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Abstract
Turbulence has been studied in laboratory plasmas for decades. Magnetic and electrostatic
turbulence fluctuations have been implicated in degraded confinement in fusion devices so
understanding turbulent transport is critical for those devices. The externally applied magnetic
field in most laboratory plasmas has a strong effect on the character of the turbulence
(particularly parallel and perpendicular to the applied field). A new turbulent plasma source is
described with several unique features. First, the magnetohydrodynamic (MHD) wind tunnel
configuration has no applied magnetic field and has no net axial magnetic flux. Second, the
plasma flow speed is on the order of the local sound speed (M = 1), so flow energy is
comparable to thermal energy. Third, the plasma β (ratio of thermal to magnetic pressure) is of
order unity so thermal energy is comparable to magnetic energy. We will review sources of
magnetic turbulence in laboratory plasmas and discuss the main analytical tools used in the study
of plasma turbulence. Some initial results from the MHD plasma wind tunnel will be presented.

Keywords: magnetohydrodynamics, turbulence, laboratory, solar wind

(Some figures may appear in colour only in the online journal)

We present a review of laboratory sources of turbulent plasma.
Our focus will be on sources of magnetic turbulence, and
in particular, we will introduce a new type of turbulent
plasma source called a magnetohydrodynamic (MHD) plasma
wind tunnel. In section 1, we open with an introduction to
turbulence, including the 1941 theory by Kolmogorov. The
role of plasma turbulence in two important systems, the solar
wind and fusion devices, is introduced. In section 2, we
provide a pedagogical overview of the statistical analysis tools
used in turbulence research. Analysis in both the time domain
and space domain are covered. Examples from laboratory and
space observations will be provided. In section 3, we give
a survey of past turbulence experiments, with an emphasis
on MHD fluctuations. Finally, we close in section 4 with
a discussion of a new source of turbulent plasma: the MHD
plasma wind tunnel. Some initial results will be presented.

1. Introduction

A turbulent flow refers to the non-linear, fluctuating motion of
the fluid elements [1, 2]. More formally, a turbulent fluid has

more energy in convective motion than is dissipated as heat.
The ratio of those energies is the Reynolds number of the flow
given by

Re = vL

ν

where v is a characteristic flow speed, L is a characteristic
length of the large-scale flow and ν is the kinematic viscosity.
A turbulent fluid has a large Reynolds number, which is to
say convection dominates momentum diffusion, and there is a
large separation of scales between the convective motion of the
fluid and the scale at which the kinetic energy is dissipated as
heat. Turbulent flows are characterized by an energy cascade
in which energy contained in the largest convective motion of
the fluid is transferred via non-linearities to ever smaller scales
until it is dissipated. The range between the energy injection
scale and the dissipation scale is known as the inertial range.

Fluctuation energy at different scales is represented in
Fourier space as a wavenumber power spectrum, E(k). The
picture of the energy cascade begins with energy injected at
the largest scales (smallest k) by stirring or interaction with
boundaries. Non-linearities couple energy to smaller scales
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(larger spatial frequency k). In the inertial range, the only
process at play is the transfer of energy from one wavenumber
k to the next at a rate ε. According to an hypothesis by
Kolmogorov [3] (see below), the form of the wavenumber
spectrum in the inertial range is

E(k) = Cε2/3k−5/3.

Turbulence in magnetized plasmas is further complicated
by magnetic diffusivity characterized by a second Reynolds
number:

Rm = µ0vL

η
,

where η is a resistivity (typically Spitzer). Energy in turbulent
magnetoplasmas can be dissipated by either viscosity or
resistivity. Places in the fluid where there are sheared flows
(vorticity) give rise to viscous dissipation. Places in the fluid
where there are sheared magnetic fields (currents) give rise to
resistive dissipation. The ratio of these two effects is given by
the magnetic Prandtl number:

Pr = Rm

Re

= µ0ν

η
.

Plasmas can be dominated by either viscous or resistive
dissipation. In the plasma wind tunnel described below,
viscous and resistive dissipation are the same order and the
magnetic Prandtl number is near unity.

Another theoretical difficulty is that since ∇ · B = 0
(identically), magnetic field lines thread the turbulent volume
and are continually wrapped and twisted by the flow. In the
limit of very small magnetic diffusivity η/µ0 the turbulence
can amplify the magnetic field at small scales; a turbulent
dynamo. It is a topic of ongoing research to see if magnetic
energy at small scales can be converted to magnetic flux at
large scales.

Three symmetries are important in descriptions of
turbulence. Turbulence is called stationary if mean values,
say 〈b2〉 are independent of the time over which the means
are taken. Turbulence is called homogeneous if mean values
are independent of position (e.g. if 〈b(r)2〉 = 〈b(r + �r)2〉).
Finally, turbulence is called isotropic if mean values of
independent of direction (e.g. if 〈b2

x〉 = 〈b2
y〉). Turbulence

never absolutely reflects these symmetries, for example the
flow direction away from the Sun is special in the solar wind.
We find that for the plasma wind tunnel described below,
there are extended periods during which the turbulence is
approximately stationary, homogeneous and isotropic. The
ergodic theorem states that time averages are the same as
ensemble averages, assuming the fluctuations are stationary.
We typically perform time averages over short epochs in the
plasma wind tunnel (discussed below), but also then perform
averages over an ensemble of perhaps 80 realizations.

1.1. Kolmogorov 1941 theory

It is well established that the Navier–Stokes equation

∂v

∂t
+ v · ∇v = −∇P

ρ
+ ν∇2v

governs incompressible flow, including turbulent flow, but
there is no deductive rigorous proof of turbulent flow from
the Navier–Stokes equation. Nonetheless, it is clear that
turbulence is described by the Navier–Stokes equation (by
numerical simulation, for example) and the key criterion for
turbulence, the Reynolds number, is derived from the ratio of
the convective term (second on the left) to the dissipative term
(second on the right).

For fluid turbulence, the energy transfer rate is the kinetic
energy (per unit mass) divided by a characteristic time. The
characteristic time is the length scale of interest L divided by
the velocity itself, so the units of the energy transfer rate are
ε ∝ L2/t3. The units of kinematic viscosity are those of a
diffusivity ν ∝ L2/t . If one assumes that dissipation occurs at
a scale determined only by the energy transfer rate and viscosity
(one of Kolmogorov’s hypotheses in his 1941 paper), we can
identify by dimensional analysis the Kolmogorov dissipation
scale,

�K =
(

ν3

ε

)1/4

.

The Kolmogorov scale represents the demarcation point
between the inertial range and the beginning of the dissipation
range. There is a similar scale associated with magnetic
diffusivity, η/µ0. Note that for small dissipation and large
energy transfer rate, the Kolmogorov scale becomes small. The
separation between the largest (integral) scale of the turbulence
L and the Kolmogorov scale is a function of the Reynolds
number: L/�K = R

3/4
e ,

The essence of the Kolmogorov 1941 scaling argument
for the omni-directional wavenumber spectrum for fully
developed turbulence is that E(k) in the inertial range depends
only on k (via a power law) and the energy transfer rate ε. This
is another of Kolmogorov’s hypotheses. Kolmogorov thought
about an energy rate per unit mass: ε ∼ v2/τ . For magnetic
turbulence, it is magnetic energy, b2, that is transferred from
one scale L ∝ 1/k to the next in a characteristic time τ . So
the magnetic energy transfer rate is ε ∼ b2/τ , where b is the
fluctuating part of the magnetic field, and τ is the time scale
over which the energy is transferred.

The dimensions of E(k) are such that∫
E(k) dk = 〈b2〉,

so E(k) ∝ b2/k. The time τ in the energy transfer rate depends
on the physics of the transfer. For MHD, we consider an Alfvén
crossing time at the scale L:

τMHD = L

vA
∼ 1

kb
.

This is because ωMHD = kvA. So now we do dimensional
analysis:

E(k, ε) = Ckαεβ,

b2

k
= Ckα

(
b2

τMHD

)β

= Ckαb2β(kb)β.
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We find that 2 = 3β or β = 2/3 and −1 = α+β so α = −5/3.
We get the famous Kolmogorov 1941 result:

E(k) = Ck−5/3ε2/3.

An interesting twist happens if the time scale for the
transfer is faster, say due to Whistler waves or kinetic Alfvén
waves. In that case, there is a different dispersion relation. We
get that ωHall = k2δivA = k2δ2

eωce, or essentially,

τHall ∼ 1

k2b
.

That extra factor of k changes the scaling for E(k) at scales
smaller than δi .

E(k, ε) = CHkαεβ,

b2

k
= CHkα

(
b2

τHall

)β

= CHkαb2β(k2b)β.

We find that 2 = 3β or β = 2/3 and −1 = α + 2β so
α = −7/3. We get a modified energy spectrum (with a
different constant CH ):

EHall(k) = CHk−7/3ε2/3.

1.2. Solar wind

The solar wind is often referred to as the best studied turbulence
laboratory (see [4–7] for a set of excellent reviews). Indeed,
there are extended periods (hours to days) in which the
solar wind is highly stationary. Aside from boundaries at
planetary magnetospheres and the heliopause, there are no
walls constraining the solar wind. Measurements in the solar
wind require expensive spacecraft and seldom are there more
than a few spacecraft present to coordinate measurements (the
Cluster group uses four satellites in a tetrahedral arrangement).
It is known that the solar wind is anisotropic with different
statistical character parallel and perpendicular to the local
mean field. Magnetic field fluctuations in the solar wind tend to
have minimum variance in the direction of the mean magnetic
field. Much is known about the turbulence properties of the
solar wind. Only a brief overview is presented here.

The solar wind is a high velocity (400 km s−1), low density
(10 cm−3) hydrogen plasma with imbedded magnetic field
(typically B ∼= 10 nT = 100 µG at 1 AU). The turbulent
properties of the solar wind have been studied in great detail
near Earth (1 AU) but some satellites (notably Voyagers 1 and
2) have made plasma measurements out to the heliopause,
about 120 AU from the Sun. The flow is supersonic and super-
Alfvénic (with M about 10), and there are periods of fast
wind with velocities over 600 km s−1. Temperatures in the
solar wind plasma are typically about 10 eV with Ti � Te.
Plasma beta (β = Wth/WB), again at 1 AU, is approximately
unity, indicating that neither magnetic pressure nor kinetic
pressure dominates the dynamics. Interestingly, the solar wind
is essentially collisionless; the mean free path for inter-particle
collisions is approximately 1 AU. Nonetheless, the solar wind

behaves in many ways like a collisional conventional fluid,
with interactions mediated via waves.

The solar wind is the only astrophysical collisionless
plasma that we can study in situ. It is clear that the solar wind
exhibits fully developed turbulence in the sense that an active
cascade is present in all dynamical MHD quantities (B, v, n) as
we will show in section 2. The fluctuations tend to be Alfvénic
insofar as B and v are either aligned or anti-aligned at large
scales. Solar wind turbulence contains coherent structures
that reveal themselves as temporal intermittencies in the flow.
Since the solar wind plasma is effectively collisionless (the
collisional mean free path is on the order of one AU), the
wave processes that mediate the turbulent evolution create
anisotropies at the smallest scales.

As we will discuss in section 2, turbulent dynamics
can be studied in both the time domain and space domain.
Analysis of solar wind plasma has focused on the time domain
since typically only single spacecraft are available (with some
exceptions) and the Taylor hypothesis is invoked (f = VSW/λ,
discussed below). The turbulent cascade is manifest through
the frequency power spectrum. Coherent structures and
intermittency is manifest in non-Gaussian features in the
probability distribution function of temporal increments.

