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Abstract

An Ion Doppler Spectroscopy (IDS) diagnostic was used to measure the flow velocity
and temperature of a plasma created by SSX-FRC. The diagnostic was based on the
principles of Doppler spectroscopy, namely, that the wavelength of a moving light
source is shifted proportional to its velocity and the width of an emission line varies
with temperature. The emission line at 229.7 nm of Carbon III, an impurity ion in
the hydrogen plasma, was imaged and its location and width measured. The IDS
system being a work in progress, the minimum resolvable linewidth is higher than the
linewidth we expect to see based on previous experiments and so detailed temperature
and velocity measurements could not be carried out. SSX’s PMT’s allow detailed
time resolution and the plot of temperature variation with time shows that the width
of the line peaks between 30 and 50 µs before it drops to the minimum resolvable
width. Considering the basic plasma physics of the system, it is thought that the
wide line is due to velocity shear: oppositely directed jets resulting from magnetic
reconnection create both a red- and a blue-shifted emission line, which overlap and
are imaged as a single, very wide, line. A simple analytical model of a fluid system
with velocity shear was created to investigate whether or not shear could cause the
widening. The lineshapes this model returned were wide and double-peaked due to
overlap, supporting the shear hypothesis.
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1 Introduction

Comprising perhaps 95% of the visible universe, plasmas are gases existing under
conditions that cause atoms to ionize. These conditions are generally high tempera-
ture combined with a low recombination rate, often due to a low number density of
particles. The result is a diffuse, gaseous mixture of ions and electrons. Although
superficially similar, gases and plasmas behave quite differently, primarily in their
responses to electromagnetic fields. The constituent particles of ideal gases interact
over length scales on the order of an atomic diameter, but plasma particles attract
and repel one another via Coulombic interactions, over length scales significantly
greater than those in ideal gases. As a collection of free charged particles, plasmas
are good conductors and so permit currents to flow through them. Moreover, plasmas
respond dynamically to the fields generated by these currents, resulting in behavior
of incredible complexity. Due to their low density, plasmas allow some electrostatic
and electromagnetic waves to propagate, unlike solid conductors that attenuate most
incident fields [16].

Our ability to study and control plasmas is hampered by our inhospitable environ-
ment. Plasmas exposed to Earth-like temperatures quickly lose their energy through
diffusion to the cooler surroundings, and the constituent ions and electrons can no
longer move quickly enough to avoid recombining as uncharged atoms. Therefore, a
plasma must be confined in some manner in order for us to have any chance of examin-
ing it. Due to the incredibly complex nature of their dynamics, however, the manner
of confinement greatly influences how the plasma will behave, and tends to limit our
understanding of plasmas to plasmas confined in the more common configurations.
The most common method of confinement is the tokomak. This configuration has the
plasma confined in the shape of a torus: a current passed through the core of the torus
generates a toroidal field, a magnetic field whose field lines go the long way around
the torus (Figure 1.1). A toroidal field tends to confine the plasma particles to helical
orbits around the magnetic field lines. To counter the tendency of the particles to
drift out of these orbits, a poloidal field, a magnetic field going the short way around,
is also required for effective confinement. Current tokamaks are capable of plasma
confinement lasting up to several seconds.

Although tokamak plasmas are the best understood, the limitations of the design have
been recognized. For example, the central current requires significant power output
to confine the plasma. The spheromak (Figure 1.1) is an alternative configuration. A
spheromak is generated by ionizing hydrogen in a coaxial gun and then accelerating
the plasma out into a container [4]. Spheromaks are toroidal plasmas confined with
magnetic fields generated by the plasma itself, rather than by an external current.
Although temperatures up to 400 electron volts (eV) have been reached, no spheromak
has yet reached the tens of keV temperatures needed to initiate fusion. Spheromaks
also have short lifetimes, a millisecond or less, since there is no power input during
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the plasma’s evolution.

Figure 1.1: Schematic of a single spheromak showing poloidal (short way) and toroidal
(long way) fields.

There are two principal ways to model plasma: a kinetic model and a fluid model.
The kinetic model treats each particle separately, resulting in single particle orbits.
These solutions are in 6-dimensional phase space, requiring six partial differential
equations for each charged particle, as well as Maxwell’s equations. Since a diffuse
laboratory plasma might have 1019 m−3 particles and SSX-FRC has 1021 m−3, the
kinetic model is in practice only suitable for highly idealized and simple systems.
Nevertheless, the kinetic model is of use for its ability to model processes that affect
each individual particle in the plasma, such as particle drifts due to external fields
and the resulting configurational stability.

The fluid model, on the other hand, only attempts to model gross properties of
the system—pressure, temperature, mass density, and fluid velocity—by treating the
plasma as a conducting fluid that responds to a J × B force. Moreover, since the
formulation of this magnetohydrodynamic fluid model (MHD) encompasses Maxwell’s
equations, this approach greatly reduces the number of dynamic variables in the
system and puts numerical simulations of laboratory plasmas within the reach of
current computing capabilities. Modeling the plasma as a fluid also makes more
tractable an examination of complex dynamics such as the propagation of waves and
turbulence [14; 16].

Application of MHD leads to the realization that laboratory plasmas, and plasmas
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in general, are prone to fluid phenomena that involve electromagnetic fields in novel
ways. In an ideal MHD plasma, for example, magnetic flux lines are “frozen” to
the fluid and move with it. Non-idealities in physical plasmas lead to phenomena
such as magnetic reconnection, that is, the impossibility of maintaining an arbitrarily
large magnetic field gradient in a region without some of the field lines “breaking”
and reconnecting to field lines on the other side of the region. This reconnection, a
topology change, leads to the conversion of magnetic energy to kinetic energy and is
thought to be a principal energy source of energetic flows in solar coronal phenomena
such as prominences, flares, and coronal mass ejections [3]. Reconnection is an integral
part of SSX-FRC’s operation: two spheromaks with antiparallel poloidal magnetic
fields are allowed to come into contact (Figure 1.2). The toroidal fields cancel, but
the antiparallel poloidal fields reconnect along the entire torus [28; 35]. The plasma is
then said to be in a field-reversed configuration (FRC). This feature of SSX’s design
allows fundamental research on magnetic reconnection, hopefully leading to a more
complete model that reflects the time and length scales observed in nature.

Figure 1.2: Two spheromaks about to merge inside SSX-FRC. Note the antiparallel
poloidal fields that reconnect and the opposing toroidal fields that cancel.

This thesis will discuss the use of Ion Doppler Spectroscopy (IDS) to study plasma
created and confined by SSX. Although the hydrogen used in SSX is 99.999% pure,
the plasma liberates impurities from the vessel walls, particularly carbon [12]. Using
an f/9.4 Czerny-Turner spectrometer, the IDS diagnostic will measure the location
and width of the emission line of CIII at 229.7 nm [8; 15]. Since the carbon ions
will be flowing at some velocity within the plasma, the line will be Doppler shifted
from its rest location. Hence finding the centroid of the emission line will give us a
measurement of the velocity of the plasma. The line will also have some finite width
due to Doppler broadening, that is, the random thermal motions that will broaden
the line due to the broader velocity distribution of particles at higher temperatures.
This width is related to the ions’ temperatures, so simply recording the emission line
on a calibrated scale should give us both the velocity and the temperature of the ions
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along the line of sight used [1; 20; 32].

Currently, however, the IDS system only uses 8 of the 32 total PMT’s in the array.
This means that the resolution of the system is low, being inherently unable to resolve
any detail smaller than a single pixel width. As it currently stands, the minimum
resolvable temperature is approximately 200 eV while the total temperature, the sum
of ion and electron temperature, is expected to be approximately 30 eV [7]. The
temperature measurements, however, do indicate a very wide line until the FRC is
fully formed, at which point the linewidth drops to the minimum resolvable width.
Our current thinking is that there is significant velocity shear due to the opposing
reconnection jets that lead to the presence of multiple emission peaks due to the
opposite Doppler shifts of the jets’ emission lines. Their proximity then causes these
emission peaks then overlap to make a single, double-peaked, distribution. Due to the
IDS system’s low resolution, the resulting data have the apprearance of a single, very
wide and thus very hot, emission line. Since the lines are caused by reconnection, it
would therefore make sense that the linewidth drop sharply when reconnection dies
down. This phenomenon has not been seen before in a plasma IDS system because
of the relatively recent development of PMT’s with sufficiently high time resolution.

To investigate the shear hypothesis, I made a simple analytical model of a fluid
system with velocity shear and determined the signal that an IDS system would
get. The resulting signal is double-peaked, and in some cases the peaks are close
enough together to appear to be a single, double-peaked, line. Although this model
is simple, assuming purely azimuthal flows and a velocity varying only with radius,
there is no reason to expect that the lineshapes it gives differ significantly from the
lines in the real plasma. This model therefore does seem to confirm the hypothesis
that velocity shear is responsible for the very wide emission line during the FRC
formation, counter to the discussion in Ono et al. [28] that, while acknowledging the
presence of significant velocity shear tied to magnetic reconnection, does not consider
the possibility of velocity shear influencing the very high ion temperature values
presented.
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2 Single Particle Dynamics

The most productive line of inquiry regarding plasma motions is the fluid approach,
which treats the plasma particles as a collective exhibiting fluid-like behavior (Sec 3).
Nonetheless it is important to understand drifts, as bulk motions are called in the ki-
netic approach, when speaking of fluid flows. The kinetic approach to plasma physics
described below takes each individual particle and applies the laws of electrodynamics
to determine the likely behavior. While this method cannot be used to describe the
full complexity of dynamics seen in plasmas due to computational requirements, it will
tell us how the particles are moving in their flows for certain simple electromagnetic
field configurations.

