z = 1| j,r) for j ∈ {0,1} changes negligibly when
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we increase r by a small amount. Part (5) provides an alternative set of assumptions for dif-
ferentiability of W̄ (r), which is that the cost functions are convex. Finally, part (6) considers
the mild assumption that Pr( j = 1|p,r) is differentiable in p. This is a natural condition on
a demand function for BEs, and holds whenever the distribution of individual differences
is smooth. For example, this condition holds when K̄1

ai(q)− K̄0
ai(q) = K̄1

a (q)− K̄0
a (q)+ηi,

where ηi is a random variable with a smooth density function, and interpreted as a person-
specific nuisance cost of the BE.

A.2 Preliminaries for Proofs of Main Results

A.2.1 Notation

By the reasoning analogous to that in the proof of Lemma 1, we can express the indirect
utility functions as

V j
i (r) = max

q∈[q,q̄]

{
rq− K̄ j

i (q)
}

where q = qaqo , q̄ = q̄aq̄o, and K̄ j
i (q) = infqa,qo{Kai(qa)+K j

oi(qo)|qaqo ≥ q}.
To further ease notation, define the functions f j

i (r,q) = rq − K̄ j(q), so that V j
i (r) =

maxq f j
i (r,q). Define X j

i (r) = {q| f j
i (r,q) =V j

i (q)} as the maximizers of f j
i , and note that by

assumption X j
i is non-empty. Under the assumption of optimality, an individual’s choice of

q under technology j is a selection q j
i (r) from X j

i (r).
Define Vi(p,r) = max{V 1

i (r)− p,V 0
i (r)}, and define V̄ (p,r) = EiVi(p,r). We can write

Vi(p,r) = maxq, j ϕi(q, j, p,r) where

ϕi = j
(
rq− K̄1

i (q)− p
)
+(1− j)

(
rq− K̄0

i (q)
)

Similarly, define Yi(p,r)= {(q, j)|ϕi(q, j, p,r)=Vi(p,r)} as the maximizers of ϕi, which
again is non-empty by assumption. An individual’s choice of technology and completion
probability is a selection ( ji(p,r),qi(r))∈Yi(p,r). We define Pri(z = 1|p,r) as individual i’s
probability of successfully completing the task, given by ji(p,r)q1

i (r)+(1− ji(p,r))q0
i (r).

A.2.2 Preliminary Lemmas

Lemma A.2. V j
i (r) is strictly increasing in r. Any selection q j

i (r) is increasing in r.
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Proof. Consider r2 > r1. Then

V j
i (r2)≥ f j

i (r2,qi(r1))

> f j
i (r1,qi(r1))

=V j
i (r1)

which establishes the first claim. Next, note that by definition, we must have

r2q j
i (r2)− K̄ j

i (q
j
i (r2)≥ r2q j

i (r1)− K̄ j
i (q

j
i (r1))

⇔ r2

(
q j

i (r2)−q j
i (r1)

)
≥ K̄ j

i (q
j
i (r2))− K̄ j

i (q
j
i (r1)) (13)

Similarly, we must have

r1

(
q j

i (r1)−q j
i (r2)

)
≥ K̄ j

i (q
j
i (r1))− K̄ j

i (q
j
i (r2)) (14)

Combining (13) and (14) implies that

r2

(
q j

i (r2)−q j
i (r1)

)
≥ K̄ j

i (q
j
i (r2))− K̄ j

i (q
j
i (r1))

≥ r1

(
q j

i (r2)−q j
i (r1)

)
Since r2 > r2, the above equality can only hold if q j

i (r2)− q j
i (r1) is non-negative, which

establishes the second part of the claim.

Lemma A.3. If Pr(z = 1|p,r) is continuous then V̄ is differentiable in r. If Pr( j = 1|p,r) is
continuous then V̄ is differentiable in p.

Proof. Define x = (( ji,qi))i∈I as the tuple of strategies of all individuals i ∈ I in the data.
Define ϕ(x, p,r) = Eiϕi( ji,qi, p,r), and note that x is a maximizer of ϕ if ( ji,qi) is a max-
imizer of ϕi for each i. Thus, V̄ (p,r) = maxx ϕ(x, p,r). Now because ϕ(x, p,r) is linear
in r and p, and because ∂

∂ r ϕ(x, p,r) and − ∂

∂ pϕ(x, p,r) are contained in the unit interval, it
satisfies all assumptions of Theorem 3 of Milgrom and Segal (2002). Thus, V̄ (p,r) is left-
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and right-differentiable in both rand p, with the respective derivatives given by

d−
dr

V̄ (p,r) = lim
x→r−

EiPri(z = 1|p,r)

= lim
x→r−

Pr(z = 1|p,r)

d+
dr

V̄ (p,r) = lim
x→r+

EiPri(z = 1|p,r)

= lim
x→r+

Pr(z = 1|p,r)

d−
d p

V̄ (p,r) = lim
x→p−

Ei ji(p,r)(−1)

= lim
x→p−

−Pr( j = 1|p,r)

d+
d p

V̄ (p,r) = lim
x→p+

Ei ji(p,r)(−1)

= lim
x→p−

−Pr( j = 1|p,r)

When Pr(z = 1|p,r) is continuous, the left and right limits are equal, and thus V̄ (p,r) is
differentiable in r. Similarly, V̄ (p,r) is differentiable in p when Pr( j = 1|p,r) is continuous.

A.3 Proofs of Main Results

Proof of Lemma 1

Proof. Suppose first that (s∗a,s
∗
o) is a solution to (1), and define q∗a = EQ(s∗a,ωa) and q∗o =

EQ(s∗o,ωo). Plainly, an individual maximizing (2) can achieve at least

E [rQa(s∗a,ωa)Qo(s∗o,ωo)−Kai(s∗a)−Kai(s∗o,ωo)]

by simply setting qa = q∗a and qo = q∗o. We now show that the individual cannot do any better.
By way of contradiction, assume that there exist (q′a,q

′
o) such that

rq′aq′o − K̄ai(q′a)− K̄oi(q′o)≥ E [rQa(s∗a,ωa)Qo(s∗o,ωo)−Kai(s∗a)−Kai(s∗o,ωo)]+ ε

for some ε > 0. By definition of the K̄ functions, there exist (s′a,s
′
o) such that EQa(s′a,ωa)≥

q′a, EQo(s′o,ωa)≥ q′o and Kai(s′a)≤ K̄ai(q′a)+ ε/4, Koi(s′o)≤ K̄oi(q′o)+ ε/4. Thus,

E
[
rQa(s

′
a,ωa)Qo(s

′
o,ωo)−Kai(s

′
a)−Kai(s

′
o,ωo)

]
≥E [rQa(s∗a,ωa)Qo(s∗o,ωo)−Kai(s∗a)−Kai(s∗o,ωo)]+ε/2
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which contradicts the optimality of (s∗a,s
∗
o).

To prove the converse direction, note again that by definition of the K̄ functions, for
any ε > 0 there exist (s∗a,s

∗
o) such that EQa(s∗a,ωa) ≥ q∗a, EQo(s′o,ωa) ≥ q∗o and Kai(s∗a) ≤

K̄ai(q′a)+ ε/2, Koi(s∗o)≤ K̄oi(q∗o)+ ε/2. Thus,

max
(sa,so)∈Sa×So

E [rQa(sa,ωa)Qo(so,ωo)−Kai(sa)−Kai(so,ωo)]≥ rq∗aq∗o−K̄ai(q∗a)−K̄oi(q∗o)−ε

for any arbitrary ε , and thus

max
(sa,so)∈Sa×So

E [rQa(sa,ωa)Qo(so,ωo)−Kai(sa)−Kai(so,ωo)]≥ rq∗aq∗o − K̄ai(q∗a)− K̄oi(q∗o).

On the other hand, as we have already argued in the first part of the proof, the agent cannot
find strategies (sa,so) that obtain higher expected utility than rq∗aq∗o − K̄ai(q∗a)− K̄oi(q∗o).

Proof of Lemma 2

Proof. We need to show that for any q1,q2 and α ∈ (0,1), K̄a(αq1+(1−α)q2)<αK̄a(q1)+

(1−α)K̄a(q2). The argument for K̄o is identical. By convexity of Sa, for any q ∈ [qa, q̄a]

there must be some s ∈ Sa such that EQ(s,ωa) = q. Thus, we can choose s1,s2 ∈ Sa such
that s1 ∈ argmins{Ka(s)|EQ(s,ωa) ≥ q1} and analogously for s2. Now since EQ(·,ωa) is
concave, we have

K̄a(αq1 +(1−α)q2)≤ K̄a(EQ(αs1 +(1−α)s2,ωa)) (15)

≤ Ka(αs1 +(1−α)s2) (16)

≤ αKa(s1)+(1−α)Ka(s2) (17)

= αK̄a (EQ(s1,ωa))+(1−α)K̄a (EQ(s1,ωa)) (18)

Line (15) follows by the concavity of EQ(·,ωa). Line (16) follows by the definition of
K̄a. Line (17) follows by convexity of Ka, and line (18) follows by the definition of s1 and s2.

