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Abstract

In the recent years, computer simulations have become one of the main investiga-
tive tools in most areas of physics research. Computer modeling is also of particular
importance in plasma physics, where highly dynamic nature of the conductive medium
makes precise and detailed experimental measurements of the occurring processes
very dif"cult. The Swarthmore Spheromak Experiment (SSX) studies the interaction
of donut shaped magnetic structures known as spheromaks. The experimental mea-
surements conducted on SSX can be approximately divided into two categories: `in-
ternal' and `external'. Internal measurements produce precise values of the quantities
being measured, but cover only a small fraction of the volume of interest in the highly
inhomogeneous medium and can interfere with the very processes being measured.
On the other hand, external measurements are only capable of producing volume aver-
aged values of the parameters of interest, thus integrating over the local structure and
dynamics of plasma magneto#uid. We are thus forced to resort to modeling in our
attempts to gain a better understanding of the physical processes taking place in the
experiment. We currently employ two modeling codes: 0-D time-dependent impurity
emission model, and 21

2 -D resistive MHD simulation code. A VUV monochromator
is used to collect time-resolved data from various plasma impurity lines. Line-ratios
of the recorded intensities are then taken and compared with the predictions of the
0-D time-dependent coronal equilibrium model. Signi"cant restrictions are thus gen-
erated on the possible values of plasma parameters such as electron temperature Te and
electron density ne. The MHD code is employed to support our understanding of the
structure and dynamics of the magneto#uid in the experiment as a whole and in the, so
called, reconnection region in particular. The output of the simulation is matched with
the measurements of the energetic particle's orbits and the 2-D B-"eld measurements.
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1 Introduction

We should begin by de"ning what it is this thesis is about � plasma, affectionally re-
ferred to as the 4th state of matter. According to F. Chen[5], a useful de"nition of plasma
is:

A plasma is a quasineutral gas of charged and neutral particles which exhibit collective
behavior.

In this de"nition, the term �quasineutral� refers to the approximate local charge neu-
trality of plasma, so that any local concentration of positive charge produced by ionized
atoms is approximately compensated by the negative charge of free electrons surrounding
it in plasma. For that to be true, the density of those free electrons has to be high enough
to provide a signi"cant electrical conductivity and thus respond to and at the same time
be able to generate large scale electromagnetic "elds.[21] Here, we will be concerned with
nearly completely ionized plasma state of hydrogen gas with very small amounts of mixed
in partially ionized impurities.

Swarthmore Spheromak Experiment (SSX) is a laboratory device designed to reproduce
processes happening on the solar scale, about 108 times the size of the experiment itself. We
are particularly interested in solar #ares and their interaction with each other and the surface
of the sun.[4][22] Currently, the major effort on SSX is directed towards investigating the
processes related to such interactions between two magnetic structures; there, reconnection
of oppositely pitched magnetic structures, where the energy contained in magnetic "elds is
converted into thermal and kinetic energy of plasma, is of particular interest.[3][15][8]

The spheromaks produced on SSX are small size donut shaped magnetic structures
(diameter less than 0.5 m) observed to reach a short lived equilibrium with lifetime of about
100 µs.[7] The magnetic "elds and currents in a spheromak have helical shape that con"nes
the plasma to a torus in such a way that a nearly force-free equilibrium is attained with the
magnetic "eld lines parallel to the direction of the current density vector J (See Figure 1):

J×B ≈ 0,
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Figure 1: Con"guration of magnetic "elds of a spheromak.

In SSX, spheromaks are created with a magnetized coaxial plasma gun (See Figure 2
for the spheromak formation cartoon). Small amounts of hydrogen gas introduced into the
gun are "rst ionized and poloidal currents are induced with a 5 kV discharge. The currents
in the plasma and the gun itself, in turn, generate toroidal B-"elds. The interaction of the
magnetic "eld and the currents produces the Lorentz J×B force, which accelerates plasma
towards the opening of the gun. There, plasma confronts �stuf"ng B-"eld� produced by an
external magnetic coil. As a result, according to Faraday's law, toroidal currents (poloidal
magnetic "eld) are induced in the plasma donut being pushed out of the gun with the J×B
force. At last, once a donut shaped blob separates from the rest of the plasma in the gun
and initial reconnection is completed, newly born spheromak relaxes into the force-free
equilibrium in the �#ux conserver�, a copper cylinder which con"nes the magneto#uid in
SSX.
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Figure 2: Formation of a spheromak in a magnetized coaxial plasma gun.

We use a symmetric set up in order to form two spheromaks and then observe the
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processes taking place during their merging and reconnection. The schematic of the ex-
periment is shown below. The conditions created in SSX are, in fact, very similar to those
in solar corona with electron temperature Te near 20 eV and electron density ne of about
1014 cm−3.

Although we use a Langmuir triple probe[17] and magnetic probes to collect initial in-
formation about the plasma, conducting reliable internal measurements of such short-lived
and dynamically unstable structures as spheromaks turns out to be non-trivial. Interaction
of the probes with plasma destabilizes the equilibrium and may disrupt and/or interfere with
the very processes we attempt to measure. Furthermore, solely measuring plasma parame-
ters at a few points inside the #ux conserver does not provide one with enough information
about the highly non-uniform environment of the experiment.

x
z

y

EastWest

Monochromator

Figure 3: Formation of a spheromak in a magnetized coaxial plasma gun.

We are thus forced to turn to making external measurements, detecting light emitted
by impurities in the spheromak plasmas and highly energetic ions accelerated in the recon-
nection region of the #ux conserver. These diagnostic do not disturb plasma but integrate
signal over a volume contained in a narrow cone around the �line of sight�. As such, they
provide us with values for plasma parameters averaged over that volume. Non-uniformity
of the plasma once again limits usefulness of such measurements.

The obstacles one faces in trying to describe and understand both global and local dy-
namics of the spheromaks using diagnostics alone makes it only natural to attempt to model
the experiment by adopting already existing resistive MHD codes such as TRIM.[26] In or-
der to be able to extract information about the plasma itself from the external measurements,
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we have to use simulation codes speci"c to the parameters being measured. To that end we
employ the 0-D time-dependent coronal equilibrium impurity emission model, written by
the author, to predict electron temperature and density in plasma from the impurity emis-
sion level. A trajectory tracing particle code together with TRIM is also used to predict the
con"gurations of electromagnetic "elds in the #ux conserver from the high energy particle
data.[1][19]

We check the outcomes of these simulations against the results of the measurements
described above and can thus gain a better understanding of the processes occurring in the
experiment.

This thesis is organized into four sections and "ve appendices. The introduction is
followed by a description of the VUV spectroscopy project in Section 2. Experimental
setup, data, model, and analysis are presented. Section 3 contains a brief introduction to
resistive MHD followed by a discussion of speci"cs of the simulation and description of the
current results. Some conclusions and future directions on SSX are presented in Section 4.

The reader should not consider this thesis to be the "nal word on any of the experimental
or computational projects described below. Rather, it should be thought of as a thorough
progress report on several of the projects taking place in SSX.
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Figure 4: Schematics of the VUV monochromator.

2 VUV Spectroscopy

2.1 Experimental Setup and Calibration

We use a vacuum ultraviolet monochromator with nominal operational wavelength range
of 50 nm to 560 nm to collect real time data from the experiment. The instrument has focal
length of 0.2 meters and wavelength resolution of about 0.5 nm. The monochromator is
supplied together with bilateral entrance and exit slits. These allow us to regulate both the
overall amount of light entering the instrument through the entrance slit and the width of
the intensity versus wavelength distribution of the light leaving the instrument through the
exit slit. Grating is used to select and refocus a narrow bandwidth around the appropriate
line out of the spectrum entering the monochromator on the exit slit. A sodium salicylate
scintillator coated window on the exit end of the instrument is used for reemitting light be-
low 250 nm.[25] The schematics of the monochromator is shown in Figure 4. See Figure 3
for the speci"c location of the monochromator on the #ux conserver.

We register the light leaving the VUV monochromator with a high voltage PMT, which
in turn relays the signal to a high frequency oscilloscope. Data is eventually stored on a
computer hard drive making use of the developed data acquisition software.

Since the monochromator collects data at one wavelength setting at a time, the issue
of calibrating the instrument with respect to the wavelength at which the measurements
are taken is essential and non-trivial. Since we operate a vacuum instrument, we either
have to introduce a known plasma source into the #ux conserver in the line of sight of
the monochromator or try to calibrate it through the window on the other side of the #ux
conserver. However, the "rst option is not presently available to us due to the excessive
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costs associated with such a calibration, and even a quartz window, which we currently
employ, only allows through the light of wavelengths above≈ 180 nm. We are thus unable
to get an independent calibration of the monochromator in the wavelength region between
50 nm and 180 nm, where most of the impurity lines of interest are located.

A mercury lamp was used to calibrate the instrument with respect to wavelength in the
range of 250 nm � 550 nm. In order to complete the wavelength calibration, several scans
covering most of the wavelength region between 50 nm and 250 nm were taken. The up-
to-date wavelength calibration curve is presented in Figure 5. (See Appendix B for "gures
containing the results of the scans taken.)
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Figure 5: The VUV monochromator wavelength calibration curve.

The greatest contribution was observed to be from C III and C IV impurity ions with
some emission from O III and O IV lines. A few of the apparent peaks in the emission
spectrum are still not identi"ed with any degree of certainty. A database of plausible impu-
rity emission lines was put together based on the list of possible sources of impurities in the
chamber and the expected range of values of the electron temperature Te and the electron
density ne in the experiment. 1 (See Appendix A for the table of the considered impurity
emission lines.)