2.1 Helical Motion

The principal equation describing the dynamics of charged particles in fields is the
Lorentz force law. In S.I. units, it is

ma = q(E + v ×B) (2.1)

Let us now consider particle dynamics in a relatively straightforward case: zero elec-
tric field, and a constant magnetic field B = B0b. In this case, the Lorentz force law
is

a =
qB0

m
(v × b) (2.2)

Qualitatively, the acceleration is perpendicular to both the velocity and the magnetic
field direction, so the motion perpendicular to the field is a circle in the plane. Parallel
to the field the velocity is unaccelerated, so the motion is a straight line. The resultant
motion of a moving particle in a constant magnetic field is therefore a helix centered
on a magnetic field line (Figure 2.1) [10]. This result is exact for straight magnetic
field lines and approximate for curved lines.

The quantity Ω = qB0/m has units of s−1 and is called the gyro-frequency. The ratio
of the velocity perpendicular to the field with the gyro-frequency gives the radius of
the helix, the gyro-radius or Larmor radius.

v⊥
Ω

= ρgr (2.3)

2.2 ∇B drift

Previously, we assumed that the magnetic field was constant, an assumption that
allows neither magnetic field gradients nor curved field lines. Let us now consider the
case where the field has some gradient ∇B [16].
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Figure 2.1: Helical motion of a charged particle along a magnetic field line.

When the particles orbit in the inhomogeneous B-field, the curvature of the orbit is
greater where B is greater, causing a guiding center drift perpendicular to both B
and ∇B (Figure 2.2). The direction of the drift is dependant on the sign of the charge
of the particle, so a ∇B drift acts to separate particle species in a plasma such as the
mostly proton-electron plasma in SSX.

Quantitatively, the derivation of the drift is found by decomposing the overall particle
velocity into the sum of a guiding center velocity and an orbiting velocity. This is an
approximation that requires the gyro-radius ρgr to be much smaller than the scaling
in ∇B : ρgr �| B/∇B |. This then allows us to expand the B-field as a Taylor series
and keep only the zeroth- and first-order terms:

B ≈ B0 + (ρgr · ∇)B (2.4)

If we substitute this expression for B and the decomposed velocity into the Lorentz
equation, eliminate products of first-order terms and average over the periodic vari-
ables v⊥ and ρgr, we find the velocity of the guiding center to be

vgc =
1

q

mv2
⊥

2B

B ×∇B

B2
(2.5)

6



y

x

B

V∇Β

∇Β

Figure 2.2: Guiding centre drift of a charged particle in the presence of a non-uniform
magnetic field. The helix of Figure 2.1 points into the page, along the field line.
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2.3 Stability of Toroidal Plasmas

Are toroidal plasmas stable? Clearly, a toroidal field alone has some confinement
properties, the ideal behavior of a single charged particle being to continue along its
field line forever. Unfortunately, given multiple particles with different charge signs,
the different drifts prevent this. Since it is not possible to maintain an absolutely
uniform magnetic field, the electrons and ions will move in opposite directions due to
the ∇B drift. This separation will induce a large electric field, and an E × B drift,
qualitatively similar to the ∇B drift will then expel both species outwards almost
as fast as if there were no confining magnetic field (Figure 2.3). Although this effect
is due to bulk motions of particle species, it still falls under the heading of kinetic
plasma physics because it does not treat the plasma in terms of fluid variables.

+
+ +

+
+

_
_

_ _ _
_

E
ExB/B2

B

Figure 2.3: Separation of particle species inducing an E × B force.

So a toroidal field alone is not sufficient to confine the particles. It turns out that
the addition of a poloidal magnetic field Bθ, so that the field lines become helical and
wind around the torus, can be sufficient for confinement [10].
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3 Magnetohydrodynamic Plasma Physics

3.1 Ideal MHD

As the number of particles in a plasma increases and the dynamics become more
complex, the kinetic approach to plasma modeling is no longer effective. In an SSX
plasma, particle densities are often around 1021 m−3. Rigorously solving for each
particle’s motions would require 6 partial differential equations for each particle, as
well as Maxwell’s equations. In a system with so many particles, this is not a feasible
approach. Magnetohydrodynamics, or MHD, is a more applicable model that treats
the plasma as a conducting fluid by combining the equations of fluid dynamics with
Maxwell’s equations. In the MHD model, plasmas have eight gross fluid variables:
mass density ρ, plasma pressure p = nkT (the plasma may be considered an ideal
gas in thermal equilibrium), velocity v and current density J. There are also the six
field variables: magnetic field B and electric field E.

The corresponding ideal MHD equations are [14]

the time evolution of mass (continuity equation):

∂ρ

∂t
+ ∇ · ρv = 0 (3.1)

the time evolution of energy:
d

dt
(

p

ργ
) = 0 (3.2)

the time evolution of momentum:

ρ
∂v

∂t
= J × B−∇p (3.3)

Ohm’s Law for a perfect conductor:

E + v ×B = 0 (3.4)

the pre-Maxwell equations

∇× B = µ0J (3.5)

∇× E = −∂B

∂t
(3.6)

∇ · B = 0 (3.7)

It is worth noting that a comprehensive measurement of v such as the IDS systems
sets out to do would eliminate three of the eight fluid variables from the equations,
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and that v is found in all the non-electrodynamic MHD equations bar the energy
equation.

There are several conditions that a plasma must meet for ideal MHD to apply. First,
it must be strongly magnetized. This has the effect of restricting the gyroradius ρgyro

of the particles, so that ρgyro � L, where L is a characteristic length scale of the
system. This condition ensures that plasma motions are similar to those of fluid
elements in conventional fluids. Second, an MHD plasma cannot be dissipative: it
must have slow transport rates due to dissipation as compared to other energy trans-
port timescales. Third, the plasma must be quasi-neutral. That is, the plasma must
be electrically neutral over some scale—the Debye length—that is small compared
to other characteristic length scales in the system. Hence any violations of charge
neutrality are local rather than global [16]. In reality, the third condition is univer-
sally true of objects considered to be plasmas and it can be taken as an alternative
definition of plasma [3].

These conditions make terms in Ohm’s law so small that the plasma Ohm’s Law can
be in many situations taken to be E + v × B = 0. This describes a system with
infinite conductivity, and so this approximation is only valid when the plasma has
very small resistivity. A plasma for which this is true is an ideal plasma, the MHD
theory that assumes this is “ideal MHD”.

3.2 Alfvén’s Theorem

The approximation of infinite conductivity leads to one of the most important effects
in plasma physics, the “frozen-in flux theorem”, or Alfvén’s Theorem. This theorem
states that when E + v × B = 0, the plasma and the magnetic field lines are tied to-
gether, and when one moves, the other must necessarily more with it. The derivation
follows Goldston [16].

First of all, we can show that the magnitude of magnetic flux through any closed
contour (Figure 3.1) that moves with the plasma is constant.

The induction equation (Faraday’s Law) states that

∂B

∂t
= −∇×E (3.8)

Given our approximation of infinite conductivity, we get

∂B

∂t
= ∇× (v × B) (3.9)

Now the definition of magnetic flux is the integral of B over some area.

Φ =

∫
B · ds (3.10)
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Figure 3.1: A closed contour evolving with time.

The rate of change of the flux is therefore due to both the change in the time-
dependent magnetic field and the change in the area bounded by the contour.

dΦ

dt
=

∫
∇× (v × B) · ds +

∫
B · d(�s)

dt
(3.11)

From Stokes’ Theorem for curls,

∫
(∇× (v × B)) · ds =

∫
(v × B) · dl (3.12)

where dl is some element of the boundary of the contour. From the geometry of the
system, however, we see that since d(�s) = vdt × dl ,

d(�s)

dt
= v × dl (3.13)

Therefore, the change in the flux is

dΦ

dt
=

∫
v ×B · ds +

∫
B · (v × dl) = 0 (3.14)

So the flux through any contour “painted” on the plasma does not change with time
in ideal MHD.

Unchanging flux also implies that the plasma and the field are frozen together. The
argument is as follows: Consider a tube of plasma surrounding some field line. Since
no field line pierces the tube (we neglect the ends of the tube), the flux through it is
zero. As time passes, the flux remains zero due to the previous theorem. This implies
that at no time during the evolution of the field line does it pierce the tube. Hence,
the tube must move with the line at all times.
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3.3 Magnetic Reynolds number

The frozen-in field effect technically only occurs in ideal MHD plasmas whose conduc-
tivities are infinite. Since no real-world plasma is ideal in this sense, some quantitative
way of judging the “ideal”-ness of a plasma is needed. This is the motivation for the
magnetic Reynolds number. Since in an ideal plasma with zero resistivity the field
is tied to the flow, diffusion of the plasma across the field as the field changes is not
possible.

The change in the field is given by the induction equation

∂B

∂t
= −∇× E = ∇× (v × B) +

η

µ0
∇2B (3.15)

The first term on the right is the movement of the field with the fluid while the second
term describes the field moving perpendicular to the fluid, a diffusive motion. The
magnetic Reynolds number is the dimensionless ratio of the convection to the resistive
diffusion and can be expressed as

RM =
µ0vL

η
(3.16)

for a plasma with resistivity η, velocity v and characteristic length scale L. The
infinite-conductivity approximation is therefore valid for large values of RM . Hence
it seems that the greater the plasma’s velocity, the closer to ideal MHD its behavior
becomes, making velocity an important factor in how a plasma will behave. SSX-FRC
has a Reynolds number of approximately 102–103. This is significantly smaller than
the numbers of comparable natural astrophysical plasmas—solar flares, for example,
have Reynolds numbers in the range of 109–1014 [17].