Proof of Lemma A.1

Proof. Part 1: In Lemma we have show that V j
i (r) is strictly increasing in r. Thus, EiV

j
i (r) is

strictly increasing in r, and thus differentiable almost everywhere. Thus, W̄ (r) = EiV 1
i (r)−

5



EiV 0
i (r) is differentiable almost everywhere.
Part 2: We can write

ϕi( j,q, p,r) = rq−ψi( j,q, p,r)

where ψi( j,q, p) = jp+ j
(
K̄1

i (q)− K̄0
i (q)

)
+ K̄0

i (q).
Consider r2 > r1. Then then optimal selections ji(r) and qi(r) satisfy

r2qi(r2)−ψi( ji(r2),qi(r2), p)≥ r2qi(r1)−ψi( ji(r1),qi(r1), p)

⇔ r2 (qi(r2)−qi(r1))≥ ψi( ji(r2),qi(r2), p)−ψi( ji(r1),qi(r1), p)

Similarly,

r1 (qi(r1)−qi(r2))≥ ψi( ji(r1),qi(r1), p)−ψi( ji(r2),qi(r2), p)

and thus
r2 (qi(r2)−qi(r1))≥ r1 (qi(r2)−qi(r1))

which can hold only if qi(r2)−qi(r1)≥ 0. Thus, Pri( j = 1|p,r) is increasing in r, and there-
fore Pr( j = 1|p,r) is increasing in r as well. The monotonicity implies almost everywhere
differentiability.

Part 3: The assumption equivalently implies that K̄1
i (q)− K̄0

i (q) is decreasing in q. Thus,
ψi( j,q, p), as defined above, is such that ψi(1,q, p)−ψi(0,q, p) is decreasing in q. Since
above we have show that qi(r) is increasing in q, this implies that the returns to choosing
j = 1 over j = 0 are increasing in q.

Part 4: Define x j = (q j
i )i∈I as the tuple of strategies of all individuals i ∈ I in the data

given technology j. Define f j(x j,r) = Ei f j
i (qi,r), and note that x j is a maximizer of f if

q j
i is a maximizer of f j

i for each i. Thus, W̄ (r) = maxx1 f 1(x1,r)−maxx0 f 0(x0,r). Now
because f j(x, p,r) is linear in r, and because ∂

∂ r f j(x, p,r) is contained in the unit interval, it
satisfies all assumptions of Theorem 3 of Milgrom and Segal (2002). Thus, W̄ (r) is left- and
right-differentiable in r, with the respective derivatives given by

d−
dr

W̄ (p,r) = lim
x→r−

(EiPri(z = 1| j = 1,r)−EiPri(z = 1| j = 0,r))

= lim
x→r−

D(z = 1|p,r)

d+
dr

W̄ (p,r) = lim
x→r+

(EiPri(z = 1| j = 1,r)−EiPri(z = 1| j = 0,r))

= lim
x→r+

D(z = 1|p,r)
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When D(z = 1|r) is continuous in r, the left and right limits are equal, and thus W̄ (r) is
continuously differentiable in r.

Part 5: If K̄ai and K̄oi are strictly convex for all i then K̄ j
i , as defined in Appendix A.2.1,

is strictly convex, by an argument identical to that in the proof of Lemma 2. Thus, each
individual’s optimal choice q j

i (r) is unique for each ( j,r). Moreover, since convex functions
are continuous, this implies that f j

i is continuous. Thus, Corollary 4 of Milgrom and Segal
(2002) implies that V j

i (r) is everywhere differentiable in r, with derivative q j
i (r). The claim

then follows immediately.
Part 6: Pr( j = 1|p,r) = Pr

(
V 1

i (r)−V 0
i (r)− p ≥ 0

)
. Now since V j

i (r) is increasing,
it has left and right derivatives everywhere. Thus, Pr

(
V 1

i (r)−V 0
i (r)− p ≥ 0

)
is left- and

right-differentiable everywhere. Now by the assumption that Pr( j = 1|p,r) is continuously
differentiable in p,

d−
dr

Pr
(
V 1

i (r)−V 0
i (r)− p ≥ 0

)
=

d
d p

Pr
(
V 1

i (r)−V 0
i (r)− p ≥ 0

) d−
dr

Ei
(
V 1

i (r)−V 0
i (r)

)
=

d
d p

Pr
(
V 1

i (r)−V 0
i (r)− p ≥ 0

) d−
dr

W̄ (r)

d+
dr

Pr
(
V 1

i (r)−V 0
i (r)− p ≥ 0

)
=

d
d p

Pr
(
V 1

i (r)−V 0
i (r)− p ≥ 0

) d+
dr

Ei
(
V 1

i (r)−V 0
i (r)

)
=

d
d p

Pr
(
V 1

i (r)−V 0
i (r)− p ≥ 0

) d+
dr

W̄ (r)

Thus, Pr
(
V 1

i (r)−V 0
i (r)− p ≥ 0

)
is continuously differentiable in r if W̄ (r) is continuously

differentiable in r.
Next, to show that Pr(z = 1|p,r) is continuously differentiable in p, note that it is given

by

Pr( j = 1|p,r)Pr(z = 1| j = 1,r)+(1−Pr( j = 1|p,r))Pr(z = 1| j = 0,r)

Thus, Pr(z = 1|p,r) is continuously differentiable in p if Pr( j = 1|p,r) is continuously
differentiable in p.

Proof of Theorem 1

Proof. Since f j
i is a linear function of r, all assumptions of Theorem 2 of Milgrom and Segal

(2002) are satisfied for f j
i . Moreover, note that ∂

∂ r f j
i = q. Thus, if q j

i (r) is an individual’s

7



optimal choice under technology j, we have that

V j
i (r+∆)−V j

i (r) =
∫ x=r+∆

x=r
q j

i (r)dr.

Now

W̄ (r+∆)−W̄ (r) = Ei
[
V 1

i (r+∆)−V 0
i (r+∆)

]
−Ei

[
V 1

i (r)−V 0
i (r)

]
= Ei

[
V 1

i (r+∆)−V 1
i (r)

]
−Ei

[
V 0

i (r+∆)−V 0
i (r)

]
= Ei

∫ x=r+∆

x=r
q1

i (x)dx−Ei

∫ x=r+∆

x=r
q0

i (x)dx

=
∫ x=r+∆

x=r
Eiq1

i (x)dx−
∫ x=r+∆

x=r
Eiq0

i (x)dx

=
∫ x=r+∆

x=r
D(z = 1|x)dx

This completes the proof of (3). It follows immediately that W̄ ′(r) = D(z = 1|r) at all points
of differentiability, and the conditions for where W̄ is differentiable follow from Lemma A.1.

To prove the statement in (5), note that V̄ is differentiable in both rand p by Lemma A.3.
In particular, application of the Envelope Theorem 3 of Milgrom and Segal (2002) in the
proof of that Lemma showed that

d
dr

V̄ (p,r) = Pr(z = 1|p,r)

d
d p

V̄ (p,r) =−Pr( j = 1|p,r)

Now when Pr(z = 1|p,r) and Pr( j = 1|p,r) are continuously differentiable, the cross-
partials d

d p
d
dr V̄ (p,r) and d

dr
d

d p V̄ (p,r) are continuous and therefore must be equal to each
other. This implies that

d
d p

Pr(z = 1|p,r) =− d
dr

Pr( j = 1|p,r)

Last, note that
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Pr(z = 1|p,r) = Pr( j = 1|p,r)(D(z = 1|r)+Pr(z = 1| j = 0,r))

+Pr( j = 0|p,r)Pr(z = 1| j = 0,r)

= (Pr( j = 1|p,r)+Pr( j = 0|p,r))Pr(z = 1| j = 0,r)

+Pr( j = 1|p,r)D(z = 1|r)

= Pr(z = 1| j = 0,r)+Pr( j = 1|p,r)D(z = 1|r).

Since Pr(z = 1| j = 0,r) and D(z = 1|r) are not functions of p, we thus have that

d
d p

Pr(z = 1|p,r) = d
d p

Pr( j = 1|p,r)D(z = 1|r).