An even greater problem is posed by the necessity of making an absolute intensity
calibration of the VUV monochromator. Here, the plasma source itself has to be absolutely
calibrated and the amount of light arriving at the entrance slit of the monochromator has to
be known in order to calibrate the instrument. The second option is to use another already

1The expected sources of impurities and the elements are listed below:
Major sources: C, O;
Air: O, N, Ar;
Chamber: Cu, W, Fe, Ni, Cr;
Insulator: Al, O.
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absolutely calibrated instrument in order to calibrate ours. However, neither of those options
are currently available to us, once again, due to the excessive associated costs.

Thus, our ability to make conclusive statements about the state of plasma in the #ux con-
server solely from the time-evolution of the intensity of the impurity emission is presently
limited by the inability to do an absolute intensity calibration of the VUV monochromator.
Despite that, some conclusive statements about the state of plasma can still be made, as
discussed below.
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2.2 Experimental Data

Time resolved data from the following lines was recorded (see Figures 7 through 9 below
for sample time series):

Impurity Lines Outer Shell Con"gurations Energy levels Ei − Ek (cm−1)
C III 97.7 nm 2s2 − 2s2p 0.00 - 102352.04
C III 124.7 nm 2s2p− 2p2 102352.04 - 182519.8
C III 229.7 nm 2s2p− 2p2 102352.04 - 145876.13
C IV 155.0 nm 1s22s− 1s22p 0.00 - 64591.7

Table 1: The impurity lines for which reliable data have been collected. Note that the initial
and "nal con"gurations of the observed C III emission lines form a ladder such that the
intensities of the 229.7 nm and 124.7 nm lines directly depend on the population of the
upper energy level of the 97.7 nm transition (See Figure 6 below).

Typical time series of C III and C IV emission lines are observed to have two peaks.
The "rst peak is seen to rise and fall relatively sharply with an approximate width of less
than 10 µs. The second peak is observed to be signi"cantly broader typically lasting for
about 20− 30 µs.

A simple computational procedure was put together to identify the magnitude and tim-
ing of peaks in the emission data (See Table 2). These allow us to better identify impurity
lines as well as provide the necessary statistics for comparing the data with predictions of
the 0-D time-dependent impurity emission model. (See Appendix B for the code.)

Impurity Line Time of peak 1, µs Time of peak 2, µs Peak1/Peak2 ratio
C III 97.7 nm 32.97± 0.74 48.92± 1.78 1.49± 0.30
C III 124.7 nm 32.89± 1.11 49.04± 2.30 2.11± 0.83
C III 229.7 nm 32.94± 0.76 48.67± 1.54 2.59± 0.61
C IV 155.0 nm 35.06± 1.58 48.40± 2.20 0.67± 0.37

Table 2: Timing and the ratios of magnitudes of the observed peaks in the recorded impurity
emission time series. The values above were determined by averaging over 15 data runs for
each emission line.

The line intensity ratio of the 229.7 nm line to the 97.7 nm line is calculated for both
peaks:

I1
229.7/I

1
97.7 = (3.68± 0.92)10−1

and
I2

229.7/I
2
97.7 = (2.24± 0.62)10−1.

No such data for the 124.7 nm C III line is presently available.
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The nearly exact match in the timing of peaks for the C III lines and the delay of the "rst
peak for the C IV line serve as a con"rmation that the peaks have been correctly identi"ed
and improve our knowledge of the wavelength calibration of the monochromator in the
region above 100 nm. (Note that it takes longer to strip an atom of three rather than two
electrons.) All three of the C III emission lines are observed to have very stable waveforms.
A very small deviation in the timing of the peaks, in particular of the "rst peak, make them
very useful for the subsequent analysis. On the other hand, the shape of the C IV emission
line time series is seen to be much more dependent on a particular data run. Also note
that the 97.7 nm C III line, being the resonant transition (i.e. it is the downward transition
from the lowest lying excited state to the ground state), has twice as low variation in its
magnitude ratio as the 124.7 nm and 229.7 nm C III lines, which are transitions between
excited states and thus require higher values of the plasma parameters to have a signi"cant
level of emission intensity.
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Figure 6: Term scheme for C III ion. Transition wavelengths shown on the diagram are
given in nanometers.
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Figure 7: Typical monochromator time series for the C III 97.7 nm line.
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Figure 9: Typical monochromator time series for the C III 229.7 nm line.
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2.3 O-D Time-Dependent Coronal Equilibrium Model

We construct a model designed to simulate the time evolution of the population of dif-
ferent excitation states of impurity ions observed to be present in SSX plasmas. Once the
population distribution is estimated, the intensity of the emission from the radiative down-
ward transitions de-exciting the ions can be calculated and compared with the data collected
with the VUV monochromator.

Both ionization/recombination and excitation/de-excitation processes strongly depend
on both electron temperature Te and electron density ne of plasma. (See Appendix C for
a quick review of the relevant ionization/recombination and excitation/de-excitation pro-
cesses.) And these, in turn, govern the time evolution of the population of both different
ionization and excitation levels. Thus, by "nding time series for Te and ne such that the
calculated time series of intensity Ici (t) of the i

th impurity emission line matches the mea-
sured intensity time series Imi (t), we would be able to determine the actual time evolution
of Te and ne in the experiment.

Note that the VUV monochromator used for collecting the emission data effectively
integrates all the light emitted by the impurity ions in its line of sight. Therefore, the data
contains no spatial resolution and therefore the model is developed to be �0-D� under the
assumption of plasma being homogeneous in the line of sight of the instrument.

Analytic methods have been developed to calculate electron temperature and density
from the impurity emission line ratios when plasma is in the state of local thermodynamic
equilibrium (L.T.E.), which is achieved when the collisional transitions between different
excitation levels of ions dominate the radiative transitions.[13][17][23] The distribution of
state populations in L.T.E. is characterized by the Boltzmann distribution and the ratio of
populations of any two excitation levels is given by the Boltzmann factor

Ni

Nj
= e−(Ei−Ej)/T , (1)

where Ni is the population of the ith excitation level, Ei is its energy and T is the temper-
ature of the system. The �rule-of-thumb� condition for determining whether or not plasma
has reached L.T.E. has been calculated by Griem [11] to be

ne ≥ 9× 1017
(

∆E
χ

)3 (T
χ

)1/2

[cm−3], (2)

where ∆E is the energy difference between two excitation states (or an excitation and a
ground state) of an ion, and χ is its ionization energy.

SSX plasmas are optically thin (i.e. very little radiation is absorbed and most of the
photons escape without interacting with plasma) and are known to lie in the Te range of
about 10 eV to 50 eV and have ne on the order of 1014 (cm−1).2 Then, applying Eq. 2 to the
resonant 97.7 nm C III emission line with Te = 20 eV , we have ne ≥ 1×1016 cm−3, which
is one or two orders of magnitude greater than the observed range of electron densities on

2Measurements of Te and ne have been taken in the past with a Langmuir triple probe.
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SSX. Thus, we are forced to abandon L.T.E. and resort to the so called time-dependent
coronal equilibrium approximation, which acquires its name from the applicability to the
solar corona.[20][6]

Here, the time evolution of different ionization stages of a given atom is considered,
while steady state equations are solved for the population of different excitation levels of
a given ion. This is justi"ed since the relaxation time for the excitation/de-excitation pro-
cesses τe is characterized by the inverse of the fastest transition rate between two levels
τe = 1/Aij ≈ 10 ns, while the relaxation time for the ionization/recombination processes
τi is the inverse of the radiative recombination rate. In the parameter range of the exper-
iment, τi ≈ 50 µs and τi À τe.[13] Similarly, a Maxwellian distribution of electron ve-
locities is assumed since in the SSX parameter range the relaxation processes for electrons
have characteristic time on the order of 10 ns.[28][27]

Following Suckewer[28] and Hutchinson[13], we ignore dielectronic autoionization
(the opposite of dielectronic recombination) since in the temperature range of the exper-
iment the rate of atom-ion collisions is dominated by the electron-ion collision rate, which
determines the electron impact ionization cross-section. Also, photo-excitation is neglected
since plasma is optically thin and photons escape without interacting with the impurity ions.

The rate of change of population of the ith ionization stage ni of a given atom is thus
given by:

dni
dt

= ne(ni−1〈σciv〉i−1 − ni〈σciv〉i+
ni+1〈σrrv〉i+1 − ni〈σrrv〉i + ni+1〈σderv〉i+1 − ni〈σderv〉i), (3)

where 〈σciv〉i is the collisional ionization rate, 〈σrrv〉i is the radiative recombination rate
and 〈σderv〉i is the dielectronic recombination rate from the ith ionization level of a given
atom, as de"ned in Appendix C. Note that in calculating the impact ionization and radiative
recombination rates only the ground states of ions are considered due to their dominant
population.[13] Then, in order to follow the time-evolution of the population of the ioniza-
tion levels of a given atom, a system of Z+1 such differential equations is solved, where Z
is the atomic number of the atom. A matrix method proposed by Carolan and Piotrowicz[6]
is used to solve the system of equations with the Matlab software package (See Appendix
for the code).