1.3. Fusion devices

The most studied turbulent laboratory plasmas have been
toroidal magnetic confinement fusion devices such as
tokamaks and reversed field pinches [8, 9]. There have
been several excellent reviews on magnetic turbulence in
tokamaks [10], electrostatic edge turbulence in tokamaks
[11], and comparisons of the two [12]. In low β magnetic
confinement fusion devices, electrostatic fluctuations should
dominate (especially in the edge). Because of this, much more
is known about electrostatic edge turbulence than magnetic
fluctuations. Nonetheless, magnetic fluctuation studies in
laboratory plasmas have primarily been studied in devices
designed for magnetic confinement fusion. There have been
very few laboratory studies of MHD turbulence in laboratory
plasmas in non-fusion devices. This provides the motivation
for the Swarthmore Spheromak Experiment (SSX) MHD wind
tunnel described in section 4.

The transport of heat and particles in magnetic
confinement fusion devices exceeds that due to inter-particle
collisions by a large factor. In the core of these devices,
magnetic fluctuations are implicated (δB/B) [13], while in the
edge the turbulence is largely electrostatic drift waves (δn/n)
[14]. The sources of free energy are radial gradients in density
and temperature. In any case, in situ measurements of these
fluctuations are difficult in modern fusion devices [15]. Since
magnetic fluctuations dominate in the core, measurements of
δB/B have been particularly challenging.

The simple picture of transport from magnetic fluctuations
is due to Rechester and Rosenbluth presented in a classic paper
[13]. The idea is that turbulence causes a perturbation in the
equilibrium magnetic field of the plasma δBr . Particles that are
normally on confined orbits effectively experience a diffusive
step �r of order δBr/B0, so that diffusion (D ∼ (�r)2/τ )
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scales like (δBr/B0)
2. The Rechester–Rosenbluth diffusion

coefficient for electron transport becomes approximately

D ∼
(

δBr

B0

)2

veL‖,

where ve is the electron thermal speed and L‖ is the correlation
length along the field line. The energy confinement time in
tokamaks has been shown to depend on the magnetic Reynolds
number (and β) indicating that MHD turbulence plays a role
in confinement [10].

Electrostatic turbulence in laboratory plasmas is an active
area of research and will only be touched on here. Density
gradients in magnetized plasmas can destabilize drift waves.
Strong drift wave turbulence has been implicated in degraded
confinement in tokamaks (so-called L-mode), and E × B

velocity shear at the edge (from a radial Er ) has been shown
to mitigate turbulence and increase confinement [16, 17]. The
sheared E × B flow breaks up turbulent eddies at the edge
forming a transport barrier. Much is known about the turbulent
character of the density fluctuations in drift wave turbulence.
Among other things, it has been shown that the frequency
power spectrum for density fluctuations δn/n have a similar
character in a range of magnetic confinement fusion devices
[11], typically with a very steep spectral index (α � 3).

The subject of turbulent or anomalous transport in
magnetic confinement fusion devices is vast, so we will focus
on turbulence measurements in a few cases. The emphasis
in the fusion community has been on turbulent transport but
our emphasis here will be on the types of statistical turbulent
measures discussed below. In section 3, we will focus our
review on early measurements of magnetic turbulence in
the Zeta reversed field pinch [18], later measurements of
fluctuations in a tokamak [9], and recent measurements of the
spatial magnetic fluctuation spectrum in the MST reversed field
pinch [19, 20].

2. Overview of statistical tools for turbulence

Here we review the types of measurements and analytical tools
used in the study of fully developed turbulence. These are
described in much more detail in Batchelor [1] and Frisch [2],
and have been largely developed in the study of turbulence in air
in conventional wind tunnels and water in tidal channels [21].
These tools can be applied to scalar fields such as density n

and temperature T , as well as vector fields such as velocity v

and magnetic field b. We will focus on the magnetic field here.
A suitable turbulent laboratory plasma source should

admit the use of these tools. In other words, there should be a
means to make several simultaneous measurements at multiple
locations, and the turbulent plasma should persist for several
dynamical times. The time cadence of the measurement should
be high enough to resolve physics of interest (for example,
oscillations at the proton cyclotron frequency). In addition,
the spatial separation of detectors should resolve at least the
spatial correlation length of the turbulence (defined below).

In figure 1 we show a sample dataset from the SSX plasma
wind tunnel. In this case, magnetic field is measured at

4 mm resolution (close to the proton gyroscale). Evidently,
spatial resolution is satisfactory since signals from adjacent
locations are very similar, while signals from distant locations
are dissimilar. This observation gives a crude estimate of
the spatial correlation length. These records consist of over
2500 time steps. Long records should be available for
the computation of higher order statistics such as structure
functions. The types of tools naturally divide into time domain
and space domain. In each case, we will present an example
of the technique from either a solar wind or laboratory plasma
measurement, or from a numerical simulation.

2.1. Time domain

Time domain analysis begins with a time series of a fluctuating
quantity, for example a component of the magnetic field b(t)

(see figure 1). If the spatial resolution is good, time series
from a few spatial locations can be averaged together. For the
SSX plasma wind tunnel data presented later, we consider the
signal from a single magnetic probe. In a typical experimental
plasma discharge, there will be different stages during its
evolution (start-up, steady state, decay), and the character of
the turbulence is different at each stage. We will generally
select an epoch of interest for study during a suitable period
rather than analyzing the entire record. In addition, the epoch
of interest should be during a period of otherwise stationary
turbulence. By stationary we mean that average values are
independent of the choice of time origin. Finally, the time
series should persist for several dynamical times, in this case,
several Alfvén times tA = L/vA, where the Alfvén speed
is the characteristic velocity in a magnetized plasma: vA =
B/

√
µ0Mn, where B is the local magnetic field, M is the ion

mass and n is the number density. Four important temporal
statistical tools of turbulence for time series are described
below.

2.1.1. Autocorrelation function. It is useful to measure the
correlation time of the turbulence, i.e. the time it takes a time
series to ‘lose its memory’ or become de-correlated. Visual
inspection of figure 1 shows that the waveform is self-similar
at around 1 µs or less, but clearly different at separations of
10 µs or more. To determine the correlation time of the signal,
we multiply the time series by a copy of itself and introduce a
time lag:

R(τ) = 〈b(t + τ)b(t)〉.

The autocorrelation function is often normalized to unity by
dividing by 〈b(t)b(t)〉. Strictly speaking, Rij is a tensor if
we consider correlations of different components of b, but we
will focus on single components (the diagonal elements of the
tensor). Functionally, we compute the correlation coefficient
for a particular τ by averaging over a time interval during a
stationary phase of the turbulence, then averaging this result
over several realizations of an ensemble. If the turbulence is
truly stationary, then the function R(τ) should be independent
of the choice of the origin of t . This is a good functional check
of stationarity. Correlation coefficients are computed in this
way for a range of τ ’s in order to construct R(τ). We have

4
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Figure 1. Array of waveforms. A sample array of waveforms from the SSX MHD wind tunnel. Satisfactory spatial resolution is evident
from the similarity of adjacent waveforms. Data displayed is 14-bit and recorded at 65 MHz.

in mind studying a single component of the magnetic field
b(t), but one could study correlations of the scalar product
b(t + τ) · b(t). R(τ) is an even function, i.e. R(+τ) = R(−τ).
We define the de-correlation time τC as the time at which R(τ)

drops by some factor: 1/2 or e−1. A more general definition
involving the normalized function is τC = ∫

R(τ) dτ . Later,
when we perform time averages, we demand that averages are
taken over many de-correlation times. The stationary phase of
the turbulence should persist for many de-correlation times.

The autocorrelation function in the solar wind has been
measured several times. The notion of stationarity in the solar
wind (i.e. that average properties of B(t) do not depend on
the origin of time) has also been tested. In a classic set of
papers, Matthaeus and Goldstein [22] analyzed magnetometer
data from Voyager, ISEE 3 and IMP satellites, and found
correlation times in the range 50 000 s, but can be an order
of magnitude smaller or larger depending on solar wind speed
and other parameters. They also found that the solar wind
magnetic field is statistically time stationary, at least in the
‘weak’ sense. Weak stationarity suggests that the simple two-
time R(τ) defined above (N = 2) should be independent of the
choice of the origin of t, while strict stationarity requires that
all higher order correlations (N � 2) are independent of time
origin. Examples of R(τ) appear in Matthaeus and Goldstein,
figure 1 [22] and figure 10 [22]. Many other interesting
statistical measures are presented in these papers.

In figure 2 we show an example of a temporal
autocorrelation function from the SSX wind tunnel.
Autocorrelation from all three components of the magnetic
field from a single location are shown. Note that as we see
from visual inspection of figure 1, the autocorrelation time is
on the order of 1 µs, and fluctuations rapidly de-correlate for
times larger than that.

2.1.2. Frequency power spectrum EB(f ). The spectral
content of the time series b(t) can be obtained with a Fourier
transform or wavelet transform. Typically, we deal with the

Figure 2. Autocorrelation function. A sample autocorrelation
function from the SSX MHD wind tunnel. Shown here is the
temporal autocorrelation function for all three components of B at a
single spatial location. The autocorrelation time is on the order
of 1 µs.

purely real power spectrum EB(f ) or EB(ω):

EB(ω) = 1

T

[∫ T

0
b(t)e−iωt dt

]2

,

where ω = 2πf . If the turbulence is homogeneous, we should
find the same spectrum for b(t) anywhere in the plasma. If the
turbulence is isotropic, we should find the same spectrum for
any component of b(t). In a turbulent flow, the frequency
power spectrum is most useful if spatial structures are frozen
into the flow. This is the Taylor hypothesis [23], meaning that
if a structure of size δ is convected by a probe at velocity V ,
then a frequency of order f = V/δ is registered in the power
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spectrum. In this way, information on spatial fluctuations
is encoded in the time series (i.e. time derivatives can be
converted to spatial derivatives). The hypothesis pertains as
long as the magnetic field of the structure changes slowly
during the time the structure is advected across the probe.
Another way to state it is that the fluctuation velocity v in
the moving plasma frame is small, v/V � 1. This is a good
assumption for high flow speeds and small structures. It is an
especially important assumption in the turbulent analysis of
the solar wind.

An excellent example of a frequency power spectrum
from the solar wind was discussed by Sahraohi et al [24]. In
this measurement, very high frequency (100 Hz) solar wind
magnetic and electric data were analyzed from the Cluster
spacecraft. Data from a 3 h epoch were studied. During
this time, the solar wind speed was 640 km s−1 so at 100 Hz,
structures as small as 6.4 km could be detected. The plasma
density was n ∼ 3 cm−3 and the mean magnetic field was
B ∼ 6 nT. At that density, δi = c/ωpi ∼ 130 km. The
plasma temperatures were Tp ∼ 50 eV and Te ∼ 12 eV, so
the proton gyroradius was ρi ∼ 120 km and the local proton
gyrofrequency is fcp ∼ 0.1 Hz.

In figure 3, the frequency power spectrum (in units
nT2 Hz−1) is presented. Low frequency data (below about
1 Hz) is from the flux gate magnetometer (FGM), while
higher frequency data are from the Cluster STAFF search
coil (SC). The data are resolved into fluctuations parallel and
perpendicular to the mean magnetic field. There is more
energy in the perpendicular fluctuations so the turbulence is
anisotropic, but the slopes are similar indicating that during
this 3 h epoch, the anisotropy seems to be independent of scale.
The low frequency part of the spectrum is consistent with the
Kolmogorov prediction of k−5/3, again assuming the Taylor
hypothesis so ω = kV . The key point of the figure is that is that
there are two break points in the spectrum, and the breakpoints
are associated with structures advected across the satellite at
solar wind speed and not with characteristic frequencies in the
plasma frame. In other words, because the wind velocity is so
high (V 	 vtp), the frequency fρp = V/ρp is much higher
than the proton gyrofrequency fcp ∼ vtp/ρp and much more
consistent with the measured break point in the spectrum.