A.4 Graphical Illustration

Figure A.1 illustrates the intuition graphically for a representative individual, for the case in
which the marginal costs are linear. For simplicity, we assume that there are no auxiliary
actions, and that K̄0(0) = K̄1(0) = 0. In this case, the likelihood of executing the task equals
the chosen level of attention q. In analogy to standard theories of competitive supply, in-
dividuals’ choice of q with attention technology j is determined by the intersection of the
marginal benefit curve r and the marginal cost curve ∂

∂qK̄ j. As in theories of competitive
supply, the total surplus of an individual with technology j = 0 at incentive r is equal to
the area of triangle OAD. Similarly, the total surplus of an individual with technology j = 1
is equal to the area of triangle OAF. Increasing the incentives r by an amount ∆ increases
surplus by an amount ABCD under technology j = 0, and by an amount ABEF under tech-
nology j = 1. The change in WTP for technology j = 1 is thus given by the area DCEF. The
area of DCEF is equal to the height, ∆, multiplied by the average of the lengths of DF and
CE, which is

(D(z = 1|r)+D(z = 1|r+∆))/2.

This gives the expression in Corollary 1.
In the limit of very small ∆, the difference between Pr(z = 1| j,r) and Pr(z = 1| j,r+∆)

becomes negligible, and thus the area of ABCD can be expressed as

∆ ·D(z = 1|r)
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which leads to first-order condition for W̄ (r) in Theorem 1, after dividing by ∆.

Figure A.1: Illustration of Theorem 1
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This figure illustrates equation (4) of Theorem 1. The top line (in gray) plots the marginal
costs of attention under technology j = 0, while the bottom line (in black) plots marginal
costs under technology j = 1. The area DCEF corresponds to the change in WTP for tech-
nology j = 1 over j = 0 when the financial incentive is increased from r to r+∆.

A.5 Interaction Between Incentives and Reminders

Let q0
ai(r) and q1

ai(r) be the chosen levels of attention given cost functions K̄0 and K̄1, re-
spectively, and incentive level r. Let qoi(r) denote the auxiliary completion probability con-
ditional on being attentive. Set ∆qai(r) = q1

ai(r)−q0
ai(r), and suppose that it is non-negative,

meaning that the BE increases attentiveness. The impact of the BE on task completion de-
pends on incentives r as follows,
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d
dr

Di(z = 1|r) = d
dr

[∆qai(r) ·qoi(r)]

=

(
d
dr

∆qai(r)
)

qoi(r)+∆qai(r)q′oi(r) (19)

Under optimally-chosen auxiliary actions, qoi is increasing in r. Moreover, since the BE in-
creases task-completion, ∆qai(r)≥ 0. Thus, equation (19) can be negative only if d

dr ∆qai(r)<
0, meaning that the BE and incentives are substitutes in people’s attention allocation deci-
sions. If attention is chosen optimally, q j

ai(r) is non-decreasing in r, and in fact any plausible
model would make that implication. Combining this property with d

dr ∆qai(r) < 0 implies
that q0

ai(r) must be strictly increasing in r.
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B Additional Results for Experiment 1

Table A.1: Participant Characteristics (Experiment 1)

Students Alumni

First-year 0.28 2017 0.22
(0.45) (0.41)

Sophomore 0.22 2016 0.18
(0.41) (0.39)

Junior 0.23 2015 0.21
(0.42) (0.41)

Senior 0.28 2014 0.19
(0.45) (0.39)

2013 0.20
(0.40)

Female 0.65 Female 0.70
(0.48) (0.46)

Male 0.31 Male 0.27
(0.46) (0.44)

Non-binary or no answer 0.04 Non-binary or no answer 0.03
(0.20) (0.21)

N 686 N 687

This table presents summary statistics for the participants in experiment 1, split between student and
alumni groups. These participants were randomized to our various treatments as described in the
main text. The Pay-to-Code sample includes 496 participants divided between $2 and $5 incentive
arms. The Pay-to-Plan sample includes 487 participants divided between $1 and $2 incentive arms.
The remaining participants include 218 control participants and 172 participants assigned to the Com-
bination treatment.
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Table A.2: The Effect of Coding-Task Incentives on Task Completion

(1) (2) (3)
Week 1 Weeks 1-4 Weeks 1-8

>0 0.036*** 0.032*** 0.026***
(0.009) (0.007) (0.006)

Obs. 714 714 714
R2 0.039 0.059 0.064
Control Mean 0.385 0.278 0.210

>10 0.037*** 0.034*** 0.027***
(0.009) (0.007) (0.006)

Obs. 714 714 714
R2 0.047 0.067 0.072
Control Mean 0.339 0.243 0.179

>30 0.036*** 0.027*** 0.023***
(0.009) (0.006) (0.005)

Obs. 714 714 714
R2 0.043 0.053 0.068
Control Mean 0.239 0.186 0.138

>40 0.038*** 0.026*** 0.021***
(0.009) (0.006) (0.005)

Obs. 714 714 714
R2 0.044 0.058 0.074
Control Mean 0.183 0.161 0.119

>50 0.032*** 0.022*** 0.017***
(0.008) (0.005) (0.004)

Obs. 714 714 714
R2 0.037 0.058 0.071
Control Mean 0.165 0.142 0.107

>60 0.027*** 0.019*** 0.013***
(0.008) (0.005) (0.004)

Obs. 714 714 714
R2 0.044 0.066 0.066
Control Mean 0.138 0.118 0.093

Controls Yes Yes Yes
Campus × Student FE Yes Yes Yes

This table presents estimates for the effect of coding-task incentives (in dollars) on task completion.
Each panel of the table corresponds to an analysis of whether participants completed at least that
number of minutes of the coding task in a given week. The columns correspond to different periods
during the experiment over which the effect of the incentives is tested: Column (1) shows the effect in
week 1, Column (2) shows the effect for weeks 1-4, and Column (3) shows the effect over all weeks.
In Column (1), the dependent variable is an indicator for whether a participant completed at least that
many minutes of the coding task in the first week. In Columns (2) and (3), the dependent variable
is the mean of the indicators, constructed as in Column (1), for each of the weeks being considered.
Each panel-by-column corresponds to a separate specification, and thus 18 distinct specifications are
shown in the table. Standard errors are shown in parentheses. *p < 0.1, **p < 0.05, ***p < 0.01
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Table A.3: The Effect of Plan-Making Incentives on Task Completion

(1) (2) (3)
Week 1 Weeks 1-4 Weeks 1-8

>0 0.037* 0.029* 0.014
(0.022) (0.015) (0.012)

Obs. 705 705 705
R2 0.041 0.040 0.046
Control Mean 0.385 0.278 0.210

>10 0.037* 0.027* 0.014
(0.021) (0.014) (0.011)

Obs. 705 705 705
R2 0.045 0.045 0.046
Control Mean 0.339 0.243 0.179

>30 0.045** 0.023* 0.010
(0.020) (0.013) (0.010)

Obs. 705 705 705
R2 0.054 0.042 0.045
Control Mean 0.239 0.186 0.138

>40 0.036** 0.019 0.008
(0.018) (0.012) (0.009)

Obs. 705 705 705
R2 0.034 0.036 0.041
Control Mean 0.183 0.161 0.119

>50 0.034* 0.015 0.005
(0.018) (0.011) (0.008)

Obs. 705 705 705
R2 0.035 0.039 0.042
Control Mean 0.165 0.142 0.107

>60 0.027* 0.013 0.002
(0.016) (0.010) (0.008)

Obs. 705 705 705
R2 0.044 0.038 0.042
Control Mean 0.138 0.118 0.093

Controls Yes Yes Yes
Campus × Student FE Yes Yes Yes

This table presents estimates for the effect of plan-making incentives (in dollars) on task completion.
Each panel of the table corresponds to an analysis of whether participants completed at least that
number of minutes of the task in a given week. The columns correspond to different periods during
the experiment over which the effect of the incentives is tested: Column (1) shows the effect in week
1, Column (2) shows the effect for weeks 1-4, and Column (3) shows the effect for all weeks. In
Column (1), the dependent variable is an indicator for whether a participant completed at least that
many minutes of the coding task in the first week. In Columns (2) and (3), the dependent variable
is the mean of the indicators, constructed as in Column (1), for each of the weeks being considered.
Each panel-by-column corresponds to a separate specification, and thus 18 distinct specifications are
shown in the table. Standard errors are shown in parentheses. *p < 0.1, **p < 0.05, ***p < 0.01
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Table A.4: The Effect of Plan-Making Incentives on Task Completion (2SLS)

A. The Effect on Plan Making (First Stage)

(1) (2) (3)
Week 1 Weeks 1-4 Weeks 1-8

$1 Plan 0.282*** 0.285*** 0.240***
(0.048) (0.033) (0.030)

$2 Plan 0.368*** 0.297*** 0.242***
(0.033) (0.028) (0.025)

Obs. 705 705 705
R2 0.144 0.189 0.157
Control Mean 0.381 0.150 0.082
Controls Yes Yes Yes
Campus FE Yes Yes Yes

B. The Effect on Coding Task Completion (Reduced Form)

(1) (2) (3) (4) (5) (6)
>20 (1) >20 (1-4) >20 (1-8) >45 (1) >45 (1-4) >45 (1-8)

$1 Plan 0.034 0.017 0.013 0.034 -0.000 0.005
(0.048) (0.032) (0.025) (0.043) (0.027) (0.021)