3.4 Beta

To some extent, the large external magnetic fields used to confine laboratory plas-
mas are unnatural. In many astrophysical plasmas hydrodynamic properties such
as pressure and temperature contribute significantly to confinement, and magnetic
fields, while oftentimes necessary, are of less importance. Laboratory plasmas, on
the other hand, employ very strong magnetic fields that are generated externally to
produce a pressure on the plasma. These fields require significant expenditures of
power to maintain and make for plasmas that differ significantly from astrophysical
plasmas. A useful measure of the relative importance of the magnetic field in plasma
confinement is beta β. This dimensionless quantity is defined to be the ratio of the
plasma pressure p to the magnetic field pressure where p = nkBT since plasmas can
be considered to be ideal gases.

β =
2µ0p

B2
=

2µ0nkBT

B2
(3.17)
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Therefore the hotter the plasma, the greater the magnetic field pressure required for
confinement. Typical astrophysical plasmas have values of beta ranging anywhere
from 10−3 in the case of the solar corona, to values on the order of unity for hot
diffuse interstellar plasmas. Magnetized laboratory plasmas have betas less than
unity. Typical values range from approximately 0.05 for tomamaks to the high end
of 0.1 for spheromaks such as SSX produces. Spheromaks have similar betas to solar
flares, whose betas range from 0.01 to 0.1. Like RM , β shows the importance of the
plasma parameters measured by an IDS diagnostic.
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4 Magnetic Reconnection and SSX-FRC

4.1 Magnetic Reconnection

Magnetic reconnection is a phenomenon that occurs in nonideal magnetized plasmas.
It is the primary mechanism for the conversion of magnetic energy to kinetic and
thermal energy in such plasmas. Imagine the following scenario: Two “slabs” of
magnetized plasma, with oppositely directed magnetic fields, come into contact with
their motion perpendicular to their magnetic field vectors (Figure 4.1A, 4.1B).

Figure 4.1: The stages leading (A, B) to magnetic reconnection (C).

In an ideal magnetohydrodynamic plasma with zero conductivity η, there are no
further dynamics. However, in a non-ideal plasma, η is small but non-zero. Since
the curl of the magnetic field is large around the region of contact (Figure 1B), a
large electric current J is generated by Ampère’s Law, Equation 3.5. The finite η
allows for collisional dissipation across the current sheet, resulting in the annihilation
of magnetic flux. This leaves the reconnection region unmagnetized, so there form
two oppositely directed heated jets leaving the reconnection region parallel to the
magnetic fields. This loss of magnetization due to the destruction of flux can be
thought of as “reconnection” of magnetic field lines across the boundary between the
two slabs (Figure 1C). Reconnection can be seen to cause the movement of plasma
across the fieldlines. The annihilation of flux and the movement across the field-
lines is a local decoupling of field and plasma and hence a violation of the frozen-in
flux/field’ condition of ideal MHD plasmas [3; 24; 25].
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Figure 4.2: Spheromak formation using a coaxial magnetized plasma gun.

4.2 Spheromaks

The particular plasma configuration seen in SSX is a result of the method of produc-
tion, which uses the coaxial magnetized plasma gun. The formation process is shown
in Figure 4.2. Initially, there is a vacuum poloidal field that connects the innder and
outer electrodes (Figure 4.2A). This field is called the stuffing flux. To provide the
material for the plasma, fast valves inject hydrogen gas into the gun. This gas is made
plasma when a capacitor bank to applie high voltage across the electrodes, ionizing
the hydrogen (Figure 4.2B). Since the plasma is a good conductor, the impedance
between the electrodes drops nearly to zero, effectively resulting in a short circuit.
The plasma accelerates through the gun, and when the plasma encounters the stuff-
ing flux, the frozen-in flux condition couples the two together. The plasma blows
the field out of the gun like a soap bubble (Figure 4.2C), twisting the field lines.
When the plasma has twisted the field enough, reconnection occurs at the gun end,
detaching the spheromak (Figure 4.2D) whose magnetic structure is a set of nested
flux surfaces [4].

Mathematically, a spheromak is a particular equilibrium solution of the MHD equa-
tions (Equations 3.1–3.7). Auerbach [1] gives a straighforward physical derivation.
Beginning with the MHD equation for momentum, Equation 3.3,

ρ
dv

dt
= J × B−∇p

we seek an equilibrium configuration for the plasma. In such a state, called a “force-
free” state, we expect that all forces on the plasma balance. Hence we can set both
sides of Equation 3.3 to zero, allowing us to write

J ×B = ∇p = 0 (4.1)

The second equality holds because of the experimental fact that spheromaks have low
β [5], so P � B2. This means that the magnetic field and the current are parallel,
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which makes physical sense since the current is toroidal and spheromak has a toroidal
magnetic field. If the current and field are parallel, then the vectors are related by
J = λB for some scalar λ. Hence by the Maxwell equation ∇ × B = µ0J, we have
the equation for a force-free state, or Taylor state

∇× B = λB (4.2)

From Equation 4.2, there is a simple proof by contradiction that shows the existence
of flows, even in the steady state. First let us assume zero flow and a steady state.
Then Ohm’s Law

E = (v × B) + ηJ = ηJ (4.3)

since v = 0. Taking the curl of Equation 4.3, we get

∇× E = ∇× ηJ (4.4)

Taking the curl of Equation 3.5 and dropping the constant µ0, we get

∇× J = ∇× (∇× B) (4.5)

which we can rewrite using the equation for a Taylor state, Equation 4.2, as

∇× J = ∇× (λB) = λ2B (4.6)

Using Equation 4.4 and again dropping the constant we have

∇× E = λ2B (4.7)

However, since we are in the steady-state, ∇×E = 0 by Faraday’s Law (Equation 3.6).
But B is nonzero, so we have a contradiction. The resolution to the contradiction is
to accept that v �= 0.

4.3 Field Reversed Configuration (FRC)

SSX-FRC does not study single spheromaks. Following Ono et al. [28], SSX collides
two spheromaks with oppositely directed toroidal fields. Figure 4.3 is a cross-section
of SSX-FRC showing the magnetic structure within. Since the poloidal fields are
antiparallel, they reconnect. The toroidal fields, however, are oriented so that instead
of reconnecting, they annihilate. Ideally a merger of spheromaks would create a
configuration with zero toroidal field, or an FRC. However, some residual toroidal
field remains, so SSX-FRC forms a plasma configuration properly called a hybrid
FRC [13]. Typical SSX-FRC parameters are 3-4 mWb poloidal flux, 30 eV total
temperature, 1kG magnetic field, and 1015 cm−3 particles [7].
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Figure 4.3: SSX-FRC.

The reconnection region shows the location of the jets (Fig 4.4). The poloidal field re-
connection drives oppositely-directed radial jets along the midplane, and the residual
toroidal field, even after the FRC has formed and reconnection has stopped, should
also contribute to this current. The drive for these flows comes from the J × B force.
As the radial currents cross the poloidal fieldlines, a J ×B force results. As the di-
rection of the poloidal field changes, however, so should the direction of this force.
Hence a torque is set on the system, which drives the radial jets.

Todoidal field

Reconnection Jets

Figure 4.4: Jets from the reconnection region.
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4.4 FRC Geometry

The geometry of an FRC can be investigated using pressure balance [33]. By assuming
a cylindrical FRC with straight magnetic field lines at the midplane, the maximum
plasma pressure can be expressed as

Pmax = P (ψ) +
B2

z

2µ0
(4.8)

where ψ =
∫

Bzrdr , the poloidal flux. Hence dψ/Bz = rdr . This implies that ψ is
a symmetric function ψ = ψ(r2 − R2

0), where R0 is the field null or location where
the polar field is zero. Therefore, all functions of ψ must vary symmetrically with
r2 −R2

0. This allows us to find R0 since the integral of rdr must be equal whether it
is from 0 to R0 or from R0 to Rmax. Integrating, we get

R0 =
Rmax√

2
= 0.7071Rmax (4.9)

In a configuration such as SSX-FRC, Rmax is the vessel wall and R0 is the vessel’s
centreline. The value of Eq. 4.9 is that it tells us that the field null of an FRC lies
closer to its container’s wall than to the centre. As Figure 4.4 demonstrates, the
field null is the obvious site for reconnection-driven jets and therefore its non-medial
position must be taken into account when trying to determine or model a flow profile
(Section 8). Experiment shows that Equation 4.9 is approximately correct for SSX-
FRC. With a 40 cm diameter and hence R0 = 20cm, Cothran et al. [7] show that the
null occurs at r = 13cm, very close to R0/

√
2 = 14.1cm.
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5 Diffraction and Spectroscopy

The previous Sections have attempted to explain and motivate the basic plasma
physics behind SSX-FRC. This section will detail the optical and spectroscopic prin-
ciples underlying the Ion Doppler Spectroscopy (IDS) diagnostic, with the aim of
showing how such a diagnostic might be used to investigate the jets and flows pre-
viously mentioned. Arising from the wave character of light, the most fundamental
phenomena in this regard are interference and diffraction. Explaining the diffrac-
tion grating will show how these phenomena are used to produce a spectrum of light
and what the characteristic properties of gratings are that affect the spectra they
produce. Moreover, the diffraction grating used by SSX-FRC’s IDS diagnostic is an
echelle grating and so its properties differ from the more commonly used gratings. Of
course, the grating is not used on its own, but is mounted in a spectrometer to direct
the light onto the grating and from the grating onto an imaging plane. SSX-FRC
uses a Czerny-Turner (CZ) spectrometer. Finally, the phenomenon of Doppler shift
of light is discussed, to understand how we can determine velocity and temperature
from the spectrum.