The standard tool for computing the frequency power
spectrum is the fast Fourier transform or FFT. The FFT affords
an improvement in computational speed of the discrete Fourier
transform from ON2 to ON lnN (hence ‘fast’). Typically,
however, the FFT is taken over a long time duration, often
the entire record. It is often useful to analyze the spectrum as a
function of time. This can be accomplished with a windowed
FFT. Some groups have adopted the more flexible wavelet
transformation [25]. The idea of the wavelet transform is to
isolate shorter portions of the waveform for analysis while
providing some weight to the entire time series. The time
localization and weighting is performed by selection of the
‘mother wavelet’. We consider three typical mother wavelets
below (derivative of Gaussian or DoG, Paul and Morlet).

We present three figures (figures 4, 5 and 6) which show
the wavelet decomposition of a single Ḃθ time series from a
single shot of the SSX MHD plasma wind tunnel for three

Figure 3. Frequency power spectrum. The parallel (black) and
perpendicular (red) frequency power spectrum measured in the solar
wind with the Cluster satellite. Note the −5/3 index in the inertial
range, followed by a steeper index in the dissipation range at higher
frequencies [24].

different mother wavelets (DoG, Paul and Morlet). Each plot
has the full wavelet spectrum in frequency and time space in
subplot (c). Subplot (a) for each figure has the total summed
spectra power over the entire time range and compared to an
FFT computed over that same range. Subplot (b) has the total
power summed over the frequencies indicated in the legend
for each time step. Subplot (d) shows the original time series
data. The key point of subplot (a) is that each wavelet clearly
captures the essential features of the FFT, while enabling
the possibility of more localized time analysis. The wavelet
approach has other advantages.

Comparison amongst the three plots highlights the
advantages and disadvantages of each particular mother
wavelet. Morlet tends to have the highest resolution in
frequency space. Note that the total spectrum in subplot (a) has
the most wiggles. However, the time resolution of the Morlet
is the poorest and as such as the smoothest curve in subplot
(b). The Morlet wavelet also matches up best to Fourier scales
so the red and orange curves in subplot (a) line up the closest.
Conversely, the Mexican-hat mother wavelet or derivative of
Gaussian, n = 2, has the worst frequency resolution, but best
temporal resolution. The correspondence between wavelet
scales and Fourier scales for DoG is not as good and so the
red and orange curves do not match up as well (nor does the
wavelet probe as high a frequency). The Paul wavelet is a good
intermediate between the two. The use of the Morlet wavelet in
the analysis mainly comes out of its good frequency resolution
and correspondence to Fourier scales.

Finally, there is a mathematical connection between
the previously discussed correlation function and the power
spectrum. The Weiner–Khinchin theorem states that the
autocorrelation function and the frequency power spectrum

6
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Figure 4. DoG wavelet, n = 2: (a) spectrum, (b) total power, (c) full wavelet spectrum in time and frequency space, (d) raw waveform data.

Figure 5. Paul wavelet, n = 4: (a) spectrum, (b) total power, (c) full wavelet spectrum in time and frequency space, (d) raw waveform data.

form a Fourier transform pair:

EB(ω) = 1

2π

∫ +∞

−∞
R(τ)eiωτ dτ.

This relationship is sometimes useful if one has high quality
correlation function data and wishes to study the power
spectrum, for example.

2.1.3. Temporal increment. In order to detect the presence
of coherent structures in a time series, one can employ the
technique of temporal increments [26–29]. If the fluctuations
in a stationary time series are truly random, then after some
delay τ (beginning at any time t in the time series), we expect as
many upward changes in the signal as downward changes, and
we expect large increments to be rare. This can be quantified
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Figure 6. Morlet wavelet, n = 6: (a) spectrum, (b) total power, (c) full wavelet spectrum in time and frequency space, (d) raw waveform
data.

by constructing a record of increments for some time lag τ :

�b = b(t + τ) − b(t),

then studying the probability density function (PDF) of the
record. Regions of high magnetic stress in the flow will
be reflected in rapid changes, large excursions, or even
discontinuities in the increment. The PDF of increments will
have a mean value (typically near zero for steady or stationary
turbulence) and a variance σ 2. The PDF of increments can be
compared with a Gaussian with the same mean and variance.
It is often observed, for example in the solar wind [28, 29],
that PDFs of increments are much broader than expected from
a Gaussian or normal distribution. These ‘fat tails’ can be
quantified using the statistical metric flatness (or kurtosis)
for each time lag τ : F(τ) = 〈�b4〉/〈�b2〉2. A Gaussian
distribution has F = 3 but turbulent PDFs of increments can
have a flatness an order of magnitude higher.

As an example of this technique, we consider a solar wind
measurement and simulation comparison by Greco et al [29].
A 27-day time series of magnetic data was studied from the
magnetic field experiment on the ACE spacecraft. The data
were subdivided into 12 h subintervals, and increments �b
were computed for τ = 4 min, normalized to the standard
deviation for each 12 h subinterval. PDFs of increments were
constructed and compared to unit variance Gaussians.

In figure 7, the PDFs of normalized increments of one
component of magnetic field from ACE data are plotted
along with PDFs from both 2D and 3D MHD simulation
data. The key result is that the 2D simulation more closely
matches the ACE solar wind data; both have non-Gaussian ‘fat
tails’ suggestive of a preponderance of small-scale coherent

Figure 7. Temporal increment. PDFs of the normalized temporal
increment comparing ACE satellite data with both 2D and 3D
simulations [29]. Reprinted with permission.

structures. A close analysis of the 2D simulation shows what
kind of structure contributes to the non-Gaussian tails and the
culprit is a sea of small-scale current-sheet-like structures that
form the sharp boundaries between magnetic flux tubes.

Further studies have associated ion heating with
the ‘spontaneous cellularization’ of solar wind turbulence
[30, 31]. The idea is that as MHD turbulence evolves, flux

tubes, discontinuities, and thin current sheets form as part
of the temporal evolution and relaxation processes. The
discontinuities and current sheets, revealed by the PDF of
increment technique described here, can become sites of local
plasma heating if magnetic reconnection ensues.
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2.1.4. Temporal structure function. Averages of powers of
increments are called structure functions.

S
p

B(τ) = 〈(b(t + τ) − b(t))p〉.

Functionally, we generate a table of increments for some
time lag τ . These are all raised to the power p, and we
compute the average. Again, the average is first over a short
time duration during the stationary phase of turbulence for
each discharge, then an ensemble average is performed over
several realizations. The process is repeated for a series of
τ ’s. Alternatively, the PDF of increments can be constructed
for a range of time lags τ and the pth moment can be taken.
Note that structure functions have already been utilized above
in computing the flatness. Flatness can be viewed as fourth-
order structure function suitably normalized.

Temporal structure functions have been studied in the solar
wind (see the review by Marsch and Tu [32] and references
therein, as well as [33]) and the ionosphere [34]. Assuming
again the Taylor hypothesis that the rate of evolution in the
plasma frame is slow compared with the rate at which structures
are advected by spacecraft, the prediction from Kolmogorov
turbulence theory is Sp(τ) ∝ τp/3 [2]. In other words, a
log–log plot of S

p

B(τ) for some power p should have a linear
region corresponding to the inertial range. Famously, the
second-order structure function grows like τ 2/3 in numerous
wind tunnel experiments [2]. Growth of the second-order
structure function like τ 2/3 is closely connected with the
frequency power spectrum (another second-order statistical
quantity) dropping like f −5/3 in Kolmogorov turbulence. Data
from long time series from the Voyager and Helios spacecraft
show structure functions with slopes much flatter than the
Kolmogorov prediction. In the Marsch and Tu review, data
from structure functions up to 20th order are shown. It is
only above sixth order that departures from the Kolmogorov
prediction are observed.

In a recent series of observations using the Cluster
spacecraft and the FGM and STAFF-SC instruments discussed
above, Kiyani et al [33] measured high-order structure
functions in a stationary interval of fast solar wind. In figure 8,
a log–log plot of S

p

B(τ) versus τ shows an increase in the slope
as the order increases from p = 1 to 5. An increase is observed
for both the inertial range (τ > 10 s) as well as the dissipation
range (τ < 1 s). Just as in the March and Tu review, the
Kiyani et al results show structure functions with slopes flatter
than the Kolmogorov prediction at the higher orders due to
intermittency.

2.2. Space domain

Just as with the time domain, we can take either products or
differences of snippets of waveforms (see figure 1). In a typical
experiment, and certainly in solar wind observations, we have
access to long time series but typically sampled at many fewer
spatial locations than time points. As such, space domain
metrics are often computed over some brief time period,
though at least a few de-correlation times. Products of nearby
waveforms yield a finite number; a correlation coefficient
of unity if properly normalized. Distant waveforms are

Figure 8. Temporal structure function. Structure functions of order
1 to 5 from magnetic fluctuations measured by the Cluster
spacecraft [33]. Reprinted with permission.

uncorrelated so products tend to cancel, and spatial correlation
coefficients approach zero. Differences of nearby waveforms
cancel, so structure functions begin at zero. Distant waveforms
are uncorrelated so differences yield a finite number, and
structure functions grow with separation. The following are
four spatial turbulence metrics analogous to the temporal
metrics just discussed.

2.2.1. Spatial correlation function. The analog of the
autocorrelation function is the spatial correlation function

R(r) = 〈b(x + r)b(x)〉.

Here 〈∗∗〉 implies an average over a short temporal epoch (but
longer than a temporal de-correlation time) then an average
over all realizations in the ensemble. In some instances,
particularly in the solar wind, true ensembles are problematic
so longer time averages replace ensemble averages, invoking
the as-yet unproven ergodic hypothesis. Typically, R(r) is
normalized by 〈b(x)b(x)〉. Functionally, we select a brief time
epoch of interest, multiply the two waveforms and average over
that epoch. If the turbulence is spatially homogeneous, one can
repeat this process for all pairs of detectors separated by the
same distance for the same realization. Finally, an ensemble
average is performed over many identical realizations. For
well-behaved turbulence, the magnetic fluctuations at two
points should become uncorrelated at large spatial separation
and the correlation function should vanish (R → 0 as r → ∞).

Two-point velocity correlation functions have been
measured in conventional fluids for decades (see, for example
[35]) but two-point magnetic correlations in plasmas are less
common. The first proper two-point single time measurements
of the magnetic correlation function in the solar wind plasma
were performed by Matthaeus et al [36]. They used
simultaneous magnetic field data from several spacecraft,
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Figure 9. Spatial correlation function. Measured using ACE–Wind
data and Cluster data (closer separations). A parabolic fit to R(r)
yields the Taylor microscale [36]. Reprinted with permission.

including the four Cluster spacecraft flying in tetrahedral
formation. Simultaneous measurements were performed with
separations as small as 150 km (using pairs of Cluster satellites)
to as large as 350RE (2.2×106 km). From measurements of the
outer correlation scale, and the Taylor microscale (discussed
below), they report an effective magnetic Reynolds number of
solar wind Reff

m = 230 000.
In figure 9, a magnetic correlation function R(r) for the

solar wind is presented. Three sets of multi-spacecraft data are
used. First, at relatively small separations of 0.024−0.042RE

(about 150–270 km), data from the Cluster satellites from 2004
are used. Next, Cluster data at wider separations of 0.4–1.2RE

(about 2500–7600 km). Finally, correlation coefficients from
the ACE–Wind pair of satellites at separations up to 350RE

are used. From the data in figure 9, the authors were able
to estimate the Taylor microscale of the solar wind from the
curvature of R(r) near r = 0. The Taylor microscale is the
scale associated with mean square spatial derivatives of the
fluctuating magnetic field b. The magnetic Taylor microscale
can be formally defined as

λ2
T = 〈b2〉

〈(∇ × b)2〉 .