Since the excitation/de-excitation rates are assumed to be in the steady state balance,
for each excitation level j of a given ion its population Nj has to satisfy the following:∑

k<j

neNk〈σkjv〉ce +
∑
k>j

NkAkj +
∑
k>j

neNk〈σkjv〉cde =

∑
k>j neNj〈σjkv〉ce +

∑
k<j NjAjk +

∑
k<j neNj〈σjkv〉cde, (4)

where ne〈σkjv〉ce is the collisional excitation rate from the kth to the jth excitation level,
Akj is the spontaneous radiative de-excitation rate from the kth to the jth excitation level,
and ne〈σkjv〉cde is the collisional de-excitation rate from the kth to the jth excitation level.
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The cross sections of optically forbidden transitions are assumed to be negligible in com-
parison with the terms shown in Eq. 4.[28] Only several lowest lying excitation states are
considered in the summations of Eq. 4 since only the ground and the "rst exited states
are observed to have signi"cant population for the range of plasma parameters relevant on
SSX. The population of the metastable excited states of an ion is assumed to follow the
Boltzmann distribution [28][18]

Nj ∝ e−Ej/Te .
The populations of the relevant excitation levels are calculated by solving the system of
simultaneous linear equations that result from applying Eq. 4 to every excitation level of a
given ion. Simple vector algebra techniques are employed for doing so. (See Appendix for
the implementation in Matlab.)

No diffusive impurity transport is included in the model, because the macroscopic vari-
ance of the plasma parameters and the overall dynamics of the spheromak plasmas are
observed to be far more signi"cant than local changes in impurity density, as discussed in
Section 3.4.
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2.4 Analysis of the Data with the Model

The upshot of the impurity emission project on SSX is to determine the time evolution of
plasma parameters such as electron temperature Te and density ne in the experiment solely
from the data collected with the VUV monochromator. This would be accomplished by
comparing the line ratios of the intensities of the impurity emission lines taken from the
data with the corresponding line ratios determined by the model described above for given
values of Te and ne.

Two basic methods of analysis of the impurity emission data have been attempted.

2.4.1 Application of minimization techniques to the problem of time dependent pa-
rameter "tting

We attempt to approach the problem at hand as one of "nding a local minimum of a multi-
variable single-valued function. In particular, we employ the simplex algorithm[24] to "nd
the time-evolution of Te and ne by minimizing some function g(t;Te(t), ne(t))with respect
to the parameters Te and ne. The function g is de"ned as follows

g(t;Te(t), ne(t)) =
Ici (t;Te, ne)
Icj (t;Te, ne)

∗
Imj (t)
Imi (t)

− 1, (5)

where Ici (t;Te, ne) is the calculated intensity of the i
th emission line at time t and Imi (t)

is the measured intensity of the ith emission line at time t. Note that the magnitude of
Ici (t;Te, ne) at t = t0 depends on the time-evolution of Te(t′) and ne(t′) for all t′ ≤ t0.

This method, is a very general one and can be used for determining the time evolution
of the plasma parameters both from a line ratio of two emission lines belonging to the same
ion and from a line ratio of two lines belonging to different ionization stages of the same
atom. However, there are two signi"cant problems that prevent us from presently using this
algorithm.

The "rst one is of a fundamental nature. In order to complete the very "rst iteration of
the algorithm, the initial distribution of the population of a given atom among its ionization
levels has to be speci"ed. The output of the algorithm turns out to be very sensitive to those
initial conditions. However, the non-triviality of the physical processes occurring during
the initial spheromak formation stage makes it very dif"cult to make reliable estimates of
those input parameters. The second problem we face is of a more practical sort. Since the
function g to be minimized is de"ned in terms of the line-ratios taken from the real data,
the presence of the spheromak formation-related noise in the time series of the emission
lines has a very strong effect on the output of the algorithm. And particularly so, when at
least one of the lines considered is a relatively weak one (Ex. 124.7 nm C III line), thus
making the formation noise comparable to the actual signal and signi"cantly complicating
the computational procedure of the algorithm.

Appendix D contains the detailed description of the algorithm and the routines used for
its implementation in Matlab.
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2.4.2 Analysis of timing and magnitude ratios of the peaks in the time evolution of
the intensity of the measured impurity emission lines

We have to utilize speci"c details of the line intensity time series in order to make any
conclusive statements about the state of plasma in the #ux conserver during experimental
runs.

As noted in Section 2.2, the currently available line intensity data from the 229.7 nm
C III, 124.7 nm C III, 97.7 nm C III and 155.0 nm C IV lines have a two peak waveform. It
would be reasonable to assume that such a shape is due solely to high electron temperature
and density of plasma during the spheromak formation stage of an experimental run. It
would follow that carbon "rst quickly �burns through� the C III and C IV ionization levels
(i. e. most of the C III and C IV atoms are quickly further ionized), which results in the sharp
"rst peak, and only later, when the plasma cools off and the electron density goes down,
carbon ions recombine back and the broader second peak appears. However, this type of
analysis would be correct if SSX plasmas were more homogeneous and less turbulent than
they really are.

Presently, though, in order to understand and correctly interpret the data collected with
the instrument, we have to carefully consider all the details of the experiment. It is essential
that the line of sight of the monochromator does not go through the central part of the
#ux conserver. As shown in Figure 3, the VUV monochromator is not centered on the
machine and thus cannot collect data from the main body of plasma once the spheromaks
have detached themselves from the plasma guns.

Our present interpretation of the data is that the "rst peak observed in the time series of
the C III lines is, in fact, carbon burning through the beryllium-like ionization level during
the initial reconnection. However, it is our understanding that the decay of the "rst peak
of the C IV line is in large part due to the hottest portions of plasma leaving the line of
sight of the instrument, rather then simply burning through the third ionization level. We
believe that the second peak in the time-histories of all three carbon lines observed is due
to formation and slow relaxation of a spheromak in the #ux conserver, so that only parts of
the magnetic structure fall into the line of sight of the monochromator.

A careful analysis of the data con"rms our understanding of the overall dynamics of
plasma during a run. The reproducibility of the shape of the time-histories of the three C III
lines together with much more signi"cant variation in the shape of the time-history of the
C IV line support the claim that the SSX plasma parameters are such that C IV is typically
the highest ionization level reached by carbon atoms. The presence of a very well de"ned
time delay of the "rst peak of the 155.0 nm C IV line with respect to the corresponding
peak of the C III lines also supports the claim that the plasma initially burns through most
of C III, while the breadth and matching timing of the second peaks is re#ective of the
relaxation processes taking place about 45 µs into the run. Large variation in the peak-
to-peak ratio of the 124.7 nm and 229.7 nm lines of C III as compared to the variation in
the peak-to-peak ratio of the 97.7 nm resonant C III line, as well con"rm that the electron
temperature and density of plasma are barely high enough to excite the higher lying 2p2

excitation levels of the C III ion.
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Figure 10: The 3-D color map demonstrates the time delay between the peaks in the time
series of the 155.0 nm C IV and 229.7 nm C III lines predicted by the model as a function
of both electron temperature Te and electron density ne. The contours in the Te × ne
plane specify the values of Te and ne for which the time delay is 2 µs, 4 µs, ..., 14 µs.

We use the modeling routines described in the previous section to narrow down the set
of possible Te and ne values that could be occurring in the experiment, by taking advantage
of the observed time delay ∆t ≈ 2 µs between the peaks in the 155.0 nm C IV line and
the 229.7 nm C III line time-histories. Figure 10 contains a 3-D color map demonstrating
the predicted time delay between the peaks in the time-histories of the lines as a function of
both electron temperature Te and electron density ne. As shown in Figure 10, we are able
to narrow down the range of values in the Te × ne parameter space that could possibly be
the SSX temperature and density parameter values to an almost linear relationship between
Te and ne.

The ratios of line intensities of two transitions that belong to the same ion can also be
used to obtain approximations for the plasma's parameter values.[29][30] In particular, we
consider the line ratios of the following C III lines: 229.7 nm to 97.7 nm; and 124.7 nm
to 229.7 nm. (See Figure 6 for the term diagram of C III.) Figure 11 and Figure 12 show
model's predictions for those ratios in the section of interest in the parameter space.
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Figure 11: The 3-D color map demonstrates the line ratio of 229.7 nm and 97.7 nm C III
lines predicted by the model as a function of both electron temperature Te and electron
density ne. The contours in the Te × ne plane specify the values of Te and ne for which

the ratio is 0.01, 0.012, ..., 0.024.

It is evident from Figure 11 that the line ratio of the 229.7 nm emission intensity to the
intensity of the 97.7 nm line is predicted to be nearly independent of the electron temper-
ature when the electron density is below 6 × 1020 m−3. The results predict that the line
ratio I229.7 : I97.7 of these two lines should be about 1:40 in the parameter range of interest.
The experimental data, however, suggest that the ratio is about 1:4, which is a factor of ten
greater. As of now, no satisfactory explanation of such divergence between the data and the
model have been found. Even though an absolute intensity calibration of the monochro-
mator has not been conducted (see Section 2.1 for the discussion on the monochromator
calibration), we do not expect that to in#uence the emission intensity data by more than a
factor of two.

Unlike Figure 11, Figure 12 below demonstrates that the line ratio of the 124.7 nm
emission intensity to the intensity of the 229.7 nm line is predicted to depend both on the
electron temperature and the electron density of plasma and should be about 0.4 in the
expected SSX parameter range. Unfortunately, no reliable data to either con"rm or deny
such claim is presently available.