5.1 Interference and Diffraction

When two waves originally from a single source are combined at a point, the resultant
intensity depends upon the relative phase of the waves at that point. If the waves
are in phase, an extremum of one will add with a similar extremum of the other,
resulting in constructive interference. If, on the other hand, the phase difference is
such that the amplitudes of the waves are opposite, destructive interference will be
the result and the waves will cancel each other out at that point. A simple system
that illustrates this behavior is single-slit diffraction. The following analysis is taken
from Pedrotti et al. [31].

A source is placed behind a screen cut with a single slit of finite with b, projecting
an image onto a screen (Figure 5.1). Huygens’ Principle allows us to consider the
slit as an array of spherical wavelet sources, propagating forward. Each infinitesimal
interval ds of the slit will contribute a spherical wavelet at a given point p on the
screen of form

dEp =
dE0

r
ei(kr−ωt) (5.1)

where r is the optical pathlength from ds to p.

Integrating over the entire width of the slit b, we find the irradiance pattern on the
screen to be a sinc-squared function called the diffraction function (Figure 5.2).

I = I0(
sin β

β
)2 (5.2)
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Figure 5.1: Single-slit diffraction.

β =
1

2
kb sin θ =

πb

λ
sin θ (5.3)

The irradiance pattern is symmetrical about, and has a central maximum at, θ = 0 .
It has recurring minima at

mλ = b sin θ (5.4)

5.2 Diffraction Gratings

The above result, the irradiance due to a screen with one slit, can be generalized to a
screen with N slits. When N is large, the screen is properly called a diffraction grating.
There are two types of grating: transmission gratings that are essentially equivalent
to the slitted screen idealized above; and reflection gratings, whose slits’ are in fact
reflective grooves ruled on the grating’s surface. Although with regard to interference
effects the physics of the two kinds of grating are identical, reflection gratings are
by far the more common type used in spectroscopy. SSX’s IDS spectrometer uses a
reflection grating.

The irradiance due to a diffraction grating with N reflecting grooves of width b and
groove spacing a is derived similarly to the single-slit grating, except that the limits
of integration are changed so that the initial integral is a series of N terms.

ER =
EL

r0

N/2∑
j=1

(

∫ [−(2j−1)a+b]/2

[−(2j−1)a−b]/2

eisk sin θds +

∫ [(2j−1)a+b]/2

[(2j−1)a−b]/2

eisk sin θds) (5.5)
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Figure 5.2: Diffraction function: variation of light intensity across an image plane for a
single slit.
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Calculating the sum and taking the square of the resulting amplitude gives the irra-
diance pattern on the screen:

I = I0(
sin β

β
)2(

sin Nα

sin α
)2 (5.6)

α =
1

2
ka sin θ =

πa

λ
sin θ (5.7)

β =
1

2
kb sin θ =

πb

λ
sin θ (5.8)

The (sin β/β)2 factor is the same diffraction function as in the single-slit case. The
(sin Nα/ sin α)2 factor, called the interference function, has maxima when

mλ = a sin θ (5.9)

where m is called the order of the peak.

The combination of the interference function with the diffraction function results in
the maxima of the interference function being attenuated by the diffraction function,
which becomes an envelope (Figure 5.3).

The total interference pattern (Figure 5.3) has the same conditions for minima as
the interference function (Equation 5.9). Since the total interference pattern is the
output of a diffraction grating, Equation 5.9 is called the diffraction grating equation
since it gives peak locations, if not their magnitudes.

However, the light reaching the screen in the case of a reflection grating does not
come from a source behind the grating and therefore has both an angle of incidence
θi and an angle of reflection θr (Figure 5.4). The diffraction grating equation may
be modified if we realize that a statement equivalent to the grating equation would
be that the optical path-length difference between two rays of light must equal some
integer multiple of the wavelength for there to be constructive interference.

From trigonometry, the grating equation for a reflecting diffraction grating must be

mλ = a(sin θi − sin θr) (5.10)

What this means is that for light incident at a particular angle θi, the reflection
angle θr depends on the light’s wavelength λ. A diffraction grating therefore takes
incident light and images a series of peaks, each series corresponding to one component
wavelength of the light. If we focus on a region close to one of the peaks, the image
is a spectrum of the component wavelengths in the light with intensity as a function
of wavelength.
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Figure 5.3: Attenuation of the interference maxima due to the diffraction envelope.
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a

b θi

θr

∆i

∆r
θi

θr

Figure 5.4: Geometry of a diffraction grating: the �’s are the optical path-length differ-
ences.

5.3 Dispersion of a grating

Although every diffraction grating creates a spectrum, the usefulness of the spectrum
depends on how much information can be taken from it. If the peaks are very close
together, then it will be more difficult to use. The measure of “distance” across the
image of a spectrum is a measure of the angular separation of wavelengths in the
spectrum, called the angular dispersion D.

D ≡ dθr

dλ
(5.11)

which the grating equation allows us to rewrite as

D =
m

a cos θr
(5.12)

The linear dispersion is the variation in wavelength along the length of the imaging
screen dy/dλ and is just

fD =
fm

a cos θr
(5.13)

since dy = fdθr (Fig 5.5) where f is the focal length of the mirrors in the spectrometer
(Section 5.7).
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dy

f

dθ

Figure 5.5: Relationship between angular and spatial separation.

5.4 Resolution of a grating

The dispersion of the spectrum tells us only how spread out it is, nothing about the
distinctness of neighboring peaks. The resolving power R of a grating, defined as

R ≡ λ

�λmin
(5.14)

is the property of the grating that determines the sharpness of the spectrum. Quan-
tifying R is usually done by accepting Rayleigh’s criterion for the resolution of peaks,
that is, that two adjacent peaks are just barely resolvable if the maximum of one
coincides with the first minimum of the other in the same order. Although Rayleigh’s
criterion is somewhat arbitrary in that it specifies a minimum resolvable separation of
peaks, it is still useful and allows us to quantify resolving power, as well as determin-
ing its dependences. Using the grating equation in conjunction with this criterion,
the theoretical resolving power is found to be

R = mN (5.15)

where N is the total number of grooves on the diffraction grating.

5.5 Echelle Gratings

Since the IDS diagnostic aims to measure the position and width of a single spectral
line, there are several optical characteristics to be considered. If the diagnostic is
to be precise, maximizing resolution and dispersion is a must. From Equations 5.13
and 5.15 it can be seen that the ideal dispersing element would be finely ruled to
minimize a and maximize N , and would operate at large reflection angles and at high
interference order. The best compromise to this ideal is the echelle grating. An echelle
is a coarsely ruled diffraction grating designed only for use at high order and high
diffraction angles. Typically, an echelle will have 316 grooves/mm or less, operate
at very high orders— up to 600th in the most extreme cases— and have angles of
more than 60◦. The echelle grating used in the IDS system has 316 grooves/mm
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and is used at 25th order. In comparison, a regular grating will have around 3000
grooves/mm and operate at less than fifth order. Given these parameters, SSX’s 1.3
m spectrometer with an echelle grating has the same dispersion as a 5 m spectrometer
with a normal grating made to work at first order.

The principal feature of the echelle that leads to these characteristics is its grooves.
Echelles are blazed (Figure 5.6); that is, each groove is triangular, with a characteristic
facet angle φ. The difference between an echelle grating and a normal blazed grating,
however, is that echelles reflect from the narrow edge of the groove, leading to high
reflection angles that give the grating a large dispersion (Equation 5.13).

Grating Normal
Grating Normaloutgoing ray

Facet normal
incident ray

β

2γ

δα

Figure 5.6: Geometry of an echelle grating.

As well as leading to high angles, the blaze is what allows the echelle to be operated
at high order. Like all gratings, the intensity pattern from an echelle is a combi-
nation of a regular interference pattern with a diffraction envelope attenuating the
intensity with distance from the central maximum. Normally, the central diffraction
maximum coincides with the zeroth interference order. This means that most of the
light energy goes into the low orders, where dispersion and resolution are small, and
makes the higher, more useful, orders imperceptibly faint. Blazing the grating causes
the diffraction envelope to be centered at some higher order, making spectral analysis
much easier. The angle between the m = 0 light beam and the β = 0 light beam to
the center of the diffraction pattern is called the blaze angle, and is approximately
equal to the facet angle [27].
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5.6 Thin-Lens Systems

A thin lens is a lens whose thickness is small compared to the distance from the lens to
the image. Assuming lenses to be thin greatly simplifies the analysis of lens systems.
The primary equation of thin lenses is

1

I
+

1

O
=

1

f
(5.16)

where O is the distance from the lens to the object, I is the distance from the lens to
the image, and f is the focal length of the lens. The meaning of the focal length can
be found from the equation: an object at infinity has an image at the focal point; an
object at the focal point has an image at infinity. “At infinity” means that the light
rays are parallel, or collimated.

If the optical system includes an aperture of any sort, it may be necessary to consider
the cone of light from the aperture. This can be expressed by the f-number of the
system, which is just the ratio of the focal length of the lens f to the diameter of the
aperture D. The f-number f/D is frequently written “f /f-number ”.