It is at this scale that one would expect dissipation effects,
say from reconnecting current sheets, to become important.
From the Taylor microscale λT and an estimate of the larger
correlation scale of the solar wind (λCS = ∫ ∞

0 R(r) dr),
an effective turbulent magnetic Reynold’s number can be
written [1]:

Reff
m =

(
λCS

λT

)2

.

A large Taylor Reynold’s number so-defined (Reff
m 	 1) is

often invoked as a true measure of a turbulent flow since Reff
m is

independent of arbitrary dimensions (like the size of a device)
or a diffusivity based on microphysics or collisions.

2.2.2. Wavenumber power spectrum EB(k). The spectral
content of an array of spatial measurements b(r) can be
obtained with a Fourier transform in a way completely
analogous with the frequency power spectrum. Typically, we
deal with the purely real power spectrum EB(k):

EB(k) = 1

R

[∫ R

0
b(r)e−ikr dr

]2

.

Operationally, we construct an array of b(r) at a fixed time
(or averaged over a short epoch of times), then compute
the Fourier transform. The square of the FFT is the power
spectrum. Several power spectra can be averaged within a
stationary phase of turbulence of a single realization, then
spectra from many realizations can be ensemble averaged.
True single time wavenumber power spectra are difficult to
construct in solar wind plasmas since typically no more than
four spacecraft make coordinated simultaneous measurements
(Cluster, for example). To our knowledge, there are no
single time wavenumber power spectra of the solar wind yet
published.

Laboratory experiments, on the other hand, afford
the possibility of fielding many detectors for simultaneous
measurement. For example, the wavenumber power spectrum
B̃2(k) has been measured in the MST reversed field pinch
[19]. Fluctuations at large scales are measured by a two-
point correlation technique allowing access to the ‘tearing
mode range’ (scales greater than about 10 cm or so). Small-
scale fluctuations (between 1–10 cm) are measured by a linear
array of magnetic probes. Importantly, because of the known
magnetic geometry of MST, these fluctuations are easily
resolved into perpendicular and parallel components with
respect to the applied field (k⊥ and k‖). These probes are
similar to those used in the MHD wind tunnel discussed below.

In figure 10, true wavenumber power spectra for k⊥ and
k‖ are plotted. The fluctuations are clearly anisotropic with a
much flatter spectrum for plasma waves propagating across
the applied magnetic field than along it. This disparity is
characteristic of anisotropic MHD turbulence, for example
that observed in the solar wind [37]. It is important to
note the distinction between spectra corresponding to a wave-
vector k and spectra corresponding to fluctuations projected
onto a local coordinate, defined by the momentary local
magnetic field for example. This latter case is called variance
anisotropy. Typically, in the solar wind, power in fluctuations
perpendicular to the local magnetic field exceeds power in
fluctuations parallel to the local field by less than an order
of magnitude (see figure 3). Interestingly, in this laboratory
experiment, the anisotropy is three orders of magnitude. The
connection between wavenumber anisotropy and variance
anisotropy is ambiguous. In other words, a wave mode
propagating purely across the applied magnetic field (e.g. a
magnetosonic wave) will have variance anisotropy parallel to
the local magnetic field.

The MST data presented here reaches into the dissipation
range, so the authors perform a fit to a model that includes
the characteristic Kolmogorov k

−5/3
⊥ scaling, as well as an

exponential dissipation term:

EB(k) = ε2/3k
−5/3
⊥ exp (−b(k/kd)

α) .

10



Plasma Sources Sci. Technol. 23 (2014) 063001 Invited Review

Figure 10. Wavenumber power spectra. Parallel and perpendicular
wavenumber power spectra measured in the MST reversed field
pinch [19]. Reprinted with permission.

The authors find a dissipation wavenumber kd = 0.6 cm−1,
suggesting dissipation at about the ion gyroscale of 1 cm in
MST. Values of α = 4/3 and b = 3/2 are consistent with
theoretical models discussed in the paper.

Finally, in complete analogy with the temporal case
above, there is a mathematical connection between the spatial
correlation function and the wavenumber power spectrum. The
Weiner–Khinchin theorem states that the wavenumber power
spectrum and the spatial correlation function form a Fourier
transform pair:

EB(k) = 1

2π

∫ +∞

−∞
R(r)eikr dr.

Again, this affords the researcher some flexibility if data is in
one form or the other.

2.2.3. Spatial increment. Experimental measurements of
true single time spatial increments are much more challenging
than temporal increments since typically, many fewer spatial
locations are sampled in an experiment than temporal points.
This is particularly true in the solar wind. Perhaps the
best examples of spatial increment studies come from MHD
simulations [28, 29, 38]. The spatial increment is defined
in complete analogy with the temporal increment discussed
above:

�b = b(s + �s) − b(s),

where s is some (perhaps 3D) trajectory and �s is a spatial
separation or lag along the path. We have in mind a component
of b, but strictly speaking one can project the vector increment
on the direction �s.

Servidio et al [38] ran a 2D turbulent MHD simulation
(40962 grid points) and stopped the run at 0.4 Alfvén times
when the turbulence was fully developed. They then selected a
path s through the data set and computed the spatial increments
along the path. A small spatial lag was chosen, �s = 0.67λd

where λd is the dissipation scale for the simulation. For the

Figure 11. Spatial increment. Contour lines of magnetic field from
a 2D MHD simulation. A sample trajectory (green) passes through
discontinuities that may be associated with active current sheets
(blue). Note that not all large increments (magneta) are also current
sheets [38]. Reprinted with permission.

purposes of the study, they constructed a related metric called
the partial variance of increments (PVI) [28, 29]:

I(s, �s) = |�b(s, �s)|√
〈|�b(s, �s)|2〉

.

This is essentially a (positive definite) normalized magnitude
of the increment. Note that the term PVI has been used in the
literature to define both I and its square. The spatial average in
the denominator is taken over some segment of the trajectory
but at least several correlation lengths of the turbulence. For
the analysis presented here, the authors averaged over 535λCS.

In figure 11, contour lines of the magnetic field from
the 2D simulation are depicted along with identified current
sheets (blue). The path s is the diagonal set of green solid
lines. Since the simulation is performed in a periodic box,
when the green trajectory leaves the right edge of the box,
it re-emerges at the corresponding point on the left side of
the box. A technique for statistically associating regions
of high magnetic stress and tangential discontinuities with
reconnection current sheets is employed using the PVI metric.
Not all magnetic discontinuities in an experiment or simulation
are active reconnection sites, but in a simulation, much more
information can be brought to bear to identify a discontinuity
as an active current sheet.

The idea is to set a threshold on the normalized increment
in order to select the highest gradient discontinuities. In the
figure, a threshold value of I � 5 is selected. In other
words, we wish to examine those tangential discontinuities
with a gradient greater than about 5 standard deviations
above the mean fluctuation. In the example, there are 40
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discontinuities with I � 5 of which 23 are active reconnection
sites (determined by other criteria). In addition, there are a total
of 37 identified active reconnection sites on the trajectory s,
meaning that not all reconnection sites have a large enough
PVI to be selected by the threshold. In any case, this simple
statistical method associates regions of magnetic stress and
discontinuity with active reconnection current sheets with
about 50% efficiency.

An important next step is to associate turbulent heating
with coherent structures as identified above as departures
from Gaussian statistics. In a series of papers, Osman et al
[31, 39, 40] have begun to associate enhancements in heating-
related solar wind diagnostics with coherent structures. Their
findings support the hypothesis that dynamically generated
current sheets in the solar wind are sites of enhanced heating.
The idea is to use the PVI diagnostic discussed above to
conditionally average solar wind data, specifically heating
diagnostics such as electron heat flux, electron temperature and
ion temperature measured by the ACE and Wind spacecraft.

Osman et al made several interesting findings. First,
conditional sampling on the PVI statistic shows enhancement
in every heating-related diagnostic [31]. In particular,
ion temperature measured by the ACE spacecraft showed
an increase from 68, 000 K to 138, 600 K to 193, 200 K
conditionally sampled on the PVI statistic for �B � 0.2 σ, ∼
2 σ and � 3 σ respectively. This is significant evidence
that enhanced ion heating occurs in coherent structures with
the highest heating occurring in the structures with the
largest intervals �B. These structures are revealed as large
discontinuities in the magnetic field that appear much more
often than one would expect from a normal distribution of
fluctuations.

Second, Osman et al found a preponderance of hot ions
with a different association connected with the PVI interval
statistic [39]. In a remarkable discovery, Bale et al [41] found
that the distribution of 1 million gyroscale solar wind magnetic
fluctuations from the Wind spacecraft when plotted in T⊥/T‖
versus β‖ space are highly constrained by the mirror instability
threshold at high T⊥/T‖ and the oblique firehose instability at
low T⊥/T‖. There are essentially no observations of solar
wind fluctuations at very large or very small T⊥/T‖ if β‖ � 1.
Osman et al [39] analyzing the same data, found that near
instability thresholds both the PVI statistic was large and the
scalar proton temperature was enhanced by a factor of 3–4.
There is a clear association of hot ions, enhanced PVI, and
anisotropy instability thresholds in the solar wind.

Finally, Osman et al used measurements from the ACE
spacecraft to provide evidence for non-uniform heating in the
solar wind [40]. They measured the mean proton temperature
conditioned on distance from high-stress magnetic events
determined with the PVI statistic. Again, they found that the
highest proton temperatures were associated with the largest
increments. Furthermore, by estimating the thermal energy
density of the solar wind conditioned on the PVI statistic, they
found that a large fraction of the solar wind internal energy is
due to heating in coherent structures constituting a relatively
small volume of the plasma. For example, a PVI statistic of
I � 2.4 constitutes only 19% of the data set, yet is responsible
for 50% of the heating.

2.2.4. Spatial structure function. For the same reason
that spatial increments are challenging in observations and
experiments, so are spatial structure functions. Indeed,
accurate computation of structure functions, especially at
high order, require very large data sets [42]. Experimental
determination of high-order single time spatial structure
functions, particularly in the solar wind, are challenging. Yet
it is important that we study them since intermittency and the
preponderance of small-scale coherent structures in a turbulent
flow are revealed by the anomalous behavior of exponents of
high-order spatial structure functions. In addition, predictions
from turbulence theory typically refer to fluctuations in space.
Spatial structure functions for the fluctuating magnetic field
are defined in the same way as was done for temporal structure
functions:

S
p

B(s, �s) = 〈(b(s + �s) − b(s))p〉,

where s is a path through a turbulent flow. Hydrodynamic
turbulence theory predicts that if the turbulence is self-similar
and fully developed, then higher order structure functions
should scale linearly with the order of the structure function:
S

p

B(�s) ∼ �sζ . The Kolmogorov 1941 (K41) prediction
for fluid turbulence is ζ = p/3 [2, 3] while the Iroshnikov–
Kraichnan (IK) prediction for MHD is ζ = p/4 [43, 44]. The
extent to which there is intermittency and coherent structures
in the flow is manifest in departures from a linear relationship
of the scaling exponents. Dissipation is likely to occur in these
localized coherent structures whether they be viscous vortex
filaments or resistive current sheets. Indeed, the dissipation
need not be collisional but in the case of magnetic dissipation,
almost certainly involves collisionless dissipation mechanisms
at electron scales.