We conclude that by combining the comparisons of the line ratios taken from experi-
mental measurements with the corresponding model predictions of the impurity emission
lines discussed above, one could determine both electron temperature and density of plasma
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with a fair degree of certainty.
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Figure 12: The 3-D color map demonstrates the line ratio of 124.7 nm and 229.7 nm C III
lines predicted by the model as a function of both electron temperature Te and electron
density ne. The contours in the Te × ne plane specify the values of Te and ne for which

the ratio is 0.36, 0.38, ..., 0.46.
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3 2-D Resistive MHD Simulation

3.1 Basic Theory of Resistive MHD Approximation for Plasma Interactions

To those unfamiliar with the subject, the "eld of plasma physics can appear to have been
already exhausted many years ago. After all, plasma is just a very hot low density gas highly
responsive to electromagnetic "elds that permeate it. Thus, the basic physical laws that
govern plasma behavior are Maxwell's equations and the kinetic laws of particle motion,
both of which are well known. However, it is the combination of those physical laws as
well as the number of particles that have to be considered that make the task of calculating
the time evolution of plasma exactly absolutely impossible.

The hydrodynamic approximation of plasma is most commonly made and is valid for
most of experimental plasmas.[5] Plasma is then treated as a single conducting #uid and we
can write down the set of equations describing its time and space evolution:

∇×E = −∂B
∂t

(6)

∇×H =
∂D
∂t

+ J (7)

∇ ·D = σ (8)

∇ ·B = 0 (9)

ρ

[
∂u
∂t

+ u · ∇u
]

= σE + J×B−∇P, (10)

∂ρ

∂t
+∇ · (ρu) = 0 (11)

∂σ

∂t
+∇ · J = 0, (12)

where Eq. 6 through Eq. 9 are the Maxwell's Equations for electromagnetic "elds in a
medium, Eq. 10 is the equation of motion of ordinary #uid plus the electromagnetic force
term, Eq. 11 is the `mass continuity equation' and Eq. 12 is the `charge continuity equation'
for the magneto#uid. When some kind of `equation of state' (for example, the isothermal
law p = nT ) and the, so called, `generalized Ohm's law' (Eq. 13), arising from the electron-
ion interactions, are included, the resulting set of nine equations constitutes a full set of
single-#uid equations[9]:

E + u×B = ηJ +
J×B−∇p

ne
. (13)
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Due to the assumption of quasineutrality of plasma (electron density ne is approximated
to be equal to the ion density ni) some immediate simpli"cations of the above equations
follow. It can be shown that terms that include the charge density σ, its time-derivative
∂σ/∂t, or the displacement current ∂D/∂t can be neglected in comparison with other terms
in the corresponding equations above. Eq.8 can also be omitted from the set of relevant
equations since the magnitude of σ, thus de"ned by the divergence ofD, turns out to be too
small to be of any importance.[9]

The generalized Ohm's law is, then, left as the most complex in the remaining set of
equations. However, for plasmas with #uid drift velocities on the order of ion thermal
speed, one can show that the J×B and∇p terms in Eq. 13 can be ignored. That condition
is equivalent to saying that the scale-length of the plasma #uid motion L should be much
larger than the ion Larmor radius rLi, i.e. rLi/L ¿ 1. In that approximation, we use the
simple form of the Ohm's law:

E + u×B = ηJ. (14)

Summarizing, the system of equations to be solved in the resistive MHD is as follows:

∇×E = −∂B
∂t

(15)

∇×B = µ0J (16)

∇ ·B = 0 (17)

ρ

[
∂u
∂t

+ u · ∇u
]

= J×B−∇P, (18)

∂ρ

∂t
+∇ · (ρu) = 0 (19)

∇ · J = 0, (20)

where we assume J to include the magnetization of the plasma medium.
For the future reference, we should now de"ne several parameters commonly used to

characterize plasmas in the plasma physics community. The Alfvén velocity vA is de"ned
to be the hydromagnetic wave velocity of travel along the magnetic "eld lines and is the
characteristic velocity at which perturbations of the force "elds travel in plasma.[5] The
Lundquist number S is de"ned to be the ratio of the J ×B force to the resistive magnetic
diffusion force and is, consequently, descriptive of the rate of diffusion of magnetic struc-
tures in plasma. Another dimensionless number β is de"ned to be the ratio of the thermal
to the magnetic energy of plasma. It is characteristic of the strength of the plasma - B-"eld
interactions.
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3.2 2-D Cylindrically Symmetric Code � TRIM

We employ the 2-D cylindrically symmetric non-ideal MHD code � TRIangular Mag-
netohydrodynamics (MHD), by Schnack[26], to simulate the time-evolution of electro-
magnetic "elds, momentum density and plasma density in SSX. In collaboration with
W. H. Matthaeus and Gang Qui at Bartol Research Institute, we then attempt to use the
time evolving electromagnetic "elds to trace the trajectories of protons in SSX.[10]

Similar to the VUV spectroscopy project, we determine the relevant parameter range
for the magnetic "elds and mass density from the internal measurements, then run the sim-
ulations for different values of initial parameters in that range to determine the expected
energies of ions leaving the #ux conserver. Those calculations are, in turn, to be compared
with the existing data of energetic ion #ow, which has been externally measured.[14] Thus,
we again hope to gain information about the time-evolution of crucial plasma parameters
only making use of data from external measurements coupled with results of computer
simulations.

TRIM solves the equations of resistive MHD, described in the previous section, in cylin-
drical geometry and "nite volume. Cylindrical symmetry of the boundary conditions is as-
sumed. Given such boundary conditions and initial con"guration of electromagnetic "elds,
plasma density, pressure and momentum density, together with several constant parameters,
such as the Lundquist number S, TRIM solves for the time evolution of the three compo-
nents of the vector potential A, the three components of the momentum density ρv, the
density ρ and the pressure P . The calculations are done on an unstructured adaptive grid of
triangles in the r̂ × ẑ plane and a pseudospectral algorithm with fast Fourier transforms is
used for the periodic toroidal (φ̂) direction.[26] Though TRIM can potentially be used with
or without adaptive mesh, in several different thermodynamic modes and has multiple op-
tions for calculating resistivity and viscosity, here, we should limit ourselves to a discussion
based only on the selections currently made for those options.

�

z

r

Reconnection RegionFlux Conservers

1.0

2.505

0.67
1.255

East Gun West Gun

Figure 13: The layout for creating the grid of triangles on which all computations are
made. z-axis is the axis of cylindrical symmetry. The mesh density is pre-assigned to be
low in the #ux conservers and a factor of 20 higher in the reconnection region. The

speci"ed dimensions are given in normalized units (See Section 3.3)
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Since the simulation project is still very much in progress and only the "rst measurable
results are being presented here, we have so far chosen to run TRIM with the simplest op-
tions available. The code is currently used on a "xed mesh (See Figure 13), in the isothermal
mode (plasma density and pressure are equated) and with "xed and uniform viscosity and
resistivity (η = 1/S). We choose a high density mesh in the reconnection region in order to
be able to resolve small scale structures that result from the interaction of two spheromaks.
The mesh density in the plasma guns is chosen to be intermediate between that of the #ux
conservers and of the reconnection region, as both too "ne and too coarse computational
grids in the guns give rise to instabilities during the formation stage of the spheromaks. All
the edges of the layout except for r = 0 are assumed to be perfect conductors and special
boundary conditions are implemented at r = 0 in order to avoid possible singularities.

The computational grid density, however, is not the only problem associated with using
TRIM to simulate the spheromak formation stage of the experiment. As a reader familiar
with plasma physics would note, the process of spheromak formation in SSX is highly
non-MHD. (See Figure 2) As described in the previous section, external electric "elds are
ignored in the MHD approximation and we are thus forced to simulate the real spheromak
formation process by some other MHD allowed processes in the simulation.

The con"guration of "elds used to initialize TRIM is currently composed of two sep-
arate effects. In order to create the poloidal stuf"ng B-"eld experimentally produced by
an external magnetic coil, in TRIM, we assume existence of a solenoid in the inner rod of
the plasma gun. The magnetic "elds produced by such solenoid can successfully model
the corresponding magnetic "elds in the experiment. And, in order to compensate for the
absence of voltage difference between the inner rod and outer walls of the plasma gun, a
gradient in the z-direction of the toroidal magnetic "eld Bφ is introduced. So that by the
Ampere's law:

Jr = −∂Bφ
∂z

. (21)

Radial currents are, therefore, induced in the gun and then the J × B forces push the
magneto#uid out of the plasma gun, as in the experimental setup. It should be noted that the
timing of the experimental and computational spheromak formation methods can disagree
considerably due to fundamental physical difference between an introduction of gradient
toroidal magnetic "elds into existing magneto#uid and an ionization of neutral hydrogen
gas with a high voltage discharge.

One of the greatest challenges faced by the author in the attempts to reproduce the
experimental process of the spheromak formation under the restrictions of resistive MHD
was to prevent the code from generating small scale instabilities in the regions of low plasma
density and high poloidal magnetic "eld right outside of the plasma guns. These problems
were eventually overcome by introducing low levels of �background density� in the #ux
conserver (about 1% - 5% of the volume averaged plasma density), while the rest of the
mass density is initially placed in the plasma guns in such a way that the density level
gradually decays from its peak value in the middle of the gun to the background density
level at the gun opening.
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3.3 Normalization of TRIM variables

It is customary in computational physics to apply certain normalization to the code
variables used, so as to avoid dealing with values other than those of order unity as much
as possible. When either too large or too small number quantities are introduced in iterative
algorithms, it does not only slow down the calculations but might also cause propagation of
round-off errors, which, in turn, grow into signi"cant errors in the results and/or disrupt the
calculations altogether.[16]

The particular normalization chosen by an author of a code are often related to speci"c
applications, the author anticipates his/her code to be used for. Thus, when such codes
are adapted for use under similar but, maybe, not the exactly expected conditions, some re-
normalization of the code may be necessary. Such is the case with TRIM. The normalization
procedure of comparing the physical resistive MHD evolution equations with those used by
D. D. Schnack et al is presented below.