5.7 Czerny-Turner Spectrometers

Although the basic design dates from 1930, the Czerny-Turner (CZ) monochromator
is the most commonly used type of spectrometer today. The design is simple: light
enters the instrument through an entrance slit at the focal point of a spherical mirror,
so that it is collimated after reflection. The collimated light then reflects from a
diffraction grating to a second spherical mirror. The exit slit is at the focal point of
the second mirror so that the light gets re-focused to a point on the slit (Figure 5.7).

The CZ spectrometer is a monochromator in that it projects an image of the entrance
slit onto the exit plane, and the wavelength band falling over the exit slit is controlled
by rotating the diffraction grating. The CZ design has the practical benefit over other
spectrometer designs of eliminating coma, an optical aberration turns an image into
an overlapping series of circles.

The IDS spectrometer is a CZ-type of focal length 1.33 m and f/9.4. The f-number
dictates the characteristics of an external entrance optics system, as it is important
to force the light to fill, but not overfill, the entrance cone of the spectrometer. If
the entrance cone is not full, the entire surface of the diffraction grating will not be
illuminated and the resolution of the spectrum will suffer. If the entrance cone is
overfull, there will be light that does not get reflected from the first mirror onto the
grating. Conceivably, this light might end up incident on the exit plane, distorting
the final spectrum.
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Entrance Slit

Diffraction Grating
Spherical Mirrors

Exit (Image) Plane

Figure 5.7: Schematic of a CZ-type spectrometer showing the divergence of a bichromatic
ray.

5.8 Doppler Shift and Thermal Broadening

Light of frequency ν0 emitted by a source moving with velocity v relative to an
observer is measured to have frequency ν, where

�ν = ν − ν0 = ν0
v

c
(5.17)

This change in apparent frequency is called the Doppler shift. However, since the
output of a spectrometer is a measurement of light intensity with varying wavelength,
the IDS system measures the Doppler shift of the ions’ light by determining the
wavelength difference between the observed emission peak and the normal, ‘rest’,
location of the peak. So equivalently, and more usefully for our purposes, the Doppler
shift can be expressed in terms of wavelength as

�λ = λ − λ0 = λ0
v

c
(5.18)

Equations 5.17 and 5.18 are the non-relativistic form of the Doppler shift for sources
with velocities well under the speed of light. Since we do not expect the flows in SSX to
have velocities of more than several tens of km/s [12], this convenient approximation
will be accurate.

The thermal broadening of the spectral lines is due in part to the Doppler shift; in
fact, it is frequently referred to as Doppler broadening. Physically, the meaning of the
Doppler shift in the thermal line broadening comes from the fact that temperature is
proportional to the average kinetic energy of a population. Due to random thermal
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motion there is a Maxwellian velocity distribution; there are ions moving in all direc-
tions relative to the observer. The greater the kinetic energy, the greater their RMS
velocity and so the greater their Doppler shift. The different observed values of the
ions’ emission wavelengths will therefore distribute around the emission line’s central
wavelength. Along the direction parallel to v, the distribution function is [32]

f(v) =

√
m

2πRT
e−− m

2RT
v2

(5.19)

where m is the atomic weight.

We can substitute the frequency distribution due to the Doppler shift c�λ/λ0 in for
the velocity v and so find the full-width half maximum, the distance between points
on the distribution whose magnitude is half of the peak [1].

�λFWHM =
2λ0

c

√
2RT ln 2

m
(5.20)

Since we will be dealing with data rather than with a defined shape, a more convenient
measure of width is the standard deviation σ. It is easily determined that for a
Gaussian, the FWHM= 2.36 × σ.

Hence, we can extract the temperature of an ion population from the width of its
lines, assuming that the lines are single Gaussian emission lines. If the width of a
peak are is due to overlap from two closely-spaced emission lines, then the relationship
of Equation 5.20 is no longer valid and its use would lead to an erroneously high
temperature.

Previous experiments on SSX allow us to estimate the width and shift of the spectral
line in question. Given an ion temperature of approximately 20 eV [7], or approxi-
mately 232,000 K, and a flow velocity on the order of 65 km/s, the wavelength shift of
the peak will be approximately 0.05 nm, and the thermal width will be on the order
of 0.023 nm. Compared to the spectrometer’s dispersion of 0.032 nm/mm and the
detector’s pitch size of 1mm per pixel, the emission line at 229.7nm should be less
than a full pixel in width and should be shifted from its rest location by nearly two
pixels. Currently, without any optical magnification of the spectrum, the IDS system
cannot resolve a peak smaller than 200 eV. Hence the line during the FRC’s steady-
state period should not be resolvable. However, an exit optics system is planned that
should magnify the image four times, filling up the entire array of 32 PMT’s.
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6 Calibration

Before examining light emitted by a hot dynamic plasma, it is necessary to exam-
ine the response of the PMT array to a line from a cold, quiet source at a known
wavelength. This was done using a hollow-cathode lamp coated with cadmium. A
cadmium lamp was chosen because cadmium emits strongly at 228.80 nm, less than
a nanometer from the chosen CIII line at 229.7 nm.

The calibration consisted of determining the number of photons per second incident
on each element in the PMT array. Since the output of the lamp was constant over
time, this was equivalent to determining the shape of the cadmium’s emission line.
This was done by setting an oscilloscope to trigger every time the voltage from the
PMT in question went below −10 mV, that is, every time a PMT recorded an incident
photon. However, while the triggering system in the oscilloscope was certainly capable
of recording the number of counts, the data acquisition circuitry was much slower.
Since a large flux of photons was expected, directly counting and acquiring all the
triggers was impossible because during the oscilloscope downtime that happened when
the triggering system was activating the acquisition system, there would be pulses
that the oscilloscope would miss. Therefore, the oscilloscope was set with a holdoff,
a number of triggers that it would have to count before data was acquired. Since the
counting part of the trigger circuit would run regardless, the only precaution that was
needed was to make sure that the time it took the oscilloscope to count the holdoff
number of pulses was greater than the time it took the oscilloscope to acquire data.
A ramp, a sawtooth signal of frequency 0.5 Hz varying from 0 to 1 V, was sent into
the oscilloscope to provide a data signal. This meant that the oscilloscope would
measure the voltage of the ramp every time the holdoff number of pulses was counted
by the triggering circuitry. Since the variation of the ramp’s voltage with time was
set to vary linearly from 0 to 1 V every 2 seconds, the voltage difference between the
ramp readings gave the time between data acquisitions, or the time it took for the
oscilloscope to record the holdoff number of pulses (Figure 6.2). This is the way the
count rate for each PMT in the array was found.

Since the measurement was made at 25th order, the free spectral range was small and
so the possibility of light from other orders contaminating the signal was present. A
filter was therefore put in front of the spectrometer entrance slit to eliminate light
of undesired wavelengths. The filter had a Gaussian transmission profile, with peak
transmission of 19% at 229.35 nm and a 9.49 nm bandwidth between half-maxima.
Therefore the transmission at 228.8 nm, the wavelength of the cadmium lamp, was
approximately 18.5%.

With the filter in, the average single pulse shape is shown in Figure 6.1. With a 0.5
Hz ramp signal and a holdoff of 50,000 events, the pulses from PMT 4 triggered the
ramp as in Figure 6.2.
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Figure 6.1: Output voltage for PMT 4, the PMT that got the most signal from the lamp.
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Figure 6.2: 0.5 Hz ramp being acquired every time the oscilloscope counts 50,000 pulses.
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Figure 6.2 shows an average difference of 0.215 volts between triggers, not counting
the large negative differences incurred when the ramp goes from one cycle to the
next. Since the ramp rate is 0.5 Hz, this means that the difference would be 1 volt
every 2 seconds. Therefore, the time between triggers for a 0.215 V difference is
�V ×2s/1V = (0.215×2) = 0.429s . This time is the amount of time it takes for the
oscilloscope to register 50,000 triggers. Hence the count rate is equal to holdoff/time,
or 5 × 104/0.429 = 116518 Hz. Figure 6.3 shows a comparison of count rate for all
eight PMT’s in the array by PMT number.

Figure 6.3: The count rate, and hence the signal, across the PMT array.

Figure 6.4 compares data when the filter is in (dashed, same as Figure 6.3), with
data without the filter. The unfiltered data has been scaled down by a factor of 16
to equalize the peaks. The factor of 16 means that when the filter is out, PMT 4
gets 16 times the light it gets when the filter is in place. Since the transmission of
the filter at the cadmium emission line’s wavelength is about 18.5%, we would expect
that the PMT would get approximately 5 times the signal when the filter is out. The
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fact the it gets 16 times the signal means that when the filter is out PMT 4 gets
approximately two-thirds of its light from wavelengths that are not 228.8 nm. This
means that there must be a lot of light from other orders hitting the PMT. It is not
surprising to find other emission lines besides the stated one at 228.8 nm; the lamp
has is a hollow-cathode lamp with a cadmium coating on the cathode, which emits
at 228.8 nm when the lamp heats up. However, the cadmium also emits at other
wavelengths besides, and it is also highly likely that there are significant impurities
in the coating that have their own characteristic emission lines. The presence of all of
these other emission lines that hit PMT 4 at certain orders are what cause the extra
signal. These other lines are also responsible for the count rate on PMT 3, which is
virtually dark when the filter is in.