Again, we turn to MHD simulation for a suitable
example [45, 46]. Mininni and Pouquet performed a turbulent,
incompressible MHD simulation at high spatial resolution
(15363). The simulation is run for 3.7 Alfvén times at the
peak of dissipation then is stopped for analysis. At this time,
the kinetic Reynolds number based on the integral (largest)
scale of the flow is Re = 9200 while the Reynolds number
based on the smaller Taylor microscale is Reff

e = 1700.
In figure 12, the scaling exponent ζ is plotted as a function

of structure function order p. The scaling exponent for both
magnetic and velocity fluctuations is plotted, as well as the K41
and IK predictions. A sample third-order structure function
and fit is plotted above. The K41 prediction for third order
is ζ = 1. Note again that for p = 2 the K41 prediction is
ζ = 2/3 so that S2

B ∼ �s2/3 and this implies a wavenumber
power spectrum (also a second-order quantity) that varies like
EB(k) ∼ k−5/3. The slightly different scaling properties
of the velocity and magnetic field are attributed to different
intermittency properties of each field. Physically, a coherent
magnetic structure leading to intermittency in the magnetic
field would be a current sheet, perhaps at the boundary
between magnetic flux tubes. A coherent velocity structure
leading to intermittency in the velocity field would be a vortex
structure, perhaps embedded in a sheared flow. The different
geometrical character of these structures could explain the
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Figure 12. Spatial structure function. Slope of the spatial structure
function for orders 1 to 8 from a 3D MHD simulation for both
velocity and magnetic field (lower). Theoretical prediction from
both Iroshinov–Kraichnan (IK) and Kolmogorov (K41) are plotted.
The upper plot depicts the third-order structure function [46].
Reprinted with permission.

differences in the scaling properties and the spectra. Note
that measurements in the solar wind show that velocity power
spectra are slightly flatter than magnetic field power spectra
for the same interval [47].

As an aside, there is now evidence that the magnetic
spectrum in the solar wind with a power law exponent of
5/3 is somewhat steeper than the velocity spectrum with a
power law exponent closer to 3/2 [47]. This would imply a
second-order structure function p = 2 scaling exponent of
ζ = 2/3 for magnetic fluctuations but a scaling exponent of
ζ = 1/2 for velocity fluctuations. These results are due to
careful analysis of four distinct intervals Wind spacecraft data
with long records (up to 2.3 million samples). Power spectra
for each of the three Cartesian vector components are summed
to obtain a total power spectrum for velocity and magnetic
fluctuations. This result points out that there are likely
different transfer and dissipation mechanisms for kinetic and
magnetic energy in a turbulent plasma. In particular, velocity
fluctuations are damped by plasma viscosity parametrized by
the kinetic Reynolds number Re, while magnetic fluctuations
can be damped by plasma resistivity parameterized by the
magnetic Reynolds number Rm. The ratio, the Prandtl number
Pm ≡ Rm/Re, can take on any value.

3. Survey of turbulence experiments

There have been several excellent laboratory measurements
of plasma turbulence in non-fusion devices. However, these
have tended to focus on electrostatic drift wave turbulence
in linear, magnetized plasma columns [48–51]. Because
of the important role turbulence plays in transport, there

have also been numerous studies of plasma turbulence in
toroidal magnetic confinement fusion devices, including both
electrostatic and magnetic fluctuations. For this survey, we
have selected early studies in a tokamak [9] and in a reversed
field pinch [18], and conclude with a more modern study of
wavenumber magnetic spectra in the MST reversed field pinch
[19, 20]. Our focus is on the use of the statistical turbulence
tools discussed above (spectra, correlation functions, etc)
rather than on the transport. Our emphasis will be on
magnetic and velocity fluctuations, though we will discuss one
measurement of electrostatic turbulence.

The energy injection process at the largest scales
is different for every turbulent plasma. The notion of
Kolmogorov-type turbulence is that once energy is injected
into the inertial range, the memory of the injection process is
lost and all that matters is the local transfer of energy from
one scale to the next. However, in a plasma there are fluid
processes that can rapidly couple energy from the very largest
scales to the very smallest. For example, in an interesting
MHD experiment it was shown by Moser and Bellan that a
large-scale kink instability could drive a small-scale Rayleigh–
Taylor instability [52].

Large-scale MHD processes can also destabilize small-
scale kinetic processes. For example, in regions of high
current density (say reconnecting current sheets) with electrons
drifting at velocity vD with respect to ions, electrostatic ion
cyclotron waves with ω ∼= �ci are destabilized if vD 	 vi

where vi is the ion thermal speed [53]. These waves propagate
across the magnetic field with k⊥ρi

∼= 1, where k⊥ is the wave
number orthogonal to the magnetic field and ρi is the ion’s
thermal gyroradius. The theory is appropriate for β � 1 and
Te

∼= Ti.
Large-scale driving can be reconnection-type tearing

modes (such as in the MST reversed field pinch) or supersonic
acceleration of the solar wind at the corona. The driver
for edge turbulence in a tokamak is typically gradients in
density or temperature. Very specific types of electrostatic
turbulence can be driven by ion-temperature gradients (ITG)
or electron-temperature gradients (ETG) [54]. In the SSX
MHD wind tunnel, the injection mechanism is the unraveling
of magnetic energy stored in a compact, twisted structure called
a spheromak.

3.1. An early tokamak study

We begin with a series of studies by Zweben et al in the
mid-1980s of turbulence in a small research tokamak [9, 55].
Subsequent related experiments on several other tokamaks
were covered in a review article by the same author [11]. The
work presented here is prototypical of drift wave turbulence in
many other devices. While the character of the turbulence in
these experiments was electrostatic, the methods and analysis
foreshadowed a more modern approach.

The Caltech tokamak was a small device with toroidal field
B0 = 0.35 T and plasma current I = 30 kA. The dimensions of
the device were R = 0.45 m and a = 0.16 m. The density and
temperature near the edge of the device (where measurements
were made) were ne

∼= 1012 cm−3 and Te � 25 eV. Two
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Langmuir probe arrays were used. One linear array featured
32 tips each 1 mm in diameter. The other 2D array was an
8 × 8 matrix of probes covering a 1.8 cm square patch near the
wall. Data were recorded with an analog bandwidth of about
200 kHz. Ion saturation current was recorded on each probe
tip, proportional to the local electron density.

The key results were that the turbulence consisted of
density and electrostatic potential structures aligned with
the background toroidal field; essentially 2D filaments.
Correlation lengths in the poloidal (r–θ ) plane are short (about
1 cm) and fluctuation amplitudes are large (δn/n � 5%).
These types of structures are now known to be ubiquitous
in toroidal confinement devices and have subsequently been
measured and imaged in virtually every device [11]. In that
recent review, Zweben states ‘the size scale is typically ∼0.1–
10 cm perpendicular to the magnetic field but many meters
along the magnetic field, i.e. the structure is nearly that of 2D
filaments.’ [11]

Using the same analysis tools described in section 2,
Zweben et al find a de-correlation time from the autocorrelation
function of about 100 µs and a correlation length from
the spatial correlation function of about 1.2 cm (poloidal
direction). Note that these are times and lengths associated
with density fluctuations in the turbulence but the analysis
techniques are identical to those used in section 2. The
temporal and spatial correlation functions for this experiment
are shown in figures 3(a) and (b) in [9]. Since they measured
fluctuations with good spatial and temporal resolution, the
authors were able to construct spectra using FFTs in both the
time and space domains (ñ(ω, k), see figure 5 in [9]). No
spectral indices are calculated.

Particularly interesting, and a harbinger of experiments
decades later, 2D fluctuation maps were constructed to
generate frame-by-frame ‘movies’ of the turbulence. At each
time step a 2D map of the density fluctuations were constructed
from the 8 × 8 array. Correlation functions in the radial and
poloidal directions can be compared and they find that the
radial correlation length is shorter (about 0.7 cm).

Electrostatic edge turbulence is observed in virtually every
toroidal magnetic confinement device [11], and that turbulence
has been implicated in degraded confinement of particles
and energy. Turbulence has been mitigated in virtually
every toroidal magnetic confinement device since 1982 by
the application of sheared poloidal flow and so-called H-
mode (‘H’ for high confinement) [16, 17]. The idea is that
sheared poloidal flow at the edge (either driven by an applied
radial electric field or spontaneously generated by other means)
breaks up the larger eddies, de-correlates the turbulence, and
mitigates radial transport. A transport barrier is generated at
the edge, reducing diffusion to neoclassical levels.

More sophisticated statistical measures can be extracted
from 2D fluctuation maps such as the third-order quantity: the
auto-bispectrum [56]. The bicoherence (a normalization of the
auto-bispectrum) is sensitive to the phase relationship among
three waves (k1 + k2 = k3). If the phases of the three waves
are not coupled, then the bicoherence is approximately zero.

3.2. An early reversed field pinch study

The first systematic measurements of magnetic fluctuations in a
laboratory plasma were studied in the Zeta reversed field pinch
at Culham by Robinson and Rusbridge in the early 1970s [18].
The study included variations in discharge current and toroidal
field, but the biggest variations were observed with changing
neutral fill pressure.

The authors propose in this paper that MHD turbulence
bears a resemblance to conventional fluid turbulence, but with
the turbulent elements elongated along the magnetic field (5 cm
in radius but more than 60 cm long, aligned with the magnetic
field). This suggests the paradigm of 2D turbulence as a
model, very similar to that found for electrostatic turbulence
in tokamaks [11], but now the structure is in the velocity
and magnetic fields. It was the intention of the authors to
examine the turbulence in Zeta in light of the Kolmogorov
energy cascade picture. They say, ‘nonlinear effects couple
(large scale structures) to eddies of smaller scale and the
turbulent energy cascades through ever smaller scales until on
the smallest scales viscous damping becomes important and
dissipates the energy into heat’. The seminal work of Robinson
and Rusbridge is often cited in studies of anisotropic turbulence
in the solar wind.

The Zeta reversed field pinch was a large fusion device
operated at the Culham Laboratory in the United Kingdom
for the UK Atomic Energy Authority. It had a toroidal
field B0 = 0.15 T and plasma current I = 150 kA. The
dimensions of the device were R ∼= 1.8 m and a ∼= 0.5 m.
The density and temperature near the center of the device
were ne � 1014 cm−3 and Te � 15 eV. Measurements of ion
temperature were inconclusive, but it was suggested that Ti was
substantially higher than Te (as high as 400 eV from some early
ion Doppler broadening measurements [57]). The densities
and temperatures were similar to those measured in the SSX
MHD wind tunnel discussed below, though in a device a factor
of 5 larger.

Measurements were made with magnetic pickup loops
about 0.5 cm in diameter consisting of 500 turns. The system
(with integrators) had a bandwidth of about 1 MHz. The probes
were placed in 1 cm diameter quartz tubes. Spatial resolution
was about 1 cm. Dominant magnetic field fluctuations at 1–
3 kHz were highly correlated at large scales and corresponded
to helical distortions of the whole current channel. Higher
frequency fluctuations above 7 kHz were correlated only
over distances of �10 cm and could be analyzed as MHD
turbulence.