$2 Plan 0.079* 0.054** 0.026 0.076** 0.032 0.012
(0.040) (0.027) (0.021) (0.036) (0.023) (0.018)

Obs. 705 705 705 705 705 705
R2 0.057 0.049 0.051 0.036 0.035 0.041
Control Mean 0.280 0.212 0.158 0.174 0.156 0.116
Controls Yes Yes Yes Yes Yes Yes
Campus FE Yes Yes Yes Yes Yes Yes

C. The Effect of Plan Making on Coding Task Completion (IV)

(1) (2) (3) (4) (5) (6)
>20 (1) >20 (1-4) >20 (1-8) >45 (1) >45 (1-4) >45 (1-8)

Plan Making 0.203** 0.146* 0.092 0.197** 0.076 0.041
(0.102) (0.080) (0.078) (0.093) (0.070) (0.066)

Obs. 705 705 705 705 705 705
R2 0.143 0.151 0.120 0.091 0.094 0.076
Control Mean 0.280 0.212 0.158 0.174 0.156 0.116
Controls Yes Yes Yes Yes Yes Yes
Campus FE Yes Yes Yes Yes Yes Yes

This table shows estimates for the effect of plan-making incentives on plan making and task com-
pletion using treatment dummies rather than a linear plan-making incentive variable. Panel A shows
estimates of the effect of plan-making incentives on whether or not participants made a plan. Col-
umn (1) shows the effect of plan-making incentives in week 1. Column (2) shows the average effect
over weeks 1-4. Column (3) shows the average effect over all weeks. Panel B shows the effect of
plan-making incentives on task completion. Columns (1)–(3) show the effect on an indicator vari-
able for whether or not the participant worked on the coding task for more than 20 minutes: Column
(1) estimates the effect over week 1, Column (2) over weeks 1-4, and Column (3) over all weeks.
Columns (4)–(6) show analogous estimates, but for an indicator variable for whether or not the par-
ticipant worked on the task for more than 45 minutes each week. Panel C shows the 2SLS estimates
instrumenting for whether or not participants made a plan using the plan-making treatment dummies
as instruments. The dependent variables are the same as those in Panel B. Standard errors are shown
in parentheses. *p < 0.1, **p < 0.05, ***p < 0.01.
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Figure A.2: Experiment 1 Control Group Means (Week-by-Week)
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This figure shows control group means for plan making and completing at least 20 minutes or at least
45 minutes of the coding course for each week of the study.
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C Additional Results for Experiment 2

Table A.5: The Effect of Incentive, Delay, and Reminders on Part-2 Survey Completion
(Categorical Delay)

Completed Part-2 Survey

(1) (2) (3)

Received Reminder 0.23∗∗∗ 0.15∗∗∗ 0.16∗∗∗

(0.021) (0.045) (0.044)

High Incentive 0.08∗∗∗ 0.14∗∗∗ 0.13∗∗∗

(0.021) (0.029) (0.031)

1-Week Delay -0.16∗∗∗ -0.22∗∗∗ -0.22∗∗∗

(0.029) (0.041) (0.072)

3-Week Delay -0.17∗∗∗ -0.27∗∗∗ -0.27∗∗∗

(0.030) (0.042) (0.067)

6-Week Delay -0.21∗∗∗ -0.32∗∗∗ -0.30∗∗∗

(0.030) (0.041) (0.063)

Received Reminder × High Incentive -0.13∗∗∗ -0.11∗∗∗

(0.042) (0.040)

1-Week Delay × Received Reminder 0.13∗∗ 0.10

(0.058) (0.075)

3-Week Delay × Received Reminder 0.20∗∗∗ 0.20∗∗∗

(0.060) (0.057)

6-Week Delay × Received Reminder 0.22∗∗∗ 0.18∗∗∗

(0.059) (0.063)

Constant 0.55∗∗∗ 0.59∗∗∗ 0.59∗∗∗

(0.025) (0.032) (0.043)

Observations 2,076 2,076 2,076

Number of Participants 2,076 2,076 2,076

S.E. Clustered by P1 & P2 Date X

P1 Date FE X

This table estimates how survey completion varies with reminders, delay, and whether participants are offered
high incentives (i.e., $11 or $12) or low incentives (i.e., $3 or $4) to complete the survey. The 2-day delay
variable is omitted so the 2-day delay is the excluded group. This table only includes participants who were
randomly assigned to receive or not receive reminders. Column (3) reproduces Column (2) with fixed effects
for the date that part 1 of the study was taken and with standard errors clustered for the date the participant
completed part 1 and the date part 2 was made available to them. Standard errors are shown in parentheses.
*p < 0.1, **p < 0.05, ***p < 0.01
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Table A.6: The Effect of Incentive and Delay on Willingness to Pay for Reminders (Only
Participants Randomized for Reminders)

WTP for Reminders ($)

(1) (2) (3) (4) (5) (6)

Extra $1 0.07∗∗∗ 0.08 0.06 0.07∗∗∗ 0.10∗∗∗ 0.11∗

(0.018) (0.055) (0.038) (0.018) (0.019) (0.055)

High Incentive 0.96∗∗∗ 0.96∗∗∗ 1.14∗∗∗ 0.96∗∗∗ 0.96∗∗∗ 0.96∗∗∗

(0.082) (0.082) (0.118) (0.082) (0.082) (0.082)

Extra $1 × High Incentive -0.05 -0.05 -0.01 -0.05 -0.06 -0.06

(0.050) (0.050) (0.116) (0.050) (0.051) (0.051)

Ln(P2 Delay) -0.07∗∗∗ -0.04∗∗∗ -0.07∗∗∗

(0.022) (0.013) (0.023)

Extra $1 × Ln(P2 Delay) -0.00 0.01 -0.00

(0.022) (0.014) (0.022)

High Incentive × Ln(P2 Delay) -0.08∗∗

(0.036)

Extra $1 × Ln(P2 Delay) -0.02

× High Incentive (0.044)

Constant 0.51∗∗∗ 0.68∗∗∗ 0.59∗∗∗ 0.51∗∗∗ 0.51∗∗∗ 0.68∗∗∗

(0.034) (0.060) (0.044) (0.034) (0.034) (0.060)

Observations 33,216 33,216 33,216 33,216 33,216 33,216

Number of Participants 2,076 2,076 2,076 2,076 2,076 2,076

Specification OLS OLS OLS OLS Tobit Tobit

P1 Date FE X

This table estimates how willingness to pay for reminders varies with the natural log of delay (in days) and
incentives to complete the survey. This table only includes participants who were randomly assigned to receive
or not receive reminders. The High Incentive variable is an indicator for being asked about an incentive of $11
or $12. The Extra $1 variable is an indicator for being asked about an incentive of $4 or $12. Column (4)
reproduces Column (1) with fixed effects for the date that part 1 of the survey was taken; Columns (5) and (6)
reproduce Columns (1) and (2) using Tobit estimates with censors at -$4 and $4 for the low-incentive group
and censors at -$12 and $12 for the high-incentive group. Standard errors, clustered at the participant level, are
shown in parentheses. *p < 0.1, **p < 0.05, ***p < 0.01
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Table A.7: The Effect of Incentive and Delay on Willingness to Pay for Reminders by MPL

WTP for Reminders ($)

(1) (2) (3) (4)

Extra $1 0.15∗ 0.08 0.11∗∗∗ 0.09∗∗∗

(0.078) (0.050) (0.034) (0.026)

High Incentive 0.58∗∗∗ 0.68∗∗∗ 0.79∗∗∗ 0.77∗∗∗

(0.193) (0.154) (0.143) (0.139)

Extra $1 × High Incentive 0.18 0.02 -0.10 -0.02

(0.244) (0.150) (0.106) (0.077)

Constant 0.45∗∗∗ 0.49∗∗∗ 0.50∗∗∗ 0.51∗∗∗

(0.063) (0.053) (0.048) (0.046)

Observations 4,612 9,224 13,836 18,448

Number of Participants 2,306 2,306 2,306 2,306

First T MPLs T = 2 T = 4 T = 6 T = 8

This table estimates how willingness to pay for reminders varies with incentives to complete the
survey. The High Incentive variable is an indicator for being asked about an incentive of $11 or $12.
The Extra $1 variable is an indicator for being asked about an incentive of $4 or $12. Column (1)
shows these estimates when limited to the first 2 MPLs participants are asked about, Column (2)
shows these estimates when limited to the first 4 MPLs, Column (3) shows these estimates when
limited to the first 6 MPLs, and Column (4) shows these estimates when limited to the first 8 MPLs.
Standard errors, clustered at the participant level, are shown in parentheses. *p < 0.1, **p < 0.05,
***p < 0.01
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Table A.8: The Effect of Incentive and Delay on WTP for Reminders (Categorical Delay)