We should write all physical variables, operators and characteristic constants (ex. B,∇, S)
as a product of a code variable (operator) and a unit normalization constant. For example:

B = B′ ∗B0

∇ = ∇′ ∗ 1
L0

S = S′ ∗ S0

Lets now compare the physical equations with the ones found in TRIM. From the
Maxwell's equations we have for the electric "eld:

E = −v ×B + ηJ = −v ×B +
µ0LAvA

S
J =>

E′ ∗ E0 = −(v′ ×B′) ∗ (v0 ∗B0) +
J′

S′
∗ µ0LAvAJ0

S0
. (22)

(Note, here vA and LA have experimentally measured values). However, the code solves:

E′ = −v′ ×B′ +
J′

S′
. (23)

(Eq. 23 is true for the case when plasma resistivity is assumed to be uniform such that
η′ = 1/S′ (Assumption 1)). Then, dividing Eq. 22 through by E0 and identifying like terms
in the two equations above, we have

v0B0

E0
= 1 (24)

and
µ0LAvAJ0

v0B0S0
= 1. (25)
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We solve for the current density from the magnetic "elds:

J =
1
µ0
∇×B => J′ ∗ J0 = ∇′ ×B′ ∗ B0

µ0L0
. (26)

And the code solves
J′ = ∇′ ×B′. (27)

Again, dividing Eq. 26 through by J0 and comparing with Eq. 27, produces

B0

J0µ0L0
= 1. (28)

Then, combining Eq. 25 and Eq. 28, we have

LAvA
L0v0

= S0. (29)

We calculate B-"elds from the vector potential using

B = ∇×A => B′ ∗B0 = ∇′ ×A′ ∗ A0

L0
. (30)

And the code has
B′ = ∇′ ×A′. (31)

Dividing Eq. 30 through by B0 and combining with Eq. 31 produces

A0

B0L0
= 1. (32)

We now use the ideal gas law

pV = nkT => p =
ρ

mp
kT => p′ ∗ p0 = ρ′ ∗ ρ0

kT

mp
. (33)

Consider the isothermal case (Assumption 2):

p′ = ρ′. (34)

Dividing Eq. 33 through by p0 and combining with Eq. 34 produces

ρ0

p0
∗ kT
mp

= 1. (35)

For the moment density we have

∂(ρv)
∂t

= −∇ ·
(
ρv · v − BB

µ0
+

(
p+

B2

2µ0

))
=>
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∂(ρ′v′)
∂t′

= −∇′ ·
(
ρ′v′ · v′ −

(
B′B′ − B′2

2

)
∗ B

2
0/µ0

ρ0v2
0

+ p′ ∗ p0

ρ0v2
0

)
, (36)

and the code implements the following

∂(ρ′v′)
∂t′

= −∇′ ·
(
ρ′v′ · v′ −B′B′ +

1
2

(
p′ +B′2

))
. (37)

Again, comparing the corresponding terms of the two equations we have

B2
0/µ0

ρ0v2
0

= 1 (38)

and
2p0

ρ0v2
0

= 1. (39)

Then, from Eq. 35 and Eq. 39 it follows that

mpv
2
0

2
= kT = Te (eV ) => v0 = 13841.12

√
Te (m/s). (40)

Choose B0 = 〈B〉 = 0.05 (Tesla) to be the average magnetic "eld strength measured
in the #ux conserver (Assumption 3). Then, from Eq. 24

E0 = v0B0 = 13841.12
√
Te (eV ) ∗B0 = 692.06

√
Te (V/m) (41)

Also, from Eq. 38 we have

ρ0 =
B2

0/µ0

v2
0

=
mp

2µ0
∗ B2

0

Te (eV )
= (1.04/Te) ∗ 10−5 (kg/m3) =>

ρ0

mp
= (6.21/Te) ∗ 1021 (m−3). (42)

Now "x L0 = LA = 0.25 (m) (the major radius of the #ux conserver) and vA =
〈B〉/(µ0mp〈n〉)1/2 = 7.71 ∗ 104 (m/s), where 〈n〉 = 2 ∗ 1020 (m−3) is the average
measured number density (Assumption 4). Then, from Eq. 29

τ0 =
L0

v0
= (1.81/Te1/2) ∗ 10−5 (sec) (43)

and
S0 =

vA
v0

= 5.57/Te1/2 (44)

(Note, τA = LA/vA = 3.24 ∗ 10−6 (sec)).
And, at last, from Eq. 28, Eq. 32 and Eq. 39 it follows that

J0 =
B0/µ0

L0
= 159154.9 (A/m2), (45)
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A0 = B0L0 = 1.25 ∗ 10−2 (W/m). (46)

p0 =
ρ0v0

2

2
= 159154.9 (A/m2), (47)

In the table below we summarize the above discussion by presenting the relevant nor-
malizing units as functions of temperature and calculating particular values for the case of
Te = 20.

Physical Quantity Symbol Value as a function of Te Value at Te = 20
Vector potential A0 1.25 ∗ 10−2 (W/m) 1.25 ∗ 10−2 (W/m)
Magnetic Induction B0 5.00 ∗ 10−2 (Tesla) 5.00 ∗ 10−2 (Tesla)
Electric Field E0 6.92 Te1/2 ∗ 102 (V/m) 3.10 ∗ 103 (V/m)
Current Density J0 1.59 ∗ 105 (A/m2) 1.59 ∗ 102 (A/m2)
Length L0 2.50 ∗ 10−1 (m) 2.50 ∗ 10−1 (m)
Pressure p0 9.96 ∗ 102 (Pascal) 9.96 ∗ 102 (Pascal)
Lundquist Number S0 5.57/Te1/2 1.26
Density ρ0 (6.21mp/Te) ∗ 1021 (kg/m3) 3.11mp ∗ 1020 (kg/m3)
Time τ0 (1.81/Te1/2) ∗ 10−5 (sec) 4.05 ∗ 10−6 (sec)
Velocity v0 1.38 Te1/2 ∗ 104 (m/s) 6.19 ∗ 104 (m/s)

Table 3: The normalization values presented here are the multiplicative factors that should
be used to convert the values of TRIM variables to the values of the corresponding real
physical quantities.
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3.4 Current Results and Comparison with Experimental Data

As discussed in Section 3.2, the TRIM simulation code is presently running in its simplest
variation, so that the calculations are done on a "xed triangulated grid, in the isothermal
mode and with "xed and uniform viscosity and resistivity.

We have been able to produce simulation runs whose general development closely
matches our understanding of the spheromak formation and equilibrium in SSX.[7] The
time evolution of the magnetic energy density and plasma density both in the #ux conserver
and in the reconnection region have been calculated and are observed to be very similar
to those measured experimentally. (See Figure 14 below.) Although the measured mag-
netic energy density is seen to be a factor of six greater than the magnetic energy density
predicted by TRIM, the shapes of the corresponding time series are very similar. Thus, in-
creasing the initial magnetic "elds in the plasma gun in TRIM should correct for the present
magnitude difference between the simulation and the experiment.
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Figure 14: A) The time series of magnetic and kinetic energy densities, as calculated by
TRIM, averaged over the volume of the #ux conserver;

B) The time series of the magnetic energy density, as measured in the reconnection region
of the SSX device.[3]

Figure 15 through Figure 17 demonstrate some of the magnetic con"gurations from the
most recent TRIM simulation runs.
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The similarity between the 2-D experimental data and the predictions of the simulation
in Figure 15 is apparent. In either case, there appears to be, so called, O-point in the
con"guration of the magnetic "elds.

The results of the TRIM simulation also support our interpretation of the VUVmonochro-
mator data, discussed in Section 2.4. As shown in Figure 17, a very dynamic initial forma-
tion stage is observed to be followed by much slower relaxation process, when spheromaks
are formed and plasma is evenly distributed over the volume of the #ux conservers. This
con"rms that it is necessary to consider the plasma dynamics while analyzing the impurity
emission data with a 0-D code.
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Figure 15: A) The poloidal cross-section of the magnetic vector "elds in the reconnection
region during the spheromak formation stage of the TRIM simulation.

B) Experimental SSX data from 2-D magnetic probes taken in the reconnection region.[3]
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Figure 16: The poloidal cross-section of the magnetic vector "elds in the #ux conservers
during the spheromak equilibrium stage of the TRIM simulation.
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Figure 17: A) Colormap of the magnetic #ux during the spheromak formation stage.
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Time = 7.0*t0 = 28.35 ms Time = 12.0*t0 = 48.60 ms Time = 20.0*t0 = 81.0 ms
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Figure 17: B) Colormap of the magnetic #ux during the spheromak equilibrium stage.
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The preliminary results from the application of the particle pushing code by Bill Matthaeus
et al to the electromagnetic "elds produced by TRIM are shown in Figure 18. In only a
couple of µs, the particle energy distribution is observed to develop a long high energy tail.
The few protons being accelerated are assumed to be the high energy ions observed with
the particle detectors in SSX.[14]

Figure 18: The time evolution of the energy distribution of a set of 1000 protons randomly
placed into the TRIM predicted electromagnetic "elds of the reconnection region in SSX.
All protons have the initial velocity of 1, where both time and velocity are measured in the

normalized TRIM units.
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4 Future Directions on SSX

As was stated in Introduction and reinforced throughout this thesis, most of the projects
described here have not yet lived their life. For example, the absolute intensity calibration
of the VUV monochromator is waiting to be done. Combining the plasma dynamics mod-
eled by TRIM together with the predictions of the 0-D impurity emission code is also a
possibility.