While most of the turbulent energy was contained in fluid
motions, measurements of velocity fluctuations with two-sided
electrostatic probes proved difficult. It appears that there was
some interference or ground loops affecting the electrostatic
signal. Nonetheless, Robinson and Rusbridge conclude that
the energy injection mechanism of the Kolmogorov cascade are
large-scale velocity fluctuations such that E+v×B ≈ 0. They
note that since the electric field fluctuations are approximately
curl-free (irrotational), then the velocity field fluctuations are
approximately divergence-free (solenoidal).

Robinson and Rusbridge adopt the notation 〈bαbβ〉γ to
denote the correlation between the α and β components of the
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magnetic field separated in the γ direction. Figures 2 and 3 of
[18] show the spatial correlation function 〈brbr〉r for a variety
of gas fill pressures and discharge currents. Using analysis
similar to that discussed above, the authors fit the radial
correlation function to a quadratic form in order to extract
a Taylor microscale. Another technique uses the first-order
structure function (normalized) to estimate the microscale.
The microscale varies from a few cm to 6 cm in Zeta, with
some dependence on fill pressure (figure 5 of [18]). Spatial
correlation lengths in the radial direction are of the same order
(about 5 cm) while correlation lengths along the field lines are
much longer. The authors state, ‘the turbulent elements must
be thought of as rolls with length at least ten times the radius,
aligned along the magnetic field’.

The frequency power spectrum for the magnetic field was
measured in Zeta and fit to a power law. Note that since
there is no bulk flow reported in Zeta (‘the mean velocity
of the plasma is negligible’), the connection between the
frequency power spectrum and the spatial power spectrum
is unclear (i.e. there is no Taylor hypothesis as discussed
above). Nonetheless, the authors report steep power-law
spectral indices between 3.4 and 6.4 for low (0.5 mTorr) and
high (5.0 mTorr) fill pressure of deuterium (and decreasing
Reynolds number). Autocorrelation functions were measured
and autocorrelation times extracted for Zeta discharges. The
authors find autocorrelation times for magnetic fluctuations on
the order of 10 µs that increased with increasing fill pressure.

The authors calculate large-scale kinetic and magnetic
Reynolds numbers, Re and Rm, based on microscopic viscosity
and resistivity and find a range from Re = 1000 → 5 and
Rm = 200 → 1 (see figure 12 of [18]). This variation
follows an increase of fill pressure from p = 0.1 → 5 mTorr.
Note that this means that Zeta plasmas were somewhat more
resistive than viscous (i.e. Pr ≈ 0.2). If Ti 	 Te, this result
is difficult to explain. The authors then calculate the kinetic
and magnetic microscales from Re and Rm. These range from
0.03 → 2 cm and 0.1 → 3 cm (see figure 13 of [18]). These
values are consistent with the calculated Reynolds numbers
but inconsistent with the measured integral and microscales
(which were found to be comparable). Recall that in section 2
we found that RTaylor ∼ (λint/λmicro)

2.

The authors go to heroic lengths to estimate the normalized
triple correlation 〈v2

1v2〉 and find a value of −0.016 ± 0.004
(statistically different than zero). This is the main result of
the paper. They note that ‘the triple velocity correlation in a
flow is a measure of the nonlinear terms in the equation of
motion and hence of the effectiveness of the transfer of energy
between the different modes’. They claim that ‘the existence
of a triple velocity correlation combined with the form of the
measured frequency spectra and derived wavenumber spectra
invite comparison with the cascade theory of fluid turbulence’.

Ion Landau damping is suggested as a possible dissipation
mechanism at low neutral fill pressures (and higher Reynolds
number). Viscous damping is suggested as the dominant
dissipation mechanism at higher pressures.

3.3. A modern measurement of the wavenumber power
spectrum

The MST reversed field pinch is a large, modern magnetic
confinement device with major radius 1.5 m and minor radius
0.5 m. The toroidal field is B0 � 0.5 T and plasma current I =
400 kA. The plasma parameters of MST are much more fusion-
relevant than the early Zeta RFP. The MST plasma density and
temperature are ne ∼ 1013 cm−3 and T � 2 keV. With a strong
toroidal field and low collisionality, MST achieves a Lundquist
number up to 107. For the studies presented here, the plasma
current was I = 200 kA and Te(0) = 180 eV [19, 20].

Turbulence in MST is driven by plasma relaxation and
tearing mode activity at the largest scales of the device.
Fully developed anisotropic magnetic turbulence ensues and
is measured by magnetic probe arrays. The main finding is
that the turbulence has broad spectral power in the direction
perpendicular to the local mean magnetic field. The k⊥
wavenumber spectrum is asymmetric in the ion and electron
diamagnetic drift directions. The physical explanation is that
a strong background magnetic field prevents bending of field
lines, but it is easier to interchange or translate field lines as one
would expect from waves propagating across the mean field.

The MST magnetic probe array has two sets of four coils
(3 mm in diameter) which simultaneously measure the poloidal
(r–θ ) and toroidal components of the magnetic field. Note
that in MST, the background field near the edge is largely in
the poloidal direction. It is characteristic in a reversed field
pinch for the toroidal field to reverse (hence the name), so
that at the reversal layer, Btor ∼ 0. Like the SSX MHD
wind tunnel measurements discussed below, MST measures Ḃ

directly to maximize bandwidth. Fluctuations up to 2.5 MHz
can be measured.

Data are taken during a large relaxation event (sawtooth
‘crash’). Local mean field is about 400 G (fci ∼ 600 kHz)
while the fluctuation level during the ‘crash’ is about 50 G,
so δB/B ∼= 0.1. The MST data was presented in figure 10
in section 2. As noted above, the spectrum reaches into the
dissipation range, so the authors perform a fit to a model that
includes the characteristic Kolmogorov k

−5/3
⊥ scaling, as well

as an exponential dissipation term:

EB(k) = ε2/3k
−5/3
⊥ exp (−b(k⊥/kd)

α) .

Terry et al find a dissipation wavenumber kd = 0.6 cm−1,
suggesting dissipation at about the ion gyroscale of 1 cm in
MST. Values of α = 4/3 and b = 3/2 are consistent with
theoretical models discussed in the paper [19]. In particular,
the theory is extended to large magnetic Prandtl number
Pr = Rm/Re = ν/η (i.e. to plasmas that are more viscous
than resistive, such as the SSX MHD wind tunnel plasma).

Another related experiment, though not in fully developed
turbulence, was a measurement by Howes et al of the non-
linear interaction of two counter-propagating Alfvén waves
[58]. This is the first demonstration of the ‘building block’
of Alfvénic turbulence: two waves coupling to produce a third
at higher spatial and temporal frequency (i.e. smaller scales).
The setup of the experiment is to launch two Alfvén waves at
either end of the very long LAPD device (the plasma is 16.5 m
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in length and 0.4 m in diameter). One wave is launched at high
frequency (270 kHz) and the second at a much lower frequency
(60 Hz). The polarization of the waves is orthogonal, and
k⊥1/k⊥2 ∼ 3.

The amplitude of the parent waves is not large, but the
observational signature of the non-linear daughter Alfvén
wave is clear. The daughter wave has the predicted
wavenumber from conservation of momentum: k3 = k1 +
k2, at the expected frequency from conservation of energy:
ω3 = ω1 + ω2 ∼ ω1. The amplitude of the daughter wave
was very small (10 mG cm2) compared to the parent waves
(500 mG cm2 and 10 000 mG cm2, respectively) so no further
dynamics could be measured. Nonetheless, this is an important
demonstration of the basic physics of Alfvén wave coupling.

4. MHD plasma wind tunnel

In this topical review, we have seen that a typical laboratory
experiment exhibiting MHD turbulence features a large applied
magnetic field generated by external coils. This is particularly
true of devices designed for magnetic confinement fusion (e.g.
reversed field pinch or tokamak), since a strong toroidal field is
important for stability but does not participate in the dynamics.
In naturally turbulent plasmas, such as the solar wind or a pulsar
magnetosphere, the magnetic field is completely dynamical,
meaning that the magnetic field is convected along with the
plasma flow and is generated entirely from currents flowing
in the plasma. In addition, natural plasmas have a wide range
of plasma beta, β ≡ (2µ0nkT )/B2. The solar corona has
β � 1, while the solar wind has β ∼ 1. Natural plasmas tend
towards equipartition of thermal energy, magnetic field energy,
and flow energy.

In what follows, we present a description of the SSX MHD
plasma wind tunnel. The salient features are first, that the
MHD wind tunnel configuration has no applied magnetic field
and has no net axial magnetic flux. Second, the plasma flow
speed is on the order of the local sound speed (M = 1), so flow
energy is comparable to thermal energy. Third, the plasma β

(ratio of thermal to magnetic pressure) is of order unity so
thermal energy is comparable to magnetic energy. The first
section describes the operation of the plasma source, the second
section describes diagnostic capabilities, and the third section
provides some initial turbulence results from the SSX MHD
plasma wind tunnel. Table 1 lists some of the main plasma
parameters of the SSX MHD wind tunnel.

4.1. Operation

The Swarthmore Spheromak Experiment (SSX) [59] is a
flexible facility used to study plasma merging and magnetic
reconnection with a variety of boundary shapes. The SSX
device features a L ∼= 1 m long, high vacuum chamber in
which we generate n � 1020 m−3, T � 20 eV, B ∼= 0.1 T
hydrogen plasmas. Plasma plumes are generated by pulsed
magnetized plasma guns at either end of the device. Plasmas
are accelerated to high velocity (∼= 50 km s−1) by the discharge
current in the guns (�100 kA) and injected into a highly
evacuated target volume called a flux conserver. The flux

Table 1. SSX MHD wind tunnel parameters.

Parameter High energy Low energy

B0 (T) 0.5 0.1
ne (cm−3) 1015 1014

Te (eV) 10 20
Ti (eV) 20 40
β 0.03 0.2
ρi (cm) 0.1 0.6
c/ωpi (cm) 0.7 2.3
VAlf (km s−1) 350 220
fci (MHz) 7.6 1.5
Rm 150 425
S 2600 1670

Figure 13. SSX plasma wind tunnel. Magnetized plasma plumes are
launched by coaxial plasma guns into a flux conserving boundary.
There is no applied axial magnetic field nor neutral fill gas.

conserver is usually cylindrical in shape and bounded by a
thick, highly conducting copper shell. In a typical experiment,
plasma plumes are injected at either end of a flux conserver and
dynamical merging and relaxation ensue. From line-averaged
measurements of ne, Te, Ti, and B, we measure a plasma beta
in the wind tunnel of up to β ∼ 0.5 [60].

For this study, we have implemented one plasma source in
a high aspect ratio ‘wind tunnel’ configuration (see figure 13).
The wind tunnel presently has dimensions R = 0.08 m and
L = 1.0 m (about 20 l), but an extended length is planned.
The plasma gun can inject a magnetized plasma plume of
either right-handed (RH) or left-handed (LH) magnetic helicity
from either end of the machine. Operationally, this means
that the discharge current in the gun can be either aligned
or anti-aligned with the magnetic field imbedded in the inner
electrode (referred to as ‘stuffing flux’, �gun, in prior work).
The tungsten-coated inner electrode of the gun has dimension
rin = 0.031 m. The magnetic helicity of the plume also
determines the helical pitch of magnetic field lines in the
final relaxed state in the wind tunnel [61]. Colliding plasma
plumes have also been studied but the dynamics are much more
complex. Some initial results of colliding MHD plasmas are
presented in the Results section below.
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Plasma plumes are generated in the SSX wind tunnel by
a discharge in a magnetized plasma gun. The operation is
discussed in great length in the book by Bellan [62]. The gun
is prepared with a fixed amount of magnetic flux emanating
from its end. The guns and wind tunnel are highly evacuated
initially. There is no fill gas, nor is there any applied axial
magnetic field. Approximately 1 cc-atm of pure hydrogen
(a few 1019 atoms) is puffed into the gun and high voltage is
applied. Operationally, we delay firing the main discharge by
400–800 µs to allow less or more gas flow into the gun breach.
We find that a delay of about 400 µs is optimal, allowing neutral
gas to pressurize the gun region but not enough time for gas
to propagate into the main wind tunnel chamber. Capacitor
banks for the SSX plasma wind tunnel have C = 1.0 mF and
can operate up to 10 kV (typically 4 kV at 8 kJ, high energy
operation). The high voltage ionizes the gas and the subsequent
high current (up to 100 kA) heats the plasma and ejects it out
the gun. The stored energy in the plume is on the order of 1 kJ
(0.5 T in a 20 l volume corresponds to 2 kJ).