Clearly, the cold line is mainly confined to a single array element. There is, however,
some light on PMT 5—about 15% of the peak. For such a high percentage, it cannot
be crosstalk between PMT’s alone, since the array is rated at 3% crosstalk. However,
it is not so high that it would indicate that the peak straddles the two pixels to any
degree. Therefore it seems probable that the cold line is not wider than a single pixel.
Since a width less than a single element is to be expected given that the lamp is
certainly not hotter than 200 eV, it indicates that the array is well-positioned with
respect to the exit plane, that the image of the line is not so blurred as to cause
significant widening.
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Figure 6.4: Filtered (dashed) versus unfiltered data.
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7 Experimental Data

7.1 PMT Saturation

A total of twenty data runs were done, for varying PMT voltage and entrance slit
width. When deciding which of these runs to take as accurate representations of the
light coming from SSX, it was necessary to compare the PMT array response to the
ideal response. The problem is as follows: When photons strike the photocathode
in a PMT, photoelectrons are emitted. This photocurrent, initially perhaps only 1
electron per 10 incident photons, is amplified by a series of secondary emitters, called
dynodes (Figure 7.1). These dynodes, 10 in each PMT in SSX’s array, are kept at
a given voltage by a voltage divider so as to amplify the incident photocurrent by a
factor of approximately 10 [11] per PMT.

Voltage in

Photocathode

Dynode chain

Photocurrent out

Voltage divider

Figure 7.1: A schematic diagram of a photomultipler tube with 4 dynodes.

The correct operation of the PMT relies on the current coming from each dynode not
being large enough to disrupt the voltage of the dynode. If the current become too
large, the dynode will draw too much power from the voltage divider and the dynodes
further down the chain will suffer a drop in voltage. If this happens, the output
of the final dynode will not, in general, scale linearly with the initial photocurrent
and hence will not accurately reflect the magnitude of the photon flux. A PMT
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is said to be saturated when this non-ideal behavior occurs. The photocurrent can
become too large due to two factors: (1) the initial photon flux is large, causing a
big photocurrent from the outset that gains to the point of saturation, or (2) the
voltage on each dynode is too large, thus emitting a too-high number of electrons at
each step, eventually leading to saturation further down the chain. To ensure that
the initial flux is not too large, the entrance slit width must be controlled. To ensure
that the voltage on each dynode is not too large, the PMT voltage must be kept low.

An IDL code was used to visualize the data (Section 11). Figure 7.2 shows the traces
from each PMT in the array for a run where the PMT’s were set at 600 V and the
slit was 0.5 mm wide. The code averaged the trace data, taking the average of each
100 points. The total PMT signal for each run was found by integrating the averaged
data for PMT 4 from 45 µs to 70 µs. The signal variation with slit width was plotted
in Figure 7.3. The signal variation with PMT voltage when the slit width was 1/2
mm was plotted in Figure 7.4 and the signal variation with voltage when the width
was 1/8 mm was plotted in Figure 7.5.

PMT 4 was chosen because in all the runs it received by far the most signal. It
was felt that comparing the signals from just PMT 4 for all the runs would give a
valid estimate of how the signal changed with PMT voltage and sit width, as opposed
to averaging the signals from all PMTs in the array. The signal integration was
done from 45 µs to 70 µs because we know the qualitative behavior of the plasma
between those times. At 45µs the spheromaks should be reaching the midplane and
beginning to reconnect, and at 70µs the FRC should be formed and in its steady-
state configuration. Including prior and subsequent times in the integration risked
including times when either the signal might not be due to the plasma but due to
some part of the spheromak formation or the light from the plasma might be in some
way affected by the decay of the FRC, particularly the times between 150–200 µs
when the FRC has almost certainly decayed and whatever remains is emitting light
in some disorganized manner.

Figure 7.3 shows the variation of output with changing slit width, from 1/8 mm to
3/4 mm, at a constant voltage of 550 V for PMT 4, the PMT with the most signal.
For slit width, it makes intuitive sense that the output signal should vary linearly
with the slit. Hence we expect output to scale linearly with width when the voltage
is not changed. The dashed line in Figure 7.3 is a straight line through the origin, to
indicate how we expect the signal to vary of it is not saturated. Although there is a
noticeable offset, the output scales linearly with slit width until the PMT saturates by
the final point, a width of 0.75 mm. While the root cause of the offset is unknown, it
could be caused by one of two things. First of all, all photomultiplier tubes emit some
small amount of current even when there are no incident photons. Such a current is
called dark current. However, the datasheet for the PMT array (model: Hamamatsu
H7260) indicates that the maximum dark current, for PMT voltage at the maximum,
is 2 nA. This compares to an average current per PMT at the same voltage of 6 µA,
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Figure 7.2: Traces of the output of each PMT in the array, voltage=600V, slit width=0.5
mm.
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Figure 7.3: Variation in total signal when the slit width is changed at a PMT voltage of
550V (solid) compared to a line passing through the origin, i.e going to zero when the slit
is closed.
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3000 times greater. Therefore the dark current should not be a significant effect. The
other possibility is that the light beam into the spectrometer is non-uniform, causing
the signal to vary non-linearly as the slit width changes. In any case, the scaling is
of greatest importance, and Figure 7.3 shows that the tube is unsaturated until the
slit is at its widest.

Since the datasheet for the array gave a relation between PMT voltage and gain, it
was determined that gain scaled as (voltage)9. Since the sweeps of voltage values did
not change slit width and hence did not change the incident photon flux, the output
of the PMTs should scale as the ninth power of the voltage. There were two voltage
sweeps from 550 V to 750 V in increments of 50 V; one with a slit width of 1/2 mm
(Figure 7.4), and the other with a width of 1/8 mm (Figure 7.5). Since we know
from Figure 7.3 that neither of these widths is sufficient to saturate the tube at 550
V, it was assumed that the first data point represented unsaturated response and so
a ninth-power curve was plotted on both graphs beginning at that initial data point.

In both voltage sweep plots initial ideal scaling followed by rapid saturation can be
seen. This indicates that only the 550 V and 600 V runs are certain to be unsaturated.
In Figure 7.5, however, the third data point (at 650 V) seems anomalous, especially
since it shows a decrease in photocurrent for an increase in PMT voltage. As it is,
both voltage sweeps deviate from ideal behavior at the same voltage, irrespective of
slit width. One would expect the 1/8 mm sweep to deviate at a higher voltage than
the 1/2 mm sweep, since it is getting 1/4 the photon flux at a given voltage. If the
anomalous point were at a higher signal, however, then it could be seen that the 1/8
mm sweep actually saturates at a higher PMT voltage than the 1/2 mm sweep, as
intuition would suggest. To investigate, consider the 650 V data point on the 1/2 mm
sweep. Since the other data indicate that the slit scaling seems to be linear for those
widths, we might expect it to be getting 4 times the signal that the anomalous point
is getting. In fact, it is getting 5 times the signal. All these factors point towards the
650V, 1/8 mm datum being problematic for some reason.

Based on the saturation plots, the run taken with a PMT voltage of 600 V and slit
width of 0.5 mm was chosen for further investigation (traces shown in Figure 7.2). The
voltage and width parameters were chosen to be at the known limit of the linear PMT
response regime, so as to ensure the maximum light on the array without saturating
it.

7.2 Experimental Error

There were two possible sources of error in the measurements: statistical and sys-
tematic. The statistical error, equal to

√
n, is expressed as PMT counting errors.

Since the PMT’s are 8-bit, the error caused by varying the least significant bit is
1/256. The oscilloscopes were set to 20 millivolts per division, making the statistical
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Figure 7.4: Variation of total output signal with PMT voltage for a 1/2 mm slit (solid)
compared to a ninth-power function (dashed).
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Figure 7.5: Variation of total output signal with PMT voltage for a 1/8 mm slit (solid)
compared to a ninth-power function (dashed).
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error (20× 8)/256 = 0.625 mV. Since the channels with signal generally got between
50–100 mV of signal (Figure 7.2, the error on the values that make up the peak were
between approximately 1–0.5%. The averaging of every 100 data points also affects
the statistical error, reducing it by a factor of

√
100, or 10. Hence the statistical error

is tiny and is not taken into account in the data presented here.

There are also sources of systematic error. The first is anode non-uniformity. The
relative outputs of the PMT’s are not the same, varying by as much as about 8%,
according to the PMT array datasheet. The second is cross-talk, the process by which
input into one PMT ends up as output from the adjacent PMT’s. The datasheet
for the array rates the typical average signal from two dark channels adjacent to a
bright channel as 3%. The error due to anode non-uniformity is easily eliminated
by multiplying the data by some normalizing factor, and the error due to cross-
talk is eliminated by deducting 1.5% of a channel’s data reading from the data for
the adjacent channels (See Section 11 for the factors). This elimination of cross-
talk assumes that the signal bleed is relatively isotropic and does have a preferred
direction.

Since the statistical error is miniscule and the systematic error has been eliminated
as much as possible, the error is not displayed on any of the figures that are based on
experimental data.

7.3 Temperature and Velocity Measurements

The shape of the line (Figure 7.6) is found by plotting a constant-time slice of the
traces. The velocity (Figure 7.7) is found by line-averaging the traces along the length
of the array. This gives the location of the centroid of the line, which is related to
the velocity by the Doppler shift formula �λ = λ0 · v/c. The uncertainty in the
velocity, given that the centroid’s location within the array element is difficult to
measure precisely at this resolution, is given by plotting velocity curves that shift the
measured centroid by 1/2 the width of an array element.

Determining the plasma temperature from the lineshapes was done with an addition
to the code. In Figure 7.6, the points making up the lines consist of ordered pairs of
numbers (x1, f1), (x2, f2), . . . , (x8, f8) where the x’s are the position ordinates and
the f ’s are the magnitudes of the signal. If these numbers are used to construct a
set of x’s, the multiplicity of each x being its associated f , then this set plotted as a
histogram reproduces the line given by the ordered pairs. Statistical measurements
done on the histogram data will now give results in coordinate numbers rather than
in magnitude numbers.