The very "rst data has recently been collected with a new triple Langmuir probe[15]
(See Figure 19). Though some calibration and adjustments are still to be done, the initial
data seems to be in good agreement with previous measurements and the predictions of the
simulations described above. In particular, the recorded electron temperature time series
seems to justify the assumption of constant temperature made in TRIM, while the observed
peak in the electron density might serve as an explanation of the measured line intensity
ratios from the plasma impurities.
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Figure 19: The time evolution of the electron temperature and density as observed with a
Langmuir triple probe. No scales on the Te-axis and the ne-axis are indicated, as absolute

calibration of the probe is pending.

In collaboration with W. H. Matthaeus, a great effort is made to combine TRIM with the
particle pushing code developed at Bartol Research Institute. The basic idea of the project
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is to develop computational tools which would allow one to predict the magnetics in SSX
purely from the ionic #ow out of the #ux conserver, and in particular from the reconnection
region. To the date, measurements of ion #ux of the Alfvenic and super-Alfvenic #ow from
the reconnection region has been successfully conducted.[3] (See Figure 20.) Good general
agreement between these data and the preliminary particle pushing code results is observed
(See Figure 18).
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Figure 20: Retarding energy analyzer scan in SSX device. Top: merging spheromaks
(in-plane), Alfvénic ions, Ē = 70 eV. Bottom: merging spheromaks (out-of-plane),

super-Alfvénic ions, Ē = 600 eV.3

A 5 × 5 × 8magnetic probe set is in the "nal stages of assembly. The new forest probe
will provide a time resolved 3-D B-"eld map of the reconnection region in SSX. With this
new diagnostic, we hope to gain much better understanding of the physical processes that
take place during the reconnection and are thought to be responsible for the acceleration of
the super-energetic ions.

3Figure 19 is borrowed from a paper by M. R. Brown[3]
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Appendix

A. Table of relevant transitions for considered ions.

Wavelength, A Aik, 108s−1 gi - gk Ei - Ek, cm−1 Con"gurations

C I
2478.56 3.40e-01 1 - 3 21648.01 - 61981.82 2s22p2 − 2s22p3s
1930.91 3.51e+00 5 - 3 10192.63 - 61981.82 2s22p2 − 2s22p3s
1658.12 1.44e+00 5 - 3 43.40 - 60352.63 2s22p2 − 2s22p3s
1657.91 3.43e+00 3 - 1 16.40 - 60333.43 2s22p2 − 2s22p3s
1657.38 8.64e-01 3 - 3 16.40 - 60352.63 2s22p2 − 2s22p3s
1657.01 2.52e+00 5 - 5 43.40 - 60393.14 2s22p2 − 2s22p3s
1656.93 1.13e+00 1 - 3 0.00 - 60352.63 2s22p2 − 2s22p3s
1656.27 8.58e-01 3 - 5 16.40 - 60393.14 2s22p2 − 2s22p3s
1561.44 1.18e+00 5 - 7 43.40 - 64086.92 2s22p2 − 2s2p3

1561.34 2.94e-01 5 - 5 43.40 - 64090.95 2s22p2 − 2s2p3

1560.31 6.57e-01 1 - 3 0.00 - 64089.85 2s22p2 − 2s2p3

C II
1335.71 2.84e+00 4 - 6 63.42 - 74930.10 2s22p− 2s2p2

1335.66 4.74e-01 4 - 4 63.42 - 74932.62 2s22p− 2s2p2

1334.53 2.37e+00 2 - 4 0.00 - 74932.62 2s22p− 2s2p2

1323.95 4.49e+00 6 - 6 74930.10 - 150461.6 2s2p2 − 2p3

1323.91 4.33e+00 4 - 4 74932.62 - 150466.7 2s2p2 − 2p3

1066.13 1.63e+01 4 - 2 74932.62 - 168729.5 2s2p2 − 2p3

1065.92 1.64e+00 4 - 6 74932.62 - 168748.3 2s2p2 − 2p3

1065.89 1.47e+01 6 - 4 74930.10 - 168748.3 2s2p2 − 2p3

1037.02 1.52e+01 4 - 2 63.42 - 96493.74 2s22p− 2s2p2

1036.34 7.61e+00 2 - 2 0.00 - 96493.74 2s22p− 2s2p2

904.48 1.37e+01 4 - 2 63.42 - 110624.17 2s22p− 2s2p2

904.14 3.42e+01 4 - 4 63.42 - 110665.56 2s22p− 2s2p2

903.96 2.74e+01 2 - 2 0.00 - 110624.17 2s22p− 2s2p2

903.62 6.85e+00 2 - 4 0.00 - 110665.56 2s22p− 2s2p2

858.56 2.35e+00 4 - 2 63.42 -116537.65 2s22p− 2s23s
858.09 1.18e+00 2 - 2 0.00 - 116537.65 2s22p− 2s23s
549.57 1.34e+00 4 - 2 63.42 - 182023.86 2s22p− 2s2p3p
549.51 3.35e+00 4 - 4 63.42 - 182043.41 2s22p− 2s2p3p
549.38 2.68e+00 2 - 2 0.00 - 182023.86 2s22p− 2s2p3p
549.32 6.71e-01 2 - 4 0.00 - 182043.41 2s22p− 2s2p3p
530.45 8.56e-01 4 - 4 63.42 - 188581.25 2s22p− 2s2p3p
530.36 5.14e+00 4 - 6 63.42 - 188615.07 2s22p− 2s2p3p
530.28 4.28e+00 2 - 4 0.00 - 188581.25 2s22p− 2s2p3p
C III
4647.49 7.26e-01 3 - 5 238213.00 - 259724.3 2s3s− 2s3p
2296.87 1.38e+00 3 - 5 102352.04 - 145876.1 2s2p− 2p2

1247.383 2.08e+01 3 - 1 102352.04 - 182519.8 2s2p− 2p2
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Wavelength, A Aik, 108s−1 gi - gk Ei - Ek, cm−1 Con"gurations

C III
1176.37 5.47e+00 5 - 3 52447.11 - 137454.40 2s2p− 2p2

1175.99 1.31e+01 3 - 1 52390.75 - 137425.70 2s2p− 2p2

1175.71 9.86e+00 5 - 5 52447.11 - 137502.01 2s2p− 2p2

1175.59 3.29e+00 3 - 3 52390.75 - 137454.40 2s2p− 2p2

1175.26 4.39e+00 1 - 3 52367.06 - 137454.40 2s2p− 2p2

1174.93 3.29e+00 3 - 5 52390.75 - 137502.01 2s2p− 2p2

977.02 1.77e+01 1 - 3 0.00 - 102352.04 2s2 − 2s2p
690.52 8.30e+00 3 - 1 102352.04 - 247170.2 2s2p− 2s3s
574.281 6.24e+01 3 - 5 102352.04 - 276482.8 2s2p− 2s3d
538.312 2.04e+01 5 - 5 52447.11 - 238213.00 2s2p− 2s3s
538.149 1.23e+01 3 - 3 52390.75 - 238213.00 2s2p− 2s3s
538.080 4.09e+00 1 - 3 52367.06 - 238213.00 2s2p− 2s3s
459.627 1.06e+02 5 - 7 52447.11 - 270014.74 2s2p− 2s3d
459.516 4.43e+01 3 - 3 52390.75 - 270010.83 2s2p− 2s3d
459.514 7.97e+01 3 - 5 52390.75 - 270011.93 2s2p− 2s3d
459.466 5.91e+01 1 - 3 52367.06 - 270010.83 2s2p− 2s3d
C IV
1550.77 2.64e+00 2 - 2 0.00 - 64484.0 1s22s− 1s22p
1548.19 2.65e+00 2 - 4 0.00 - 64591.7 1s22s− 1s22p
1230.521 7.18e+00 4 - 2 320081.7 - 401348.1 1s23p− 1s24s
1230.043 3.59e+00 2 - 2 320050.1 - 401348.1 1s23p− 1s24s
1107.979 2.94e+00 4 - 4 320081.7 - 410336.1 1s23p− 1s24d
1107.930 1.76e+01 4 - 6 320081.7 - 410340.1 1s23p− 1s24d
1107.591 1.47e+01 2 - 4 320050.1 - 410336.1 1s23p− 1s24d
798.169 3.26e+00 4 - 2 320081.7 - 445368.5 1s23p− 1s25s
797.967 1.63e+00 2 - 2 320050.1 - 445368.5 1s23p− 1s25s
770.377 1.48e+00 4 - 4 320081.7 - 449888.2 1s23p− 1s25d
770.367 8.91e+00 4 - 6 320081.7 - 449889.9 1s23p− 1s25d
770.190 7.43e+00 2 - 4 320050.1 - 449888.2 1s23p− 1s25d
672.485 1.77e+00 4 - 2 320081.7 - 468784.0 1s23p− 1s26s
672.342 8.88e-01 2 - 2 320050.1 - 468784.0 1s23p− 1s26s
660.988 8.38e-01 4 - 4 320081.7 - 471370.3 1s23p− 1s26d
660.983 5.03e+00 4 - 6 320081.7 - 471371.5 1s23p− 1s26d
660.850 4.19e+00 2 - 4 320050.1 - 471370.3 1s23p− 1s26d
419.71 2.85e+01 4 - 2 64591.7 - 302849.0 1s22p− 1s23s
419.525 1.42e+01 2 - 2 64484.0 - 302849.0 1s22p− 1s23s
384.17 1.75e+02 4 - 6 64591.7 - 324890.3 1s22p− 1s23d
384.031 1.46e+02 2 - 4 64484.0 - 324879.8 1s22p− 1s23d
312.45 4.63e+01 2 - 2 0.00 - 320050.1 1s22s− 1s23p
312.42 4.63e+01 2 - 4 0.00 - 320081.7 1s22s− 1s23p
C V
40.26 8.87e+03 1 - 3 0.00 - 2483371 1s2 − 1s2p
34.97 2.55e+03 1 - 3 0.00 - 2859375 1s2 − 1s3p
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Wavelength, A Aik, 108s−1 gi - gk Ei - Ek, cm−1 Con"gurations

H I
1215.6736 6.26e+00 2 - 2 0.00 - 82258.9206 1s− 2p
1215.6682 6.61e+00 2 - 4 0.00 - 82259.2865 1s− 2p
1025.7218 1.67e+00 2 - 2 0.00 - 97492.2130 1s− 3p
1025.7229 1.67e+00 2 - 4 0.00 - 97492.3214 1s− 3p
O I
2972.29 7.54e-10 3 - 1 158.265 - 33792.583 2p4 − 2p4

1306.03 6.76e-01 1 - 3 226.997 - 76794.978 2p4 − 2p33s
1304.86 2.03e+00 3 - 3 158.265 - 76794.978 2p4 − 2p33s
1302.17 3.41e+00 5 - 3 0.00 - 76794.978 2p4 − 2p33s
1039.23 9.43e-01 5 - 3 0.00 - 96225.049 2p4 − 2p34s
988.77 2.26e+00 5 - 7 0.00 - 101135.407 2p4 − 2p33s
O II
834.47 8.61e+00 2 - 4 0.00 - 119837.21 2s22p3 − 2s2p4

833.33 8.65e+00 4 - 6 0.00 - 120000.43 2s22p3 − 2s2p4

832.76 8.67e+00 4 - 2 0.00 - 120082.86 2s22p3 − 2s2p4

539.85 9.81e+00 4 - 2 0.00 - 185235.281 2s22p3 − 2s22p23s
539.55 9.81e+00 4 - 4 0.00 - 185340.577 2s22p3 − 2s22p23s
539.09 9.83e+00 4 - 6 0.00 - 185499.124 2s22p3 − 2s22p23s
538.26 5.18e+01 6 - 4 26810.55 - 212593.82 2s22p3 − 2s2p4

537.83 5.73e+01 4 - 2 26830.57 - 212762.25 2s22p3 − 2s2p4

430.18 4.36e+01 4 - 6 0.00 - 232462.724 2s22p3 − 2s22p23d
430.04 4.13e+01 4 - 4 0.00 - 232535.949 2s22p3 − 2s22p23d
429.92 4.25e+01 4 - 2 0.00 - 232602.492 2s22p3 − 2s22p23d
O III
835.29 5.99e+00 5 - 7 306.174 - 120025.2 2s22p2 − 2s2p3

835.09 1.44e+00 5 - 5 306.174 - 120053.4 2s22p2 − 2s2p3

833.75 4.58e+00 3 - 5 113.178 - 120053.4 2s22p2 − 2s2p3

833.72 2.48e+00 3 - 3 113.178 - 120058.2 2s22p2 − 2s2p3

832.93 3.41e+00 1 - 3 0.00 - 120058.2 2s22p2 − 2s2p3

703.85 1.37e+01 5 - 5 306.174 - 142381.0 2s22p2 − 2s2p3

703.85 7.54e+00 5 - 3 306.174 - 142381.8 2s22p2 − 2s2p3

702.90 4.47e+00 3 - 5 113.178 - 142381.0 2s22p2 − 2s2p3

702.90 4.66e+00 3 - 3 113.178 - 142381.8 2s22p2 − 2s2p3

702.84 1.83e+01 3 - 1 113.178 - 142393.5 2s22p2 − 2s2p3

702.34 6.06e+00 1 - 3 0.00 - 142381.8 2s22p2 − 2s2p3

508.18 8.04e+01 5 - 3 306.174 -197087.7 2s22p2 − 2s2p3

507.68 4.82e+01 3 - 3 113.178 - 197087.7 2s22p2 − 2s2p3

507.39 1.61e+01 1 - 3 0.00 - 197087.7 2s22p2 − 2s2p3

373.80 9.50e+00 3 - 5 113.178 - 267634.0 2s22p2 − 2s22p3s
374.00 1.26e+01 1 - 3 0.00 - 267377.1 2s22p2 − 2s22p3s
374.07 2.85e+01 5 - 5 306.174 - 267634.0 2s22p2 − 2s22p3s
374.16 9.46e+00 3 - 3 113.178 - 267377.1 2s22p2 − 2s22p3s
374.33 3.79e+01 3 - 1 113.178 - 267258.7 2s22p2 − 2s22p3s
374.43 1.58e+01 5 - 3 306.174 - 267377.1 2s22p2 − 2s22p3s

39



Wavelength, A Aik, 108s−1 gi - gk Ei - Ek, cm−1 Con"gurations

O IV
1343.51 2.57e+00 4 - 6 180724.2 - 255155.9 2s2p2 − 2p3

1342.99 4.29e-01 4 - 4 180724.2 - 255184.9 2s2p2 − 2p3

1338.62 2.17e+00 2 - 4 180480.8 - 255184.9 2s2p2 − 2p3

923.44 4.39e+00 4 - 2 180724.2 - 289015.4 2s2p2 − 2p3

923.37 1.10e+01 4 - 4 180724.2 - 289023.5 2s2p2 − 2p3

921.37 8.83e+00 2 - 2 180480.8 - 289015.4 2s2p2 − 2p3

921.30 2.21e+00 2 - 4 180480.8 - 289023.5 2s2p2 − 2p3

802.25 4.05e+00 2 - 2 164366.4 - 289015.4 2s2p2 − 2p3

802.20 4.05e+00 2 - 4 164366.4 - 289023.5 2s2p2 − 2p3

790.20 7.08e+00 4 - 6 385.9 - 126936.3 2s22p− 2s2p2

790.11 1.18e+00 4 - 4 385.9 - 126950.2 2s22p− 2s2p2

787.71 5.95e+00 2 - 4 0.00 - 126950.2 2s22p− 2s2p2

780.00 9.70e-01 4 - 6 126950.2 - 255155.9 2s2p2 − 2p3

779.91 1.36e+00 6 - 6 126936.3 - 255155.9 2s2p2 − 2p3

779.82 1.31e+00 4 - 4 126950.2 - 255184.9 2s2p2 − 2p3

779.74 1.46e+00 6 - 4 126936.3 - 255184.9 2s2p2 − 2p3

617.03 2.89e+01 4 - 2 126950.2 - 289015.4 2s2p2 − 2p3

617.01 2.89e+00 4 - 4 126950.2 - 289023.5 2s2p2 − 2p3

616.95 2.60e+01 6 - 4 126936.3 - 289023.5 2s2p2 − 2p3

609.83 2.40e+01 4 - 2 385.9 - 164366.4 2s22p− 2s2p2

608.40 1.21e+01 2 - 2 0.00 - 164366.4 2s22p− 2s2p2

555.27 2.41e+01 4 - 2 385.9 - 180480.8 2s22p− 2s2p2

554.51 6.06e+01 4 - 4 385.9 - 180724.2 2s22p− 2s2p2

554.01 4.86e+01 2 - 2 0.00 - 180480.8 2s22p− 2s2p2

553.33 1.22e+01 2 - 4 0.00 - 180724.2 2s22p− 2s2p2

O V
1371.30 3.34e+00 3 - 5 158797.7 - 231721.4 2s2p− 2p2

774.52 3.80e+01 3 - 1 158797.7 - 287910.3 2s2p− 2p2

629.73 2.87e+01 1 - 3 0.00 - 158797.7 2s2 − 2s2p
248.46 5.59e+01 3 - 1 158797.7 - 561276.4 2s2p− 2p3s
O VI
1037.61 4.16e+00 2 - 2 0.00 - 96375.0 1s22s− 1s22p
1031.91 4.09e+00 2 - 4 0.00 - 96907.5 1s22s− 1s22p
184.117 1.14e+02 4 - 2 96907.5 - 640039. 1s22p− 1s23s
183.937 5.70e+01 2 - 2 96375.0 - 640039. 1s22p− 1s23s
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B. VUV Monochromator Wavelength Calibration Scans
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Figure 21: A) The VUV monochromator wavelength calibration scans covering most of
the region between about 65 nm and 108 nm.