Whether a plume of magnetized plasma emerges from the
gun is a matter of pressure balance. Essentially, the magnetic
pressure in the gun must exceed the magnetic tension in the
stuffing flux. Very approximately, if we equate the magnetic
energies, we find:

Bgun = Bstuff → µ0Igun

2πrgun
= �gun

πr2
gun

,

λgun ≡ µ0Igun

�gun
= 2

rgun
.

More sophisticated analysis yields a coefficient slightly
different from 2, but the so-called stuffing threshold of the
gun λgun is a constant of order unity (often a Bessel function
zero) divided by a gun dimension (typically the radius of the
inner or outer electrode). Geddes et al calculated a threshold
for an early incarnation of SSX plasma gun and obtained
λgun = (1/rin)

√
2/ ln (rout/rin) [63]. This makes the threshold

about λgun = 46 m−1.
We have measured the stuffing threshold for this

configuration by scanning the stuffing flux and gun current,
then making a measurement of magnetic field downstream.
Our metric for an unstuffed gun is the average magnetic field at
the midplane of wind tunnel after a fully relaxed configuration
was formed. For this experiment, we used C = 0.5 mF (low
energy operation). In figure 14, we plot the mean midplane
magnetic field as a function of gun current (actually µ0Igun)
and stuffing flux. It is clear that for large stuffing flux, no
field is measured downstream. This is the ‘stuffed’ condition.
There is also a clear threshold above which magnetized plasma
emerges from the gun. The measured stuffing threshold is close
to 50 m−1. Note that the model above predicted λgun = 46 m−1

[63] while 3.83/rgun = 48 m−1 [62], where 3.83 is the first
zero of the Bessel function J1, both very close to the measured
value.

Note that moving to different operation points around the
µ0Igun versus �gun plane is effectively a scan of the helicity
content of the injected plasma. This is because the value of λ

in the relaxed configuration is the eigenvalue of the force-free
condition ∇ × B = λB. It is also the ratio of the magnetic
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Figure 14. Stuffing threshold. Mean magnetic field at the midplane
of the SSX wind tunnel for a relaxed plume, as a function of gun
current and stuffing flux. Note that for very high stuffing flux, no
field is measured downstream (stuffed condition). The measured
stuffing threshold (the diagonal boundary between stuffed and
unstuffed) is close to 50 m−1.

energy to magnetic helicity of the configuration: λ ∼ K/WB .
We have found that the helicity content of the plasma plume
has the biggest effect on turbulent intermittency [64].

A cryogenic pump provides the high vacuum (10−8 Torr)
for the plasma wind tunnel. The interior walls of wind tunnel
are maintained by helium glow discharge conditioning (GDC)
consisting of a dc discharge at 0.1 A, 400 V with about 50 µm
of He and baking with a thermal blanket (100 ◦C) for several
hours. In order to clean the Langmuir and Mach probes,
probe tips are biased during He glow to collect ion current.
We find that the plasma wind tunnel and probe need to be
glowed and baked again after 30–60 discharges for best results.
All discharges in this study had similar external parameters:
Igun = 80 kA, �gun = 1.0 mWb, Wbank = 8.0 kJ for the
plasma source.

4.2. Diagnostics

General plasma diagnostics are discussed in textbooks [65],
but diagnostics appropriate for plasma turbulence studies
have particular demands. First and foremost, we require a
diagnostic suite with high bandwidth. To be specific, the
time cadence should be fast enough to resolve the physics
of interest. The proton cyclotron frequency in a typical
laboratory magnetic field of 0.1 T is 1.5 MHz. Each of the
diagnostics below has bandwidth of at least 1 MHz so that
physics beyond the proton gyrofrequency can be studied.
Next, we would like the measurement to be local and non-
perturbative. It is difficult to satisfy both requirements
with the same diagnostic, so local probes (such as magnetic
probes, Mach probes and Langmuir probes) should be as
small as possible. Non-perturbative diagnostics (such as a
density interferometer, or a spectrometer) tend to provide line-
averaged information. Finally, and importantly for a laboratory
turbulence experiment, it is useful if turbulent quantities could
be probed at multiple locations in the plasma and at high
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spatial resolution. This is a capability that is difficult in
space plasmas (the tetrahedral Cluster satellite formation is
the notable exception), but straightforward in a laboratory.

For each diagnostic used in the SSX plasma wind tunnel,
we provide a brief description (with references), and a
discussion of the turbulent quantities measured (also with
references). Some example data is presented here, and more a
detailed sample of turbulence measurements are presented in
the following Results section.

4.2.1. Gun diagnostics. The source for the turbulent plasma
plume is the coaxial magnetized plasma gun discussed above.
The gun, cabling, ignitron switch and capacitor form a dynamic
LRC circuit. Typically, the inductance of the circuit will
change during the discharge as plasma runs along the gun.
It is important to monitor gun parameters (Igun, Vgun, �gun)
during each discharge so that quantities such as input energy
(
∫

IgunVgundt), gun impedance (Vgun/Igun) and input helicity
(
∫

�gunVgundt) can be computed later.
Gun current is monitored with a simple Rogowski coil

on each bank [65], calibrated with a known low-inductance
resistive load and a precision voltage probe. Generally, high
bandwidth is not required for gun current measurements.
Dynamic gun voltage requires a precision, compensated
high voltage probe; a simple voltage divider typically has
insufficient bandwidth. Since plasma, magnetic energy, and
magnetic helicity can be injected in episodically from the
source, Vgun can have a dynamic character with fluctuations in
the MHz range. The gun flux that permeates the inner electrode
operates on a much longer time scale (0.1 s) and so is essentially
constant during the 100 µs discharge. �gun is measured with a
simple flux loop. Results from measurements of µ0I and �gun

were presented in figure 14. Based on measurements such as
these, we have tended to operate the SSX wind tunnel around
Igun = 80 kA, �gun = 1.0 mWb, near the peak of the ridge in
figure 14.

4.2.2. Magnetic probe array. Our principal measurement in
the SSX MHD wind tunnel is that of magnetic fluctuations.
Several aspects are critical for the design of a magnetic probe
array. First, we require high spatial resolution and coverage
spanning a correlation length. We also want to minimize the
perturbation to the flow, so we opt for a single linear array
of 16 probe triplets, separated by 4 mm. Second, we would
like to maximize bandwidth so we use a single turn of magnet
wire for each detector (3 mm inner diameter) to minimize self-
inductance, and we encase the array in a quartz jacket to ensure
rapid penetration of flux. We record Ḃ directly. Finally, we
use 65 MHz, 14 bit DTAQ digitizers to ensure high bandwidth
and sensitivity. A sensitivity of 14 bits corresponds to 214 or
about 16 000 levels, so we can measure fields from less than
1 G to over 1 T.

In the past, we have fielded as many as 600 individual
magnetic probes in SSX experiments [66]. The full three-
dimensional structure of reconnection events was mapped [67].
Those measurements tended to be of coarser resolution both
spatially (about 2 cm) and temporally (about 1 µs). In addition,
the jackets were thin-walled stainless steel, so that the magnetic

flux penetration time was not instantaneous. For the studies
presented here, we have opted for a single linear probe array
with the smallest possible perturbation to the flow. Turbulence
data from a magnetic probe is presented in the Results section.

Careful calibration of the magnetic probe array is
important and is described in detail in prior papers [63, 66].
The essential idea is to construct a calibration matrix C that
converts an array of measured voltages into a proper set of
magnetic field components. The SSX MHD wind tunnel uses
a carefully constructed Helmholtz coil set driven by the same
pulsed power supply that energizes the plasma guns. We also
use the same cabling and digitizer channels for calibration as
we use for the experiment. It is important that the geometry of
the Helmholtz coil is well known, as well as the current flowing
in the coil. The probe array should be registered carefully with
respect to the Helmholtz coil, so that coil locations are known
in the Helmholtz coil coordinate system to within 1 mm. We
use a Delrin jig designed to bolt directly to the Conflat vacuum
fitting on the probe array. A high-resolution digital photograph
of the Helmholtz coil and probe array with a ruler is very useful.

The Helmholtz coil should be constructed to minimize
error fields from connectors and leads. It is important that
there is no metal near the calibration jig to minimize image
currents that perturb the Helmholtz field. Our Helmholtz coil
support structure is constructed entirely of Delrin. Care must
be taken to prevent ground loops that can pick up stray flux
during calibration. For example, we isolate each connection
at the probe housing to prevent forming a ground loop in the
shields of adjacent probes. We estimate that our cumulative
calibration error is about 1%.

The calibration technique consists of pulsing the
Helmholtz coil with the magnetic probe array oriented
successively in three orthogonal directions. A particular
probe triplet in the array (with three orthogonal loops wound
on precision Delrin forms) will sense signal in the three
orthogonal directions. The computed field components Ḃ

and the corresponding offset subtracted signals V measured
for these three shots with the Helmholtz pair determine all
nine unknowns in the calibration matrix C for each probe
triplet (Ḃ = CV ). If the probes are wound carefully, and
if the Helmholtz coil is well designed, then the calibration
matrix is nearly diagonal. In practice, there is inevitably
some misalignment of the triplet and some mixing of the
signals. High frequency response of the probe/cabling system
is checked with a separate, small coil and oscillator. We find
flat response to about 4 MHz, and modest roll-off at higher
frequencies. Since the system is linear, a careful calibration
results in a very useful diagnostic.

4.2.3. Mach probe. Local velocity measurements are
performed with a Mach probe. The essential idea is that
ion current is collected on opposing faces of the probe.
The component of the plasma velocity in the direction
connecting the upstream and downstream faces is proportional
to ln(Jup/Jdown). The proportionality constant is a matter of
some controversy, but is of order unity. If high bandwidth
current transformers are used, this diagnostic can be useful at
very high frequencies (over 10 MHz). The Mach probe reports
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Figure 15. SSX Mach probe showing orientation of the electrode
collector areas and device coordinates.

Mach number strictly speaking, so a measurement of the true
flow speed (and fluctuations) requires a measurement of the
electron temperature.

The SSX Mach probe has a cylindrical Gundestrup
geometry in which six evenly spaced tungsten electrodes are
encased in a boron nitride turret (see figure 15) [68]. The
ceramic turret is 2.54 cm in length and 1.3 cm in diameter.
The electrode collector faces are recessed into the ceramic
housing by 2.0 mm to facilitate directionality. Each rectangular
opening has length 4.0 mm, width 1.6 mm and area A =
6.0 ± 0.1 mm2. Individual electrode collectors effectively
provide independent current measurements when biased with
respect to the central pin, which protrudes from the end of the
turret 1.6 mm. The exposed electrode collector areas are the
same within 2%.

