
Sweet-Parker reconnection:
scaling for reconnection rates

Set-up: Let’s assume a 2D geometry with the direction of the inflowing
fields in the ±x direction and the direction of the flow is ±y. The width of
the reconnection layer is 2L and thickness is 2δ. This is the famous picture
from Petschek. The key to the Sweet-Parker model is to consider the inner
and outer domains separately since different physics applies (standard trick
called boundary layer theory).

Continuity: From the continuity equation (conservation of mass, incom-
pressibility) it’s easy to show that:
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Ohm’s law: Outside the layer, the field lines are straight (∇× B = 0)
so there’s no current and we have for the z-component of Ohm’s law:

Ez + uinBx = 0.

Inside the layer, there’s different physics. The velocity has stagnated to zero
and there’s a big∇×B so there’s a big current. We have for the z-component
of Ohm’s law:

Ez = ηJz.

We can connect the two relationships if we assume the flow is steady state.
In other words, there’s a continuous flow in and out of the layer but if you
close your eyes and open them a little later, the picture looks the same. From
Faraday’s law we have

∇× E = −∂B

∂t
= 0

in other words, the electric field Ez inside and outside the layer is the same
(as long as the flow in and out of the layer is steady)!

Conservation of energy: From energy balance (assuming all the Bx

field is annihilated) we find:
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→ uout = uAlfven =
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Ampere’s law: Now let’s integrate around the layer
∫

B · dl = µ0I and
we find:

Bx(4L) = µ0Jz(2L)(2δ) → Bx = µ0Jzδ.



If we combine the results from Ampere’s law and Ohm’s law, we find
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ηJz

µ0Jzδ
=

η
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.

Another way to write this is

uinµ0δ

η
≡ Rm = 1!

The interpretation is that the inflow speed and the layer width adjust them-
selves such that the magnetic Reynold’s number (ratio of convection to dif-
fusion) is unity (based on the layer width). In other words, things adjust
themselves until magnetic flux is annihilated as fast as plasma can be ex-
hausted out the sides. Notice that if δ is very small, then the flow gets
backed up on the inflow side. A broad or fanned outflow region is analogous
to having a big exhaust manifold on a high performance car engine... the
faster the exhaust can get out of the way, the more energy the engine can
convert.

Reconnection rate: My trick for extracting the reconnection rate is
to write down the square of the inflow speed using the two relations (from
continuity and Ampere):
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(here I’ve used uout and uAlfven interchangeably). The reconnection rate is
often couched in terms of the normalized inflow speed because recall that
uin×Bx is the electric field which is related to the consumption of flux at the
x-point (from Faraday’s law). In any case, the reconnection rate is written:
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where S is called the Lundquist number (or the magnetic Reynold’s number
based on the Alfvén speed). Note that S is defined even if there’s no flow.
Furthermore, S is typically the largest Reynold’s number in the problem
since uAlfven is the largest velocity we expect in MHD (from energy conser-
vation). More sophisticated models (Petschek or Vasyliunas) predict a faster
reconnection rate than 1/

√
S (more like 1/log(S)). There appears to be a

bound on the reconnection rate:
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.

Simulations (as well as our experiments and some observations) show a “ubiq-
uitous” reconnection rate of about 0.1 over a wide range of parameters (ie
103 ≤ S ≤ 109).



Simple diffusion: Finally, if you consider the case with no flow (that
is, two semi-infinite slabs of magnetofluid with oppositely directed magnetic
field that are just lying together), then the Ohm’s law is particularly simple:
E = ηJ . Ampere’s law tells you that ∇× B generates a thin current sheet
between the slabs (a δ-function actually). If you take the curl of Ohm’s law
(and invoke Faraday and Ampere laws) you get a diffusion equation (actually
the diffusive form of the induction equation):
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The initial condition is a step function in B and (therefore) a delta function
in J. As time progresses, the step function smooths out and the delta function
broadens. The scaling for this process is 1/S (ie very slow).