41



0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

134 135 136 137 138 139 140 141 142

Scan: 134.0 - 141.8 nm

Wavelength (nm)

-0.5

0

0.5

1

1.5

2

223 223.5 224 224.5 225 225.5 226 226.5 227

Scan: 223.4 - 226.6 nm

Wavelength (nm)

S
i
g
n
a
l
 
 
(
V
o
l
t
s
)

C III: 229.7 nm

Wavelength (nm)

-0.1

0

0.1

0.2

0.3

0.4

0.5

119 120 121 122 123 124 125

Scan: 119.0 - 124.6 nm
S
i
g
n
a
l
 
 
(
V
o
l
t
s
)

-0.02

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

114.5 115 115.5 116 116.5 117 117.5 118

Scan: 114.7 - 111.8 nm

Wavelength (nm)

C III: 124.7 nmH I: 121.5 nm

Figure 21: B) The VUV monochromator wavelength calibration scans in several regions
above 115 nm.

Note, the magnitudes of the peaks in the "gures presented below should not be com-
pared between different "gures, as conditions under which the data was taken were varied.
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C. Summary of Ionization/Recombination and Excitation/De-excitation Rates
Used in the Impurity Emission Code

Here, we follow the presentation of the material by I. H. Hutchinson.[13]

Radiative transitions

We "rst consider the simplest case of radiative transitions. Let i and j denote two
excitation levels of a particular ion. And let Ei and Ej (Ei > Ej) be their corresponding
energies. Then, an atom with an electron on the ith level can spontaneously decay to the
lower lying jth level with the emission of a photon of frequency νij :

hνij = Ei − Ej (48)

The probability per unit time of such spontaneous de-excitation is usually denoted by
Aij . There are two other radiative transition probabilities associated with the ith and jth

energy levels. An ion on the jth excitation level can absorb a photon and be excited to the
ith excitation level with the probability per unit time ofBjiρ(νij), where ρ(ν) is the density
per unit frequency of electromagnetic radiation at the atom (or simply density of photons
with energy hνij). Or, an induced decay form the ith to the jth energy level can occur due
to the presence of radiation with the probability per unit time of Bijρ(νij)

Now, consider a collection of ions in complete thermal equilibrium at temperature T
with Ni ions on the ith excitation level and Nj ions on the jth excitation level. Since the
system is in thermal equilibrium,

Ni

Nj
=
gi
gj
e−

Ei−Ej
T =

gi
gj
e−

hνij
T , (49)

where gk is the number of degenerate quantum states of the kth energy level; and

ρ(ν) =
8πhν3

c3

[
ehν/T − 1

]−1
, (50)

is the blackbody level of radiation at temperature T .
Since the system is at equilibrium, the number of transitions from the ith to the jth

energy level should be equal to the number of transitions in the opposite direction. That
condition is called `the principle of detailed balance', and we have

(Aij +Bijρ)Ni = BjiρNj (51)

Then, from Eq. 49, Eq. 50 and Eq. 51 it follows that

Aij =
8πhν3

ij

c3
Bij . (52)

The probability of absorption Bij is, in turn, proportional to the, so called, line strength
Sij of the i− j transition:
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Sij =
∑
mi,mj

|〈i,mi|er̂|j,mj〉|2, (53)

which is just a sum over all degenerate states of the square magnitude of the corresponding
matrix elements of the atomic dipole moment. Therefore, in order to know the value ofAij ,
one only needs to determine the wavefunctions of these quantum states. However, these are
known exactly only for one-electron atoms[2], while for atoms with more than one electron
application of various quantum mechanical approximation methods is required.[12][11]

Collisional transitions

The determination of cross-sections and rate coef"cients for atomic collisional pro-
cesses forms a sub"eld of physics in and of itself. Even the best known theoretical calcula-
tions of the collisional rate coef"cients are subject to uncertainties that be as great as a factor
of two.[13] Therefore, here, I will not attempt any theoretical arguments and will limit my-
self to basic diagrams of the considered physical processes, together with the estimated rate
coef"cients used in the impurity emission code.

In the equations below, Z is the atomic number, T is the temperature, χi is the ionization
potential of the ith ion of a given atom, Ry = 1.0974×107 (m−1) is the Rydberg constant,
n0 is the principal quantum number of the lowest incomplete shell of the ion. The electron
velocity distribution is assumed to be the Maxwellian distribution.

• Radiative Recombination:

Electron

Upper energy level
Lower energy level

Upper energy level
Lower energy level

Electron
Photon

Figure 22: Schematic representation of radiative recombination of an ion, where
electron is captured by the ion into some high bound state. The capture is followed

by a spontaneous radiative transition downward.

〈σrrv〉i ≈ 5.2× 10−20Z

2

(
Z2Ry
T

)1/2

×
[
1− exp

{
−χi
T

[
1 + 1

n0

(
ξ
n2

0
− 1

)]}] [(
ln χi

T

)2 + 2
]1/2

(m3s−1) (54)

44



• Collisional Ionization:

Electron 1

Upper energy level
Lower energy level

Upper energy level
Lower energy level

Electron 2
Electron 1

Electron 2

Figure 23: Schematic representation of collisional ionization of an atom, where
`Electron 1' �knocks off� `Electron 2' from the atom and is, in turn, scattered itself.

〈σciv〉i = g(1.7× 10−14)
[
Ry
χi

]2
[
T

Ry

]1/2

e
−χi
T

[
1− e

−5χi
T

]
(m3s−1), (55)

where the Gaunt factor g is

g = 1 +
√

3
π
ln

(
1 +

T

χi

)
. (56)

• Collisional Excitation:

Electron 1

Energy level E

Energy level E

Electron 2
Electron 1

Electron 2

i

j

Energy level Ei
Energy level Ej

Figure 24: Schematic representation of collisional excitation of an atom, where
`Electron 1' is scattered by the atom and an energy transfer between the electron and
the atom takes place, so that `Electron 2' is excited from the jth to the ith energy

level.
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〈σcev〉ij = g(3.15× 10−13)fji
Ry
Eij

(
Ry
T

)1/2

e
−Eij
T (m3s−1), (57)

where the Gaunt factor g is

g ≈ 0.2 +
√

3
π
ln

(
1 +

T

Eij

)
. (58)

• Dielectronic Recombination:

Electron 1

Electron 2

Photon

Electron 2

Electron 1

Energy level E j

Energy level Ei
Energy level E j

Energy level Ei

Figure 25: Schematic representation of dielectronic recombination of an atom,
where the capture of `Electron 1' happens simultaneously with the excitation of
`Electron 2' from the jth to the ith energy level, which is followed by a radiative

transition of `Electron 2' back to the jth energy level.

〈σderv〉ij = (8.8× 10−18)fjiZ2/3Eij
Ry

(
Ry
T

)3/2

e
−Eij
T (m3s−1). (59)
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D. The Simplex Algorithm and Its Application to the Problem of Time Depen-
dent Parameter Fitting

Simplex Algorithm

The simplex algorithm described in 'Numerical recipes� by W.H. Press, et al[24] is an
algorithm to "nd a local minimum of a multivariable single-valued function. So that given
f:Rn→R, the algorithm outputs a vector v ∈ Rn s.t. f(v) is a local minimum.

The basic idea of the simplex algorithm is to start with (n+1) vectors forming an n-
tetrahedron in the n-dimensional space and move its vertices �downhill� until the relative
difference between the values of f at the best vertex vbest (f(vbest)has the lowest value) and at
the worst vertex vworst (f(vworst)has the highest value) is less than a certain predetermined
tolerance value. The 'moves' allowed by the algorithm are:

re#ection re#ecting vworst across the opposite face of the tetrahedron;

extended re#ection same as re#ection, but considers a point further away from the re#ect-
ing face;

injection replaces vworst with a point inside the tetrahedron;

contraction contraction of the tetrahedron around vbest.

Running the algorithm several times might be necessary if one wants to "nd the absolute
minimum of f.

A potential problem arises when one considers the tolerance function. Taking simple
relative difference 4 is clearly not suf"cient when f = 0 at a local minimum. Some other
tolerance function should be applied in a case like that.

Simplex Algorithm in Data Fitting

Suppose one has a set of data S = {sn} collected over time. (For example, the number
of particles detected over a given interval of time with time step dt). Furthermore, suppose
that a function g(t; a(t), b(t)) describes the physical laws governing the processes which
generate the data (for example, the rate of decay), where the dependence of the parameters
a(t) and b(t) on time is unknown.

We can use the simplex algorithm to determine a(t), b(t) and thus g(t). De"ne f, as
above, to be fn(an, bn) = |g((n ∗ dt); an, bn) − sn| for the nth time step. Applying the
simplex algorithm to each consecutive fn to "nd the values of an and bn for which fn is
zero, we "nd the time pro"les for a(t) and b(t).

Note that here we are faced with the exact problem described in the previous section.
Namely, fn = 0 is the absolute minimum condition on fn.

42*(f(vworst)- f(vbest)) / (f(vworst)+ f(vbest))
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Determining the Time Pro"les of Plasma Temperature and Density from Impurity
Emission Data

As described in the Section 2.3 of this thesis, the intensity of a given emission line
of a certain ionization state of a certain atom has functional dependence on the plasma
temperature Te, plasma density ne, and the population of that ionization state (which itself
depends on Te and ne). Then, using collected data of line intensity from several emission
lines, one should be able to determine the approximate time pro"les of electron temperature
and density, as described above.

One of the important algorithmic problems one notices very soon, is that Te and ne are
both naturally restricted to the "rst quarter of the Te × ne parameter space. As the original
simplex algorithm does not account for such restrictions, some modi"cations have to be
made. In the current working algorithm, a simple re#ection of any vertices attempting to
escape the "rst quarter back into the "rst quarter suf"ces.

The modi"ed simplex algorithm is implemented in Matlab in routine �mysimplex.m�.
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