Each collector is biased using a separate 180 µF capacitor
bank charged with an external power supply that is isolated
during the plasma discharge to prevent ground loops. The
voltage droop is typically less than 1% during a discharge so
the voltage at each collector face is fixed. Six matched, high
bandwidth (20 MHz) current transformers (Pearson model
411), one for each collector face, report the ion current
from each probe face. The SSX Mach probe has been
calibrated using time-of-flight and other means [68]. We find
Jup/Jdown = eKM with K = 2.0 ± 0.5. Turbulence data from
the Mach probe is presented in the Results section.

4.2.4. Double Langmuir probe. Local density measurements
are performed with a double Langmuir probe [69]. Langmuir
probes are simple to construct and report information from
regions as small as 1 mm. A time series of ion saturation
current is a good proxy for electron density. We have used
a double Langmuir probe on the SSX MHD wind tunnel to
measure radial profiles of electron density and temperature, as
well as local density fluctuations.

A useful aspect of a double Langmuir probe with identical
electrodes is that the I–V characteristic is symmetric. Since
the entire circuit floats with the plasma, and if there is no

potential difference between the electrodes, there cannot be
any current drawn so I (0) = 0 (if the plasma is quiescent).
Furthermore, since the current has the same magnitude
(opposite sign) at ±V , the maximum current is limited by the
ion flux. The I–V characteristic has the form [69]

I (V ) = Isat tanh

(
eV

2kTe

)
,

where the maximum current is given by

Isat = neA〈v〉 = neA

√
kTe

Mi
.

Note that for voltages much less than an electron temperature
(eV � kTe), I (V ) is approximately linear:

I (V ) ∼= Isat

(
eV

2kTe

)
= ne2A

2
√

kTeMi
V.

The full form may be written as

I (V ) = neA

√
kTe

Mi
tanh

(
eV

2kTe

)
.

The SSX double Langmuir probe consists of two 1 mm
diameter, 1 mm tall exposed tungsten tips emerging from an
alumina ceramic shaft. Tip separation is about 1 mm. Probe
tips were oriented across the flow direction to prevent one tip
from shadowing the other. Probe position was incremented
in 1 cm steps beginning at the edge of the cylindrical wall
(R = 78 mm) for a total of six positions. We found that
averaging five shots at each setting gave satisfactory statistics.

The probe tips are biased using an isolated 500 µF
capacitor bank charged with an external power supply that is
isolated during the plasma discharge to prevent ground loops.
The voltage droop is typically less than 1% after a discharge
so the voltage between the probe tips is nearly constant.
The dynamical voltage difference between tips is monitored
with a Tektronics isolated voltage probe during a shot. A
high bandwidth (20 MHz) current transformer (Pearson model
411) reports the ion current flowing between the probe tips.
Typical ion current magnitudes were 1–4 A consistent with
I = nevthA.

The voltage between probe tips was scanned at −20, −10,
0, 5, 10, 15 and 20 V with five pulses of the wind tunnel at
each voltage setting. Temperature and density are extracted
from fits to the tanh function above. Six radial positions were
scanned from R = 78 mm to R = 28 mm in 10 mm increments
(a total of over 200 discharges). We present radial profiles
of temperature and density relatively early in the discharge.
We are interested in the spatial profile of the leading edge
of the plume for studies of interactions with obstacles and
plume–plume merging studies. In figure 16, we show the
radial profile of temperature at t = 33 µs, Te(r). We note
that the temperature profile is peaked on axis, with a hot core
of Te = 35 eV on axis. A possibility is that hot plasma from
the center electrode of the plasma gun persists to the midplane
but we have strong evidence that the plume is not axisymmetric
when it reaches the midplane [61]. The magnetic structure is
close to a twisted Taylor double helix.
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Figure 16. Measurement of the radial temperature profile of the SSX
MHD wind tunnel plasma plume early in the discharge t = 33 µs.
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Figure 17. Measurement of the radial density profile of the SSX
MHD wind tunnel plasma plume early in the discharge t = 33 µs.

In figure 17, we show the radial profile of density at
t = 33 µs, ne(r). We note that the density profile is hollow on
axis, with nearly an order of magnitude drop near the center of
the flux conserver. Again, it is likely that we are sampling the
plasma in a magnetic lobe of our twisted helical geometry.

4.2.5. HeNe interferometer. It is useful to have a non-invasive
diagnostic for turbulence studies. Unfortunately, as noted
above, non-invasive diagnostics are generally non-local. The
SSX plasma wind tunnel employs a He–Ne laser quadrature
interferometer for measurements of line-averaged density [70].
The technique uses a modified Mach–Zehnder configuration
with a linearly polarized scene beam and a circularly polarized
reference beam. The beams are de-coupled at the output using
a Wollaston prism which generates signals proportional to the
sine and cosine of the phase shift introduced by the plasma.
The use of a circular polarizer in the reference beam effectively
creates two coaxial linearly polarized beams (shifted in phase

by π/2) so that the absolute phase shift due to the passage
of the plasma plume can be unambiguously measured. The
Wollaston prism separates the mixed circularly polarized beam
into its two linearly polarized constituents (sine and cosine).
The absolute phase is simply the arctan of the ratio of the
signals. In a typical experiment at SSX, the scene beam passes
through the plasma wind tunnel across a diameter (0.16 m),
sampling plasma in a few mm wide beam. Turbulence data
from the interferometer is presented in the Results section.

4.2.6. Soft x-ray array. A relatively simple non-invasive
diagnostic but with a non-trivial interpretation is a soft x-ray
(SXR) detector [71]. The SXR array on the SSX plasma wind
tunnel consists of a matched set of four International Radiation
Detectors AXUV silicon p–n junction (PIN) photodiodes
filtered by thin films of aluminum 100 nm thick, titanium 50 nm
thick, tin 100 nm thick, and zirconium 100 nm thick. The
variation in the spectral response functions of the filters at
EUV and SXR energies allows us to garner information not
just about the time-dependent intensity of the SXR emission,
but also about broad spectral properties of the emission. The
SXR is sensitive to significantly higher energy photons than
a VUV monochromator, and thus can potentially measure
emission from hotter plasma and even emission produced by
a possible high-energy, non-Maxwellian component of the
electron population.

The signal measured on the SXR array comes from
a complex physical process that is difficult to unravel,
particularly with only a few channels. Emission in a particular
energy band depends on the square of the electron density
(and/or the product of electron density with impurity density),
as well as some function of the electron temperature (T 1/2

e

for bremsstrahlung). In addition to thermal bremsstrahlung,
emission can come from line radiation of partially stripped
ions [71]. The use of the SXR is generally limited to total
SXR light intensity as a proxy for fast electron population.
Turbulence data from the SXR array is presented in the Results
section.

4.2.7. Ion Doppler spectrometer. In the SSX plasma wind
tunnel, radial flows and ion dynamics are monitored by our
ion Doppler spectroscopy system (IDS, figure 18) [72]. This
is another example of a non-invasive diagnostic. Impurity ions
are entrained in the flow and the line-integrated motions are
measured with IDS. The SSX IDS instrument measures the
width and Doppler shift of either the nascent CIII impurity
229.7 nm line or a doped HeII impurity 468.6 nm line to
determine the temperature and line-averaged flow velocity.
The velocity resolution of the instrument is �5 km s−1, and
the instrument temperature is about 3 eV. There is enough
signal to resolve the full line within an MHD dynamical
time (about 1 µs in SSX) for every discharge. Peak ion
temperatures of 80 eV have been recorded during reconnection
events as well as bi-directional outflows up to ±40 km s−1 [73].
During reconnection and merging, we measure a period of
reconnection-driven ion heating with peak temperatures for
carbon TC

∼= 50 eV and for helium THe
∼= 70 eV (averaged

over many shots).
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Figure 18. Ion Doppler spectroscopy in SSX. Cutaway end-view shows multiple chords for IDS, location of two typical magnetic probes
(non-conducting quartz jacketed), and chord for HeNe interferomenter. Our prolate 0.6 m long, 0.4 m diameter flux conserver is depicted
here.
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Figure 19. IDS data from a reconnection event in SSX. The first three panels show dynamical flows up to 50 km s−1 in 1 µs time increments
during a reconnection event. The last panel shows a quiescent warm plasma in a relaxed state late in the discharge (8 eV).

The SSX IDS system employs two key features [72]. First,
an echelle diffraction grating operating at 25th order provides
high spectral resolution (R ≡ λ/δλ = 2.5 × 104). Second, a
multi anode photomultiplier tube array (32 channels) provides
fast time response from the UV to the visible. The time
resolution is about 1 µs limited primarily by photon statistics.
The SSX IDS instrument is built around a McPherson Model
209 spectrometer. This is a 1.33 m focal length Czerny–Turner
spectrometer with spherical collimating and focusing mirrors
(Al–MgF2 coated) and optimized for spectral resolution. The
echelle grating is ruled at 316 mm−1 groove density with
a blaze angle θb = 63.43◦. Calibration and alignment
procedures are discussed elsewhere [72].

An example of IDS data is presented in figure 19. The
first three panels show radial outflows up to 50 km s−1 during
a reconnection event resolved in 1 µs increments. Later in the
discharge, the SSX plasma has relaxed and cooled to about
8 eV. Turbulence data from the IDS is presented in the Results
section.

4.3. Initial turbulence results

Here we present some initial turbulence results from the
SSX MHD plasma wind tunnel featuring the diagnostics and
techniques discussed above. Some prior work particularly
on intermittency scaling with magnetic helicity has already
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Figure 20. Time series for typical single plume: (a) discharge current, (b) discharge voltage, (c) magnetic field, (d) density, (e) Mach flow,
(f ) ion temperature and (g) SXR signal. Each panel shows an ensemble average of 40 shots (red) and a single shot (blue).

appeared [64, 74]. We focus on time series data here.
Figures 20 and 21 show time series for seven diagnostics
on SSX: discharge current, discharge voltage, magnetic field,
density, Mach flow, ion temperature and SXR signal. The SXR
signal is from the Al-filtered PIN diode (20–80 eV photons).
Figure 20 shows an ensemble average of 40 shots (red) and
a single shot (blue) for a typical 1.0 mWb stuffing flux, 4 kV,
8 kJ single plume discharge. Figure 21 shows the same time
series plots but for zero stuffing flux. We note that gun

current time series are similar in both cases, without much
variability. In figure 20(b) there is a period of about 15 µs of
a steady voltage of about 1 kV. This is an inductive voltage
corresponding to the steady ejection of toroidal magnetic flux
at a rate of about 1 mWb per µs. At t = 20–30 µs there
are large fluctuations in gun voltage corresponding to the
detachment of a plasma plume. Note that the detachment
occurs when Igun = 80 kA, so that the gun parameter is
λgun = µ0Igun/�gun

∼= 100 m−1, well above the stuffing
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Figure 21. Time series for low flux single plume: (a) discharge current, (b) discharge voltage, (c) magnetic field, (d) density, (e) Mach flow,
(f ) ion temperature and (g) SXR signal. Each panel shows an ensemble average of 40 shots (red) and a single shot (blue).

threshold discussed above. The injected energy is on the
order of

∫
VgunIgun dt ∼ 1 kV × 80 kA × 30 µs ∼= 2400 J

(magnetic, flow and thermal). The injected helicity is on the
order of

∫
Vgun�gun dt ∼ 1 kV × 1 mWb × 30 µs ∼= 30 µWb2

[64]. Note that the ratio µ0W/K = µ0 2400 J/30 µWb2 =
100 m−1.

In panel (c) of both figures depicts magnitude of the
magnetic field |B| at one point near the axis of the wