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Seminar 6 presentation (mb)

Plasma resistivity (mb):

Goldston: The simple picture of the drag force on electrons starts with

F = −nem 〈νeiv〉 .

This is nothing more than the drag force density (= number density x mass x
acceleration). We should use the small angle νei that has the extra factor of
4lnΛ which emphasizes the idea that the cumulative effect of small deflections
is more important than the occasional close encounter (see notes from seminar
1). The angled brackets 〈〉 mean that we should average over all the particles.
Electrons with different v’s have different νei’s. To do the averaging properly,
we need to integrate over the correct (self-consistent) electron distribution
function. We can approximate this with a drifting Maxwellian (the drifting
is what generates the current).

We start by expanding the drifting Maxwellian exp(−|v − u|2/2v2
t ) =

exp(−|v2 − 2u · v + u2|/2v2
t )

∼= exp(−|v2|/2v2
t )(1 + u · v) where we assume

that the drift velocity is small (u/vt � 1). We threw out the term (u/vt)
2

entirely and we use the Taylor expansion exp(δ) ∼= 1 + δ for the cross term.
This gives us the expression in the middle of p. 171.

Now the integral we want to do to get the z-directed drag force (from the
first line above) is:

Fz = −m
∫

fe(v)νeivzd
3v.

Recalling the form of νei for a single electron of velocity v:

νei =
niZ

2e4lnλ

4πε2
0m

2v3

where the v−3 dependence is evident and must be integrated over. If we
substitute our expanded form of fe, we find that the leading term vanishes
so we have:

Fz = −muz

∫
fe(v)νei

v2
z

v2
t

d3v

The overall scaling of the integrand is like exp(−|v2|/2v2
t )/v (we’ll see this

later).
The final result is Fz = −nem 〈νei〉uz where now the distribution function

averaged collision frequency is given by:



〈νei〉 =
21/2niZ

2e4lnλ

12π3/2ε2
0m

1/2T 3/2
.

Notice that the functional form is the same as a mono-energetic beam but
now this form is averaged over a drifting Maxwellian.

This derivation isn’t quite right since the real distribution function for
electrons flowing due to an electric field isn’t as simple as a drifting Maxwellian.
Goldston discusses this at the top of p. 176. The idea is that high velocity
electrons respond differently than low velocity ones. The upshot of this more
accurate theory (called Fokker-Planck) is a factor of 2 downstairs (ie 21/2

appears in the denominator).
The loss of electron momentum is contained in the term:

Rei = −mne 〈νei〉 (ue − ui).

Using E = ηJ (with J = −nee(ue − ui)) and Rei = eneE and the result
above we get:

η =
m 〈νei〉
nee2

=
m1/2Ze2lnλ

21/212π3/2ε2
0T

3/2
.

Note that there is no explicit density dependence (except for the logarithmic
dependence in the cutoff factor). A useful form the plasma resistivity is

η = 5.15× 10−5Zlnλ

T
3/2
e

Ω−m.

For comparison, the resistivity of copper is 1.72 × 10−8Ω − m, aluminum is
2.63, mercury is 94, stainless steel is about 140. So we see that plasma at
Te = 960 eV has a resistivity like copper, and at Te = 50 eV has a resistivity
like stainless steel (SSX is a bit more resistive that stainless steel).

Fokker-Planck: We’re going to skip the derivation of the Fokker-Planck
equation for now (maybe towards the end of the semester, someone would
like to do this as a project). In any case, the Fokker-Planck equation governs
how the distribution function a group of test particles (say electrons carrying
current) is (1) slowed down due to friction with background particles (called
by Chandrasekhar “dynamical friction”) and (2) spread out due to velocity
space diffusion.

I’ll write the form of the Fokker Planck equation on the board for refer-
ence. The key point is that the form of the dynamical friction term scales
like erf(ξ)/ξ where ξ = u/uth. The function erf(ξ)/ξ has a maximum at
about ξ = 0.9 (peak value is erf(ξ)/ξ = 0.43) which means that dynamical
friction becomes less and less for velocities above the thermal speed.

Dreicer field and “runaway electrons”: If the electron temperature
is high and the density is low, we find that there is no equilibrium between



the acceleration due to an applied electric field driving some current and the
drag due to dynamical friction. Another way to put it is if the electric field is
above some critical value, then the dynamical friction lies to the right of the
maximum (above ξ = 0.9) and we have “runaway electrons”. Notice that the
“self-consistent” electron distribution function is decidedly non-Maxwellian
in this case. It has a long “tail” out above the thermal speed. This also
means that the notion of a collision controlled steady state drift velocity for
charged particles is of limited applicability. The form of this critical field
(called the Dreicer field after it’s discoverer) is:

EDr = 0.43
neZe2lnλ

8πε2
0Te

= 5.6× 10−18neZ
lnΛ

Te

V/m.

In SSX, we get runaways for electric fields greater than about EDr
∼= 300V/m =

3V/cm (for ne = 1020m−3 and Te = 20eV ). Our peak reconnection electric
fields are Erec

∼= vB = (104m/s)(0.1T ) = 1000V/m so we likely have a “tail”
of runaways.
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