Under our initial assumption that the line represents a single Gaussian emission line,
the width (FWHM) of the line can easily be found from the standard deviation of the
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Figure 7.6: Lineshape for 5 different times.
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Figure 7.7: Velocity (solid) of the centroid. The dashed lines are the uncertainty given
that the centroid could be anywhere within a 1mm (�λ = 0.032nm) pitch array element.
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histogram data since the FWHM = 2.36 ∗ σ for a Gaussian distribution. The width
is related to temperature by Equation 5.20, so the temperature of the plasma can be
plotted as a function of time by finding the linewidth at each time value (Figure 7.8).

Figure 7.8: Temperature as calculated from the linewidth (assuming a Gaussian shape)
for the run after 30µs.

The theory that velocity shear is responsible for the higher-than expected linewidths
can most easily explain the sudden sharp drop in linewidth seen around 50 µs (Fig-
ure 7.8). If oppositely directed jets are widening the line then those jets, being a
product of reconnection, should die down when reconnection is complete, at around
50 µs [13]. Since the time of the drop corresponds to the time by which we expect the
FRC to be formed [28] and the linewidth thereafter is at the minimum of resolution,
the shear hypothesis gains considerable strength from Figure 7.8.

If we assume that line overlap due to shear is responsible for the linewidth, we can
obtain a crude estimate of velocity. Since Section 5.8 tells us that the real line should
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be less than a single pixel, or 0.032 nm, in width, we can assume that the “line” we
are measuring is made up of two lines whose centroids are 0.032 nm apart. Hence the
relative velocity of these lines should be, from Equation 5.18,

v =
�λ

λ0

× c =
0.032

227.9
× (3 × 108m/s) ∼ 4cm/µs (7.1)

This is approximately half of VA, the Alfvén speed (the characteristic speed of prop-
agation for a perturbation in a magnetic field line) for SSX-FRC. Assuming that the
two lines have equal velocity, their absolute velocity in the lab frame should therefore
be approximately 0.25VA. Hsu et al [22] found in magnetic reconnection experiments
that the outflow from the reconnection region was approximately 0.2VA, very close
to the crude estimate (Equation 7.1) for SSX’s outflow speed should the shear hy-
pothesis be correct. Moreover, an older SSX measurement of velocity by Kornack et
al. [23] found Alfvénic speeds, v = VA. At that time SSX was not in the current SSX-
FRC configuration and allowed for only partial reconnection along the spheromaks.
The velocity from the older SSX configuration should be higher than the velocity
attainable by SSX-FRC since the jets emerged from only a few locations and so did
not disturb each other and slow one another down. However, the older measurement
should be around the same order of magnitude as the more recent one. In other words,
especially given the IDS system’s low resolution, the current estimate of ∼ 0.25VA is
in agreement with experimental values.

While the temperature for the steady-state FRC is not resolvable, it is clearly under
200 eV and so does not deviate from expectation.
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8 Analytical Model

Since an IDS diagnostic necessarily measures an average temperature and flow velocity
along its chord, it seems clear that the less homogenous and more dynamical a plasma,
the less meaning the raw IDS output should have by itself. Consider an IDS diagnostic
of a plasma with oppositely directed jets. It makes intuitive sense that oppositely
directed jets resulting from a shear in the plasma flows should cancel one another out
to some extent in the IDS data resulting in a final peak location that is an average
of the two. However, since the emission lines have finite width, one can think of the
process of cancellation as being more like merging of lineshapes. One can imagine two
close lines of equal magnitude merging together to make a single line whose centroid
is the average of the initial two lines’, but whose width is the extent of the two close
lines (Figure 8.1).

Figure 8.1: The real (solid) Gaussians overlapping to form the (dashed) wider image.

As previously discussed, SSX plasmas are highly dynamical and indications are that
such a velocity shear might be taking place. Certainly, the linewidths are much larger
than expected. Therefore, the following simple analytical model aims to examine the
IDS output for various flow profiles and make the preceding discussion of lineshape
and centroid location more quantitative.

Consider the following ideal representation of SSX (Figure 8.2): A cylinder containing
purely azimuthal flows with no axial variation. A circular slice of the plasma therefore
suffices:

The radial vector to the chord is at an angle θ to the diameter, and the chord is at
an angle φ to the diameter. A closer look at the geometry of the chord in relation to
the radial origin (Figure 8.3) will let us set up the problem. The desired result is an
expression for the flow magnitude along the chord at a point along the chord, v · ds.
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Figure 8.2: A simple drawing of a slice of SSX with viewing chord and flow vector.
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Figure 8.3: Geometry near the viewing chord.
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v · ds can be thought of as the magnitude of v, | v | , times the projection of ds along
v. From Figure 8.3, it is clear that

(ds along v) = rdθ (8.1)

where from Figure 8.2,

r =
R sin φ

sin(φ + θ)
, 0 ≤ θ ≤ 180◦ − 2φ. (8.2)

Let us use this to investigate the lineshapes that result from different flow profiles
| V |.

8.1 Linear Flow Profile

The most simple (nonzero) flow profile is of a fluid rotating like a rigid rotor, with
v = ωr. In a fluid with this profile, the velocity would increase linearly with radius,
reaching a maximum at whatever boundary we put on the fluid. The rigid rotor is
hence not a physically valid representation since it makes the fluid’s parameters inde-
pendent of the container. Nonetheless, it is an easy first profile to use to demonstrate
the analytical model developed here.

Since we expect the velocity to peak at approximately 65 km/s, a possible linear flow
profile would be

| v |= 65
r

R0

km/s (8.3)

going from 0 km/s in the vessel’s centre to 65 km/s at the outer edge where r = R0.
Hence we have an IDS signal from each element of the chord

v · ds =
65

R0
r2dθ (8.4)

Taking R0 to be unity and plotting the signal for different values of chord angle φ,
we get Figure 8.4.

We can determine the shape of the emission line at 227.9 nm that a hot plasma would
have were it to rotate like a rigid rotor by replotting the information in Figure 8.4
as a histogram (Figures 8.5 and 8.6). This bins chord element signals that are close
to one another together, resulting in a lineshape. This should show the distribution
of velocities that make up a given signal and hence give a quantitative idea of the
lineshape and width due to the velocity shear. We can see from Figures 8.5 and 8.6
that while the lines have some spread out from the main peak, none of the chord
angles for a linear flow profile result in a double-peaked distribution. The velocities
of the signals have been converted to wavelength shifts.
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15°

45°

60°

Figure 8.4: Signal obtained by an IDS system from each chord element for four different
chord angles φ from a fluid with a linear flow profile.
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Figure 8.4 is easy to interpret. The smaller the chord angle φ, the longer the chord
has to be (Figure 8.2. Hence the different numbers of points for the chords. Also, the
longer the chord, the more velocity variation the IDS system will “see”.

15°

30°

Figure 8.5: Lineshape obtained by an IDS system for a fluid with a linear flow profile, for
chord angles 15◦ and 30◦.

Since each chord is a different length, the variation in point number means that the
magnitudes of the histograms for different chords cannot be compared. Nonetheless,
Figures 8.5 and 8.6 give a good indication of the widths of the lines resulting from
chords at the four angles.

8.2 Quadratic Flow Profile

A more realistic flow profile is a quadratic. This has the benefit of going to zero at
some point away from the origin, allowing us to propose

| v |= (260/R2
0)(R0r − r2)km/s (8.5)
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60°

45°

Figure 8.6: Lineshape obtained by an IDS system for a fluid with a linear flow profile, for
chord angles 45◦ and 60◦.
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This is a quadratic with zeroes at the origin and at R0, and with a central maximum
of 65 km/s at R0/2. THis is a more realistic flow profile because it makes sense that
a differentially rotating fluid would have zero velocity parallel to its container walls
due to friction and other dissipative forces.

The signal from each element of the chord is plotted in Figure 8.7. Unlike the linear
profile, there is significant variation for different chord angles. The chord angle will
affect how much of the high velocity part of the profile the chord “sees”. For small
angles, the chord will cut through the maxima, resulting in a lower-velocity signal in
the middle. For other angles, however, the chord clearly passes through a region of
high velocity. Again, we can represent the information in Figure 8.7 as a histogram
(Figures 8.8 and 8.9) to get the lineshapes. The quadratic flow lineshapes do show
evidence of double peaks for certain angles, probably due to the IDS seeing through
the fluid to the oppositely directed maximum on the other side.

15°

30°

45°

60°

Figure 8.7: Signal from each chord element for four different chord angles through a fluid
with a quadratic flow profile.
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15°

30°

Figure 8.8: Lineshape obtained by an IDS system for a fluid with a quadratic flow profile,
for chord angles 15◦ and 30◦.
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45°

60°

Figure 8.9: Lineshape obtained by an IDS system for a fluid with a quadratic flow profile,
for chord angles 45◦ and 60◦.
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8.3 Cubic Flow Profile

The most simple profile that will get flows that point in opposite directions at different
points along the same radial vector is a cubic. To better represent an FRC geometry,
the zeros of the cubic are constrained. There should be a zero at the origin and at the
outer wall, radius R. The third zero should be at R/

√
2, as discussed in Section 4.3.