WTP for Reminders ($)
(1) (2) (3) (4) (5)

Extra $1 0.07∗∗∗ 0.05 0.07∗∗∗ 0.10∗∗∗ 0.08
(0.017) (0.047) (0.017) (0.018) (0.047)

High Incentive 0.93∗∗∗ 0.93∗∗∗ 0.93∗∗∗ 0.93∗∗∗ 0.93∗∗∗

(0.077) (0.077) (0.077) (0.077) (0.077)

Extra $1 × High Incentive -0.06 -0.06 -0.06 -0.07 -0.07
(0.048) (0.048) (0.048) (0.048) (0.048)

1-Week Delay -0.16∗∗∗ -0.16∗∗∗

(0.054) (0.055)

3-Week Delay -0.19∗∗∗ -0.19∗∗∗

(0.062) (0.062)

6-Week Delay -0.25∗∗∗ -0.25∗∗∗

(0.067) (0.067)

1-Week Delay × Extra $1 0.03 0.03
(0.073) (0.074)

3-Week Delay × Extra $1 0.02 0.02
(0.068) (0.068)

6-Week Delay × Extra $1 0.03 0.03
(0.068) (0.068)

Constant 0.51∗∗∗ 0.66∗∗∗ 0.51∗∗∗ 0.50∗∗∗ 0.65∗∗∗

(0.032) (0.047) (0.032) (0.032) (0.047)

Observations 36,896 36,896 36,896 36,896 36,896
Number of Participants 2,306 2,306 2,306 2,306 2,306
Specification OLS OLS OLS Tobit Tobit
P1 Date FE X

This table estimates how willingness to pay for reminders varies with incentives to complete the
survey. The High Incentive variable is an indicator for being asked about an incentive of $11 or $12.
The Extra $1 variable is an indicator for being asked about an incentive of $4 or $12. Column (2)
maintains the specification in Column (1) and adds controls for delay; Column (3) shows Column
(1) with fixed effects for the date that part 1 of the survey was taken; Columns (4) and (5) reproduce
Columns (1) and (2) using Tobit estimates with censors at -$4 and $4 for the low-incentive group
and censors at -$12 and $12 for the high-incentive group. Standard errors, clustered at the participant
level, are shown in parentheses. *p < 0.1, **p < 0.05, ***p < 0.01
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D Additional Results for Experiment 3

Table A.9: Replication of Table 6 with Tobit Models

Willingness to Pay ($)
(1) (2) (3) (4) (5) (6)

Incentive ($) 0.11∗∗∗ -0.00 0.05 0.03 0.08∗ 0.03
(0.035) (0.031) (0.046) (0.042) (0.052) (0.073)

Incentive ($) × Block 2 -0.07∗ 0.04 0.01 0.04 0.00 0.02
(0.038) (0.037) (0.051) (0.052) (0.065) (0.076)

Incentive ($) × Feedback 0.11 -0.07 0.12 0.11
(0.069) (0.061) (0.093) (0.100)

Incentive ($) × Block 2 -0.16∗∗ 0.01 -0.22∗∗ -0.11
× Feedback (0.076) (0.075) (0.103) (0.110)

Block 2 0.14 -0.18 -0.10 -0.21 -0.17 -0.06
(0.126) (0.124) (0.178) (0.177) (0.236) (0.260)

Block 2 × Feedback 0.49∗ 0.05 0.89∗∗∗ 0.17
(0.251) (0.248) (0.343) (0.359)

Feedback -0.23 0.22 -0.37 -0.12
(0.250) (0.214) (0.347) (0.354)

Constant 0.17 0.51∗∗∗ 0.29∗ 0.40∗∗∗ 0.28 0.30
(0.125) (0.107) (0.172) (0.148) (0.212) (0.260)

Observations 3,996 4,794 3,996 4,794 1,788 2,208
Number of Participants 666 799 666 799 298 368
Participant B1 Acc. Diff. All All All All ≤ 0 > 0
Arm Length Discernibility Length Discernibility Length Length

This table replicates Table 6 but presents Tobit estimates with censors at 4 and -4 for the effect of
accuracy incentive, block order, and whether the participant received feedback on their block

1-performance on willingness to pay for an easy task (i.e., a task with shorter length in the length
arm, or a task with increased discernibility in the discernibility arm). Standard errors, clustered at

the participant level, are shown in parentheses. *p < 0.1, **p < 0.05, ***p < 0.01
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Table A.10: Replication of Table 6, Dropping the 10% Fastest Participants

Willingness to Pay ($)
(1) (2) (3) (4) (5) (6)

Incentive ($) 0.10∗∗∗ -0.01 0.04 0.02 0.08 0.01
(0.037) (0.033) (0.051) (0.046) (0.061) (0.076)

Incentive ($) × Block 2 -0.07∗ 0.03 0.02 0.03 0.03 0.02
(0.041) (0.040) (0.055) (0.056) (0.075) (0.078)

Incentive ($) × Feedback 0.12∗ -0.07 0.14 0.12
(0.073) (0.066) (0.096) (0.103)

Incentive ($) × Block 2 -0.19∗∗ 0.00 -0.31∗∗∗ -0.12
× Feedback (0.082) (0.081) (0.117) (0.112)

Block 2 0.16 -0.12 -0.13 -0.15 -0.24 -0.06
(0.138) (0.133) (0.198) (0.189) (0.277) (0.275)

Block 2 × Feedback 0.59∗∗ 0.08 1.24∗∗∗ 0.20
(0.274) (0.266) (0.397) (0.371)

Feedback -0.15 0.17 -0.30 -0.06
(0.270) (0.231) (0.389) (0.369)

Constant 0.17 0.50∗∗∗ 0.24 0.42∗∗∗ 0.18 0.28
(0.135) (0.115) (0.192) (0.160) (0.252) (0.275)

Observations 3,438 4,314 3,438 4,314 1,344 2,094
Number of Participants 573 719 573 719 224 349
Participant B1 Acc. Diff. All All All All ≤ 0 > 0
Arm Length Discernibility Length Discernibility Length Length

This table replicates Table 6 on the effect of accuracy incentive, block order, and whether the partic-
ipant received feedback on their block 1-performance on willingness to pay for an easy task (i.e., a
task with shorter length in the length arm, or a task with increased discernibility in the discernibility
arm) after dropping participants in the top 10% of fastest task times in the length arm and the top 10%
of fastest task times in the discernibility arm. Standard errors, clustered at the participant level, are
shown in parentheses. *p < 0.1, **p < 0.05, ***p < 0.01
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Table A.11: The Effect of Block and Feedback on Block Accuracy Difference

Accuracy Difference Between Easy and Baseline Tasks

(1) (2) (3) (4) (5) (6)

Block 2 0.03 0.01 0.20∗∗∗ -0.13∗∗∗ 0.19∗∗∗ -0.10∗∗∗

(0.021) (0.018) (0.018) (0.020) (0.027) (0.029)

Feedback 0.03 -0.01 0.02 0.03

(0.023) (0.020) (0.016) (0.023)

Block 2 × Feedback -0.04 -0.01 0.00 -0.07∗

(0.030) (0.025) (0.036) (0.039)

Constant 0.18∗∗∗ 0.26∗∗∗ -0.06∗∗∗ 0.40∗∗∗ -0.07∗∗∗ 0.39∗∗∗

(0.016) (0.014) (0.008) (0.012) (0.013) (0.016)

Observations 1,332 1,598 596 736 596 736

Number of Participants 666 799 298 368 298 368

Participant B1 Acc. Diff. All All ≤ 0 > 0 ≤ 0 > 0

Arm Length Discernibility Length Length Length Length

This table estimates the effect of block order and feedback on the accuracy difference between easy
and baseline tasks within a block. The accuracy difference is constructed by taking the difference be-
tween the percentage of easy tasks answered correctly and the percentage of baseline tasks answered
correctly in a block. Column (1) shows OLS estimates for participants in the length arm; Column
(2) shows OLS estimates for participants in the discernibility arm; Columns (3) and (5) restrict to
participants in the length arm who had a block-1 accuracy difference less than or equal to 0 (i.e., who
were at least as accurate in the baseline tasks as in the easy tasks); Columns (4) and (6) restrict to
participants in the length arm who had a block-1 accuracy difference greater than 0 (i.e., who were
more accurate in the easy tasks than the baseline tasks). Standard errors, clustered at the participant
level, are shown in parentheses. *p < 0.1, **p < 0.05, ***p < 0.01
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Table A.12: The Effect of Block, Feedback, and Accuracy Difference on Within-Block Time
Spent on Baseline vs. Easy Tasks

Average Difference in Time Spent
on Baseline vs. Easy Tasks, By Block

(1) (2) (3) (4) (5) (6)

Block 2 -21.72∗∗∗ -13.78∗∗ -19.24∗∗∗ -11.59∗∗ -16.63∗∗∗ -9.04∗

(4.125) (6.078) (3.562) (5.444) (3.144) (4.740)

B1 Acc. Diff ≤ 0 115.45∗∗∗ 106.94∗∗∗ 103.16∗∗∗ 93.86∗∗∗ 79.81∗∗∗ 74.50∗∗∗

(10.006) (14.582) (8.194) (11.926) (6.141) (9.036)

Block 2 × B1 Acc. Diff ≤ 0 -43.62∗∗∗ -54.99∗∗∗ -33.48∗∗∗ -42.74∗∗∗ -16.53∗∗∗ -26.72∗∗∗

(7.547) (11.468) (5.928) (8.959) (4.665) (6.987)

Feedback 3.53 3.40 6.12
(9.958) (8.729) (7.343)

Block 2 × Feedback -16.07∗ -15.47∗∗ -15.34∗∗

(8.211) (7.074) (6.236)

B1 Acc. Diff ≤ 0 × Feedback 17.26 18.86 10.78
(19.988) (16.347) (12.243)

Block 2 × B1 Acc. Diff ≤ 0 23.01 18.74 20.61∗∗

× Feedback (15.056) (11.823) (9.290)

Constant 19.23∗∗∗ 17.48∗∗ 16.51∗∗∗ 14.83∗∗ 11.79∗∗∗ 8.76
(4.978) (7.384) (4.366) (6.615) (3.673) (5.423)

Observations 1,332 1,332 1,332 1,332 1,332 1,332
Number of Participants 666 666 666 666 666 666
Winsorized at T Seconds No No T = 300 T = 300 T = 180 T = 180

This table estimates the effect of block, feedback and accuracy difference on the average difference
in time spent on baseline vs. easy tasks for participants in the length arm. The dependent variable
is constructed by taking the difference between average time spent on the baseline tasks in a block
and the average time spent on the easy tasks in the same block. By-block accuracy difference is
constructed by taking the difference between the percentage of easy tasks answered correctly and the
percentage of baseline tasks answered correctly in a block. Column (3) maintains the specification
in Column (1) and winsorizes at 300 seconds; Column (4) maintains the specification in Column (2)
and winsorizes at 300 seconds; Column (5) maintains the specification in Column (1) and winsorizes
at 180 seconds; Column (6) maintains the specification in Column (2) and winsorizes at 180 seconds.
Standard errors, clustered at the participant level, are shown in parentheses. *p < 0.1, **p < 0.05,
***p < 0.01
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Figure A.3: The Likelihood of Answering Tasks Accurately by Time Spent, Dropping Ob-
servations > 100 Seconds
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This figure includes binned scatterplots that displays how accuracy varies with the time spent on the
three types of tasks in seconds after dropping responses in which a participant spent more than 100
seconds on a task. Here, observations have been separated into 15 equal-sized bins in each binned
scatterplot.
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Figure A.4: CDFs of Time Spent on Task by Length and Discernibility (Dropping Observa-
tions > 100 Seconds)
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This figure displays the CDFs of time spent on a task in seconds by task type after dropping responses
in which a participant spent more than 100 seconds on a task.

E Implications of Risk Aversion

E.1 Calibration exercises

Let π1 denote the probability of completing the task with BE, and let π0 denote the probabil-
ity of completing the task without the BE. Suppose that individuals value the BE optimally,
but are potentially risk averse. Let z denote the initial wealth of an individual before starting
the experiment. We consider two cases.

Case 1: Constant absolute risk aversion Let α be the CARA parameter. Analogous
to before, an application of the Envelope Theorem implies that a marginal increase dr in r
increases the individual’s expected utility by π1e−α(z+r)dr in the presence of the BE, and by
π0e−α(z+r)dr in the absence of a BE. A marginal increase dw in w, where w > 0 and thus
is a payment received in the absence of the BE, increases an individual’s expected utility by
π0e−α(z+w+r)dw+(1−π0)e−α(z+w)dw in the absence of the BE. Dividing through by e−αz
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implies that the the impact of r on the WTP for a BE is given by

dw
dr

=
π1e−αr −π0e−αr

π0e−α(w+r)+(1−π0)e−αw
(20)

We use equation (20) to estimate how WTP for a BE changes when the reward for (accu-
rate) task completion increases by $1. In experiment 2, we set r = $3 for the low incentive
conditions and r = $11 for the high incentive conditions. We set π0 and π1 to match the em-
pirical completion probabilities in the 8 delay×incentive conditions in Figure 2a. We set w to
match the average WTP for the BE at the $3 or $11 incentive values in the 8 delay×incentive
conditions in Figure 3.

In experiment 3, we set r = $2, and we set w to match the average WTP for the BE at
the r = $2 incentive value, in each of the 4 conditions corresponding to either the length or
discernibility arm, and either block 1 or block 2.

We draw prior work to consider the following values of α: Using insurance decisions,
Cohen and Einav (2007) estimate α ≈ (0.00087,0.0019), Handel (2013) estimates α ≈
(0.00019,0.000325), and Sydnor (2010) estimates α ≈ 0.002. Chetty (2006) estimates a
constant relative risk aversion coefficient of 0.7 from labor supply elasticities, which trans-
lates to α ≈ 0.0007 if payday borrowers have $1000 monthly “uncommitted” (in the sense
of Chetty and Szeidl (2007)) consumption. Using relatively small-stakes gambles, von
Gaudecker et al. (2011) estimate α ≈ 0.03, and Holt and Laury (2002) estimate α ≈ 0.2.
For studies that provide a range, we take the midpoint of the range.

Table A.13 below considers experiment 2 data under the hypothesis that people value
BEs optimally but are risk averse. The table presents estimates of how the WTP for the BE
would change when r increases by $1, across the 8 delay×incentive conditions, and across
the different values of α summarized above. We set α = 0 in the first row, to benchmark
to the quasilinear case assumed in the body of the paper. The very last row in the table,
separated by double lines, presents our empirical estimates.
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Table A.13: Experiment 2, Effect of Extra $1 Incentive on WTP by Delay × Incentive
Condition and α (CARA parameter)

2 Day 1 Week 3 Weeks 6 Weeks 2 Day 1 Week 3 Weeks 6 Weeks
× Low × Low × Low × Low × High × High × High × High

Incentive Incentive Incentive Incentive Incentive Incentive Incentive Incentive

α = 0 0.23 0.28 0.40 0.25 −0.07 0.16 0.18 0.36

α ≈ (0.00087,0.0019) (0.23, (0.28, (0.40, (0.25, (−0.07, (0.16, (0.18, (0.36,
Cohen and Einav (2007) 0.23) 0.28) 0.40) 0.24) −0.07) 0.16) 0.18) 0.36)

α ≈ (0.00019,0.000325) (0.23, (0.28, (0.40, (0.25, (−0.07, (0.16, (0.18, (0.36,
Handel (2013) 0.23) 0.28) 0.40) 0.25) −0.07) 0.16) 0.18) 0.36)

α ≈ 0.002
0.23 0.28 0.40 0.24 −0.07 0.16 0.18 0.36

Sydnor (2010)

α ≈ 0.0007
0.23 0.28 0.40 0.25 −0.07 0.16 0.18 0.36

Chetty (2006)

α ≈ 0.03
0.23 0.27 0.38 0.23 −0.07 0.14 0.15 0.30

von Gaudecker et al. (2011)

α ≈ 0.2
0.19 0.21 0.27 0.17 −0.03 0.04 0.05 0.07

Holt and Laury (2002)

Empirical estimates 0.06 0.10 0.07 0.08 −0.00 0.01 0.03 0.03

Notes: This table presents estimates of how the WTP for the BE would change when r increases by $1, across
the 8 delay × incentive conditions and across the values of α summarized above.

Table A.14 below considers experiment 3 data under the hypothesis that people value
BEs optimally but are risk averse. The table presents estimates of how the WTP for the BE
changes when r increases by $1, across the 4 conditions corresponding to either the length or
discernibility arm, and either block 1 or block 2. As in Table A.13, we consider the different
values of α summarized above, as well as the risk-neutral α = 0 in the first row. The very
last row in the table, separated by double lines, presents our empirical estimates.
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Table A.14: Experiment 3, Effect of Extra $1 Incentive on WTP by Arm × Block and α

(CARA parameter)

Length Arm Discernibility Arm Length Arm Discernibility Arm
× Block 1 × Block 1 × Block 2 × Block 2

α = 0 0.20 0.26 0.21 0.26

α ≈ (0.00087,0.0019) (0.20, (0.26, (0.21, (0.26,
Cohen and Einav (2007) 0.20) 0.26) 0.21) 0.26)

α ≈ (0.00019,0.000325) (0.20, (0.26, (0.21, (0.26,
Handel (2013) 0.20) 0.26) 0.21) 0.26)

α ≈ 0.002
0.20 0.26 0.21 0.26

Sydnor (2010)

α ≈ 0.0007
0.20 0.26 0.21 0.26

Chetty (2006)

α ≈ 0.03
0.19 0.26 0.21 0.26

von Gaudecker et al. (2011)

α ≈ 0.2
0.19 0.25 0.20 0.25

Holt and Laury (2002)

Empirical estimates 0.10 −0.01 0.03 0.03

Notes: This table presents estimates of how the WTP for the BE would change when r increases by $1, across
the 4 arm × block conditions and across the values of α summarized above.

Case 2: Constant relative risk aversion Let ρ be the CRRA parameter. Analogous to
above, simple algebra shows that

dw
dr

=
π1 −π0

π0
( z+r

z+w+r

)ρ
+(1−π0)

( z+r
z+w

)ρ (21)

To study the potential impacts of risk aversion, we consider the upper-bound value of
ρ = 1.37, which Holt and Laury (2002) clarify implies a level of risk aversion that individuals
with such a parameter should “stay in bed.” Holt and Laury (2002) show that very few
individuals exhibit such a value of risk aversion.

Table A.15below considers experiment 2 data under the hypothesis that people value
BEs optimally but are risk averse. Utilizing equation (21), table presents estimates of how
the WTP for the BE would change when r increases by $1, across the 8 delay×incentive
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conditions. The first row corresponds to the risk-neutral benchmark of ρ = 0. The subse-
quent rows consider ρ = 1.37 and vary assumptions about initial wealth z. The very last row
in the table, separated by double lines, presents our empirical estimates.

Table A.16 is analogous, but considers the 4 conditions corresponding to either the length
or discernibility arm, and either block 1 or block 2.

Table A.15: Experiment 2, Effect of Extra $1 Incentive on WTP by Delay × Incentive
Condition, initial wealth and ρ(CRRA parameter)

2 Day 1 Week 3 Weeks 6 Weeks 2 Day 1 Week 3 Weeks 6 Weeks
× Low × Low × Low × Low × High × High × High × High

Incentive Incentive Incentive Incentive Incentive Incentive Incentive Incentive

ρ = 0 0.23 0.28 0.40 0.25 −0.07 0.16 0.18 0.36

ρ = 1.37, z = 10 0.21 0.24 0.32 0.20 −0.06 0.10 0.11 0.19

ρ = 1.37, z = 100 0.23 0.28 0.39 0.24 −0.07 0.15 0.17 0.34

ρ = 1.37, z = 1000 0.23 0.28 0.40 0.25 −0.07 0.16 0.18 0.36

ρ = 1.37, z = 100000 0.23 0.28 0.40 0.25 −0.07 0.16 0.18 0.36

Empirical estimates 0.06 0.10 0.07 0.08 −0.00 0.01 0.03 0.03

Notes: This table presents estimates of how the WTP for the BE would change when r increases by $1, across
the 8 delay × incentive conditions and across the values of ρ and z summarized above.

31



Table A.16: Experiment 3, Effect of Extra $1 Incentive on WTP by Delay × Incentive
Condition, initial wealth and ρ(CRRA parameter)

Length Arm Discernibility Arm Length Arm Discernibility Arm
× Block 1 × Block 1 × Block 2 × Block 2

ρ = 0 0.20 0.26 0.21 0.26

ρ = 1.37, z = 10 0.19 0.25 0.20 0.25

ρ = 1.37, z = 100 0.19 0.26 0.21 0.26

ρ = 1.37, z = 1000 0.20 0.26 0.21 0.26

ρ = 1.37, z = 100000 0.20 0.26 0.21 0.26

Empirical estimates 0.10 −0.01 0.03 0.03

Notes: This table presents estimates of how the WTP for the BE would change when r increases by $1, across
the 4 arm × block conditions and across the values of ρ and z summarized above.

E.2 Risk Aversion and Willingness to Pay in Experiment 2

Appendix Table A.17 explores whether the deviations in experiment 2 between willingness
to pay and the effect of reminders on task completion depend on participant risk aversion.
People are valuing reminders by selecting between a sure amount of money and a reminder
that only increases the likelihood of a monetary reward. If risk aversion is sufficiently high,
then risk aversion, rather than suboptimal attention, could account for these results.

We estimate how willingness to pay for reminders varies with the participant’s level of
risk aversion as measured in experiment 2, part 2 and with completion of the survey. The
risk aversion variables are derived from participant answers to 10 questions in the second
part of experiment 2, in which participants were asked to select between receiving a "for
sure" amount of money and receiving a higher amount of money with 50% probability (see
[fig:cash risk aversion question example] for an example). The Above Median Risky Choice
Total variable is an indicator that takes the value of 1 if the number of times that a partici-
pant selected the uncertain choice is higher than the sample median. The Fraction of Risky
Choices variable is the number of times a participant selected the uncertain choice divided
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by the total number of questions.
Column (1) shows that there is no difference in willingness to pay for reminders when

comparing participants with relatively high versus low risk aversion in terms of the number
of risky choices they select in part 2. These results hold both for the low incentive and
high incentive groups. Column (2) recasts these results using the fraction of risky choices
selected as the interaction term. Again, we see no interaction effect, which suggests that
risk aversion is not driving participants’ willingness to pay for reminders. In the case of
the low incentive group, we can make an even stronger statement: an extreme risk-seeking
individual (i.e., with the fraction of risky choices equal to 1), would still value reminders with
a 95% confidence interval well below the estimated effect of reminders on task completion.43

Finally, column (3) confirms that the subset of participants who complete part 2, and thus for
whom we can measure risk aversion, have statistically indistinguishable willingness to pay
for reminders as compared to the participants who do not complete part 2. This fact supports
our extrapolation of the risk aversion results from columns (1) and (2) to characterize the full
participant pool.

43The 95% confidence interval for the low incentive group for the effect of a $1 increase in incentives on
WTP is [0.008,0.208] and the effect of reminders for this group is 0.29. For the high incentive group, the
analogous calculations give [−0.064,0.464] and 0.16; thus, for this group, the confidence interval is too wide
to permit a sharp test of the statement.

33



Table A.17: Effect of Risk Aversion (as Measured in Experiment 2 Part-2 Survey) on WTP

WTP for Reminders ($)
(1) (2) (3)

Above Median Risky Choice Total 0.04
(0.085)

Extra $1 0.08∗∗∗ 0.07∗∗ 0.05∗
(0.025) (0.030) (0.030)

High Incentive 0.96∗∗∗ 0.99∗∗∗ 1.04∗∗∗
(0.128) (0.152) (0.125)

Above Median Risky Choice Total × Extra $1 0.02
(0.042)

Above Median Risky Choice Total × High Incentive -0.15
(0.209)

Extra $1 × High Incentive -0.13 -0.20∗∗ 0.04
(0.077) (0.093) (0.083)

Above Median Risky Choice Total × Extra $1 0.09
× High Incentive (0.117)

Fraction of Risky Choices 0.09
(0.131)

Fraction of Risky Choices × Extra $1 0.03
(0.070)

Fraction of Risky Choices × High Incentive -0.23
(0.310)

Fraction of Risky Choices × Extra $1 0.29
× High Incentive (0.189)

Completed Part-2 Survey -0.04
(0.068)

Completed Part-2 Survey × Extra $1 0.04
(0.037)

Completed Part-2 Survey × High Incentive -0.14
(0.165)

Completed Part-2 Survey × Extra $1 -0.15
× High Incentive (0.104)

Constant 0.49∗∗∗ 0.48∗∗∗ 0.53∗∗∗
(0.054) (0.064) (0.052)

Observations 20,912 20,912 33,216
Number of Participants 1,307 1,307 2,076

This table estimates how willingness to pay for reminders varies with level of risk aversion and with completion
of the survey. The risk aversion variables are derived from participant answers to 10 questions in the the part-2
survey of experiment 2, in which participants were asked to select between receiving a “for sure” amount of
money and receiving a higher amount of money with 50% probability (see Figure A.5 for an example of how
these questions were presented). The Above Median Risky Choice Total variable is an indicator for whether
the number of times that a participant selected the uncertain choice is higher than the median. The Fraction
of Risky Choices variable is the fraction of times a participant selected the uncertain choice. Columns (1) and
(2) focus on the effect of risk-seeking behavior and are restricted to participants who were never top-coded at
$3 or $11 and who were never top-coded at $4 or $12, as in all of the willingness-to-pay analysis. Column
(3) focuses on the representativeness of willingness-to-pay responses for those who complete the part-2 survey,
since all participants included in Columns (1) and (2) completed part-2 of the survey. Standard errors, clustered
at the participant level, are shown in parentheses. *p < 0.1, **p < 0.05, ***p < 0.01
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Figure A.5: Example Risk Aversion Question

Participants answered 10 questions in the same format as this, where the first value was randomly
drawn from the integers between 35 and 65, and the second value was randomly drawn from the
integers between 90 and 100.
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F Screenshots Appendix

F.1 Experiment 1

Figure S.1: Pay-to-Plan Treatment Emails, Week 1

$1 Plan-Making Incentive

$2 Plan-Making Incentive

1



Figure S.2: Pay-to-Code Treatment Emails, Week 1

$2 Coding-Task Incentive

$5 Coding-Task Incentive
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Figure S.3: Combined and Control Group Emails, Week 1

Combined Treatment ($1 Plan-Making and $2 Coding-Task Incentive)

Control Group
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Figure S.4: Weekly Reminder Email, All Groups
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F.2 Experiment 2

F.2.1 Part 1

Figure S.5: Eligibility Screen

This is the screen in which the participant entered their MTurk ID.

Figure S.6: If Ineligible Screen

If participants had participated in the study at an earlier date, they were shown this screen and ex-
cluded from participating.
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Figure S.7: Consent Form
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Figure S.8: Attention Check (first attempt)

Figure S.9: Attention Check (second attempt)

If participants answered the attention check question incorrectly the first time, they saw this screen
which warned them that failure to enter the sequence correctly would remove them from the study.
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Figure S.10: Instructions, Screen 1
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Figure S.11: Understanding Questions for Instructions, Screen 1

Figure S.12: Instructions, Screen 2
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Figure S.13: Understanding Questions for Instructions, Screen 2

Figure S.14: Instructions, Screen 3
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Figure S.15: Instructions, Screen 4
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Figure S.16: Instructions, Screen 5

Figure S.17: Understanding Questions for Instructions, Screen 5
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Figure S.18: Multiple Price List Attention Check
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Figure S.19: Example Multiple Price List Instructions with Incentive Level of $12 and Delay
of 2 Days

This figure shows the text that appears on the screen of a multiple price list decision. (The next figure
shows the actual multiple price list that participants faced.) Participants saw a version of these screen
16 times for every combination of the four possible incentives and four possible delays. The order
of these 12 MPLs was randomized at the participant level. In addition to the instruction text, the
page has a clickable button between the instructions and the multiple price list which summarizes
information about the reminder emails and payment; the figure above shows what it looks like when
the button has been pressed.
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Figure S.20: Example Multiple Price List with Incentive Level of $12 and Delay of 2 Days

This figure shows the multiple price list that participants saw on the same screen as the text in the
previous figure. This is the high incentive treatment; the other version of this multiple price list has a
maximum bonus of $4 and increments by $0.25, instead of a maximum bonus of $12 and increments
of $0.75 as above.
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Figure S.21: Part 2 Information: No reminder emails

Participants who would not receive reminder emails were shown a version of this screen after com-
pleting the 16 multiple price list screens; the part 2 bonus and availability was randomly selected and
varies across participants.

Figure S.22: Part 2 Information: Reminder emails

Participants who would receive reminder emails were shown a version of this screen after completing
the 16 multiple price list screens; the part 2 bonus and availability was randomly selected and varies
across participants.
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Figure S.23: Link Screen: No reminder emails

Participants who would not receive reminder emails were shown this screen at the end of part 1 of the
study.

Figure S.24: Link Screen: Reminder emails

Participants who would receive reminder emails were shown this screen at the end of part 1 of the
study.
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Figure S.25: Demographic Information
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Figure S.26: Final Screen

Participants saw their MTurk payment code as their final screen before exiting the study.
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F.2.2 Part 2

Figure S.27: Eligibility Screen

This is the screen in which the participant entered their MTurk ID. In order to proceed, the participant
had to enter then MTurk ID they used for part 1 of the study.

Figure S.28: If Ineligible Screen

If a participant entered an MTurk ID that did not match one used for part 1 of the study, they saw this
screen and were automatically screened out.
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Figure S.29: Introduction Screen

Participants received this introduction after the eligibility check. The bonus amount shown was based
on the bonus randomly assigned to them in part 1 of the study. Participants who took more than one
hour to complete the study were treated as not having completed part 2 of the study.

Figure S.30: Instructions for Gambles over Money

The order was randomized such that some participants saw the gambles over money first, while other
participants saw the gambles over lottery tickets first.
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Figure S.31: Example Question about Gambles over Money

Participants answered 20 questions similar to the one shown here.

Figure S.32: Instructions for Gambles over Lottery Tickets
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Figure S.33: Example Question about Gambles over Lottery Tickets

Participants answered 20 questions similar to the one shown here.

Figure S.34: Attention Check Question

Participants were asked the above attention check question to assess whether they were pay-
ing attention, but this question did not affect payments in any way.

Participants were then asked for their demographic information on screens identical to those
in Figure S.25.
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Figure S.35: Final Screen

Participants saw this screen before exiting the survey. The bonus amount shown was based on the
bonus randomly assigned to them in part 1 of the study.

F.3 Experiment 3

Figure S.36: Introduction Screen

Participants were informed of the browser and device restrictions of the study, and were advised to
maximize the size of the browser window.

Figure S.37: Browser or Device Ineligibility Screen

If participants had opened the study on a mobile phone or on browser other than Chrome or Firefox,
they were shown this screen and excluded from participating.
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Figure S.38: Attention Check (first attempt)

Figure S.39: Attention Check (second attempt)

If participants answered the attention check question incorrectly the first time, they saw this screen
which warned them that failure to enter the sequence correctly would remove them from the study.
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Figure S.40: Prolific ID Entry

Figure S.41: Consent Form
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Figure S.42: Instructions, Screen 1
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Figure S.43: Instructions, Screen 2

(a) Length Arm

(b) Discernibility Arm

Participants saw one of the above instruction screens, depending on the arm they were as-
signed to.
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Figure S.44: Instructions, Screen 3

(a) Length Arm

(b) Discernibility Arm

Participants saw one of the above instruction screens, depending on their arm.

29



Figure S.45: Comprehension Questions, Screen 3

(a) Length Arm

(b) Discernibility Arm

On the same screen as Figure S.44, participants answered one of the sets of comprehen-
sion questions above depending on their arm. If at least one of the questions was answered
incorrectly, the participant was removed from the study.
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Figure S.46: Multiple Price List Attention Check

Participants saw one last attention check in which they were asked to click “continue” with-
out making any choices to demonstrate they were reading the instructions. Participants who
selected a choice were automatically removed from the study. The screen above was pre-
sented to participants in the discernibility arm; participants in the length arm saw the same
table, but with the headers “100 Equations +” and “10 Equations +”.
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Figure S.47: Multiple Price List Instructions

(a) Length Arm
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(b) Discernibility Arm

Participants saw one of the above instruction screens, depending on the arm they were as-
signed to.
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Figure S.48: Multiple Price Lists

This figure shows the multiple price list that participants in the length arm saw on the same screen
as the text in Figure S.47. Participants in the discernibility arm saw the same display, but with the
headers in Figure S.46 i.e., “60% or 40% correct +” and “95% or 5% correct +”.
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Figure S.49: Block 1 Start Screen

After completing the MPLs, participants were told the reward for accurate answers before starting
the first block. The value given for the reward for accurate answers varied based on the incentive the
participant had been assigned to.
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Figure S.50: Task Examples

(a) Baseline

(b) Easier Length Version
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(c) Easier Discernibility Version

This figure shows examples of the three types of tasks that participants faced. Participants in the
length arm saw the task types in (a) and (b), and participants in the discernibility arm saw the task
types in (a) and (c).

37



Figure S.51: End of Block 1

(a) No Feedback, Both Length and Discernibility Arms

(b) Feedback, Length Arm

(c) Feedback, Discernibility Arm

After completing the tasks in block 1, participants saw one of the screens above, depending
on their arm and whether they were randomly assigned to receive feedback on their perfor-
mance. Sub-figures (b) and (c) are examples of what participants would have seen since
the number of easy and baseline tasks and the percent of each answered correctly varied by
participant.
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Figure S.52: Screen Before Second Set of MPLs
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Figure S.53: Multiple Price Lists, Feedback

If participants were in the feedback treatment, the MPL screen preceding block 2 included
the sentence beginning “Recall that...” and the table of expected earnings. (This is an ex-
ample of a participant in the length arm; for a participant in the discernibility arm, the table
headings were “60% or 40% correct equations” and “95% or 5% correct equations.”) If the
participant was not in the feedback treatment, the instructions were identical to Figure S.47.
The MPLs themselves were identical to those in block 1, as pictured in Figure S.48.
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Figure S.54: Demographic Information
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Figure S.55: Final Screen

(a) If the chosen task was not determined by choices in the MPL

(b) If the chosen task was determined by choices in the MPL

Participants saw one of the above screens that displayed their study outcomes. If the task
selected to count for payment was not one whose type was determined by the participant’s
decisions in the multiple price lists, the participant saw the top panel. If the task selected to
count for payment was one whose type was determined by the participant’s decisions in the
multiple price lists, the participant saw the bottom panel.
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