The peak flow velocity should be 65 km/h. All these dictate a flow profile like that of
Equation 8.6 and Figure 8.10. Since the shear profile is a cubic with its central zero
offset from the average of the other two zeros, the peaks are not of equal height. The
positive peak has been arbitrarily chosen to be the one scaled to 65 km/s. The signal
from each point on the chord for four chord angles is given by Figure 8.11. Turning
the data in Figure 8.11 into a histogram (Figures 8.12 and 8.13) will separate the IDS
signal into wavelength shift bins and show the lineshape.

| v |∝ 65

0.0861581R3
(r3 − R

2 −√
2
r2 + (

R2

2 −√
2
− R2)r) (8.6)

The location of the line centroids, the average of the histograms, is difficult to deter-
mine from the histogram plots. Averaging the v · ds IDS signal along the chord for
all chord angles will determine it precisely, however (Figure 8.14).

This model has the problem that the cubic cannot give extrema of equal magnitude
with a shifted central zero, but it does adequately illustrate the broadening of the lines
due to velocity shear. In particular, the long shoulders on extreme-angle chords that
become double-peaked distributions on middle-angle chords should be characteristic
of a system with sheared flows (Figures 8.12, 8.13). Clearly the default, as seen for
the 45◦ chord, is of a distribution much like the merged Gaussians of Figure 8.1,
where the two shifts due to the opposite extrema are equally represented. As the
chord angle deviates from this, one of the two flows should factor less and less into
the signal and the lineshape should look like the 15◦ line in Figure 8.12, where only
one peak figures prominently in the line, but with an extended shoulder that will pull
the centroid away from the peak.

In any case, this simple model demonstrates how velocity shear does have the effect
of artificially broadening emission lines by merging red- and blue-shifted lines into
one, much wider, distribution. We expect such velocity shear to be present during
FRC formation (Figure 4.4) and so this model does confirm that the very high ”tem-
perature” reported by the IDS system during the FRC formation period is a result
of velocity shear.
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Figure 8.10: Velocity profile for the shear flow model. Note that the cubic forces one
extremum to be larger than the other since the central zero is not at R0/2.
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30°

45°

60°

15°

Figure 8.11: Signal obtained by an IDS system from each chord element for four different
chord angles φ from a fluid with a cubic flow profile.
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15°

30°

Figure 8.12: Lineshape obtained by an IDS system for a fluid with a cubic flow profile,
for chord angles 15◦ and 30◦.
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45°

60°

Figure 8.13: Lineshape obtained by an IDS system for a fluid with a cubic flow profile,
for chord angles 45◦ and 60◦.
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Figure 8.14: Centroid location for chord angle φ.
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9 Conclusions

Currently, SSX’s IDS system does not have the resolution needed to measure tem-
peratures below approximately 200 eV. Since we expect the ion temperature to be
approximately 20eV, the diagnostic cannot yet be used to detail the variation of tem-
perature with time. The low resolution also affects the system’s ability to determine
the plasma’s velocity since a precise measurement of the line is needed to determine
its centroid. For these reasons, this thesis has not presented any new information
about the temperatures and flow velocity within SSX-FRC.

Nevertheless, this thesis has shown promising signs that the only current impediment
to precise, accurate, time-resolved temperature and velocity measurements is the sys-
tem’s resolution. The sudden drop in linewidth seen in Figure 7.8 is fully explained
by the basic physics of the system, and an estimate of the line’s width assuming
velocity shear leads to velocity estimates that are consistent with previous measure-
ments. Moreover, the exposition of these physics has exposed what I consider to be a
problem with the seminal paper by Ono et al. [28], that the measured velocity shear
was not taken into account when determining the ion temperature and hence had to
go to some lengths to explain their very high measurements.
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11 Appendix: IDL Visualization Codes

The following is the IDL code used to generate the traces (Figure 7.2), lineshapes
(Figure 7.6), velocity plot (Figure 7.7) and temperature plot (Figure 7.8). Comments
are in parentheses, in boldface roman script.

pro showmapmt

(read data files into IDL and correct for crosstalk and anode non-uniformity)

data=read_ascii(data_start=1)

dy=150.0

time=reform(data.field1[0,*])*1.E6

ch11=reform(data.field1[1,*])*(1./0.977)

ch12=reform(data.field1[2,*])*(1./0.931)

ch13=reform(data.field1[3,*])*(1./0.951)

ch14=reform(data.field1[4,*])*(1./0.901)

data=read_ascii(data_start=1)

time=reform(data.field1[0,*])*1.E6

ch21=reform(data.field1[1,*])*(1./0.938)

ch22=reform(data.field1[2,*])*(1./0.933)

ch23=reform(data.field1[3,*])*(1./0.957)

ch24=reform(data.field1[4,*])*(1./0.921)

(plot the unaveraged corrected traces)

window,0

plot,[0],[0], background=1, color=0, /NODATA, xrange=[-10.0,140.0], $

xstyle=1, ystyle=1, yrange=[-4.25*dy,4.25*dy], xtitle="Time (us)"

oplot,time,ch11*1.E3-3.*dy,color=0

oplot,time,ch12*1.E3-2.*dy,color=0

oplot,time,ch13*1.E3-1.*dy,color=0

oplot,time,ch14*1.E3-0.*dy,color=0

oplot,time,ch21*1.E3+1.*dy,color=0

oplot,time,ch22*1.E3+2.*dy,color=0

oplot,time,ch23*1.E3+3.*dy,color=0

oplot,time,ch24*1.E3+4.*dy,color=0

(average every 100 points of data)

n=floor(n_elements(ch11)/100+1)
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vsm=fltarr(n)

timesm=fltarr(n)

chsm=fltarr(8,n)

j=0

for i=0,n_elements(v)-1 do begin

timesm[j]=timesm[j]+time[i]*0.01

chsm[0,j]=chsm[0,j]+ch11[i]*0.01

chsm[1,j]=chsm[1,j]+ch12[i]*0.01

chsm[2,j]=chsm[2,j]+ch13[i]*0.01

chsm[3,j]=chsm[3,j]+ch14[i]*0.01

chsm[4,j]=chsm[4,j]+ch21[i]*0.01

chsm[5,j]=chsm[5,j]+ch22[i]*0.01

chsm[6,j]=chsm[6,j]+ch23[i]*0.01

chsm[7,j]=chsm[7,j]+ch24[i]*0.01

vsm[j]=vsm[j]+v[i]*0.01

if i mod 100 eq 0 then begin

j=j+1

endif

endfor

(this finds the centroid by line-averaging the signal, and finds the velocity
from the doppler shift �λ × c/λ0 = v)

vsmsm=fltarr(n)

totsm=fltarr(n)

for i=0,7 do begin

vsmsm=vsmsm+(float(i)-3.5)*reform(chsm[i,*])*0.032/229.7*3.E5

totsm=totsm+reform(chsm[i,*])

endfor

vsmsm=vsmsm/totsm

(take the velocity in later times as zero, so deduct from the whole)

vsmsm=vsmsm-mean(vsmsm[140:150])

(plot the centroid’s velocity and uncertainty)

window,1

plot,[0],[0],background=1,/NODATA,xrange=[-10,140],xstyle=1,ystyle=1,$

yrange=[-60,15],ytitle="Flow velocity (km/s)",xtitle="Time (us)"

q=where(timesm gt 25)

oplot, timesm[q], vsmsm[q]-10., color=0,linestyle=1
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oplot, timesm[q], vsmsm[q]+10., color=0,linestyle=1

oplot, timesm[q], vsmsm[q], color=0

(plot the lineshapes)

window,2

plot,[0],[0],background=1,color=0, /NODATA,xrange=[4.0,4.0], $

xstyle=1,ystyle=1,yrange=[10,150],xtitle="Position on Array (mm)"

xcoord=findgen(8)-3.5

oplot, xcoord, -1.E3*reform(chsm[*,60]), psym=-4, color=0,linestyle=1

oplot, xcoord, -1.E3*reform(chsm[*,80]), psym=-4,color=0,linestyle=2

oplot, xcoord, -1.E3*reform(chsm[*,100]), psym=-4,color=0,linestyle=3

oplot, xcoord, -1.E3*reform(chsm[*,120]), psym=-4,color=0,linestyle=4

oplot, xcoord, -1.E3*reform(chsm[*,140]) ,psym=-4,color=0,linestyle=0

(find the linewidth and hence the temperature (assuming a Gaussian line-
shape) by turning the lineshapes into histograms and then taking the
standard deviation of the histogram data)

p=findgen(8)-3.5

width=fltarr(200)

z=fltarr(8)

for k=0,199 do begin

z=-1.E3*reform(chsm[*,k])

hist=fltarr(1)

(set up the array for the histogram data–remember to get rid of this zero
eventually)

for j=0,7 do begin

n=abs(floor(z[j]*100.))+1

(set the number of data points in the histogram bin by looking at the
magnitude of the point; +1 since some points are zero and the array needs
>0 elements)

x=fltarr(n)

x=x+p[j]

(fill the histogram bin with as many location coordinates as the point’s
magnitude)
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if (n gt 1) then x=x[0:n-2]

(get rid of the extra element if the entry doesn’t need it)

hist=[hist,x]

(add the histogram points just found into the histogram array)

endfor

n=n_elements(hist)

hist=hist[1:n-1]

(get rid of the initial zero in the histogram data array)

&width[k]=stddev(hist)

endfor

(find the temperature from the standard deviation, assuming a Gaussian
profile)

t=(findgen(200))

width=width*2.36*0.032

temp=((width/229.7)^2)*(12)*(7.16E-7)^(-2)

tempev=temp/11600.

(plot the temperature values)

window,8

plot, t, tempev, ytitle="Temperature (eV)", xtitle="Time (us)", $

xstyle=, xrange=[30,200], ystyle=1, background=1, color=0

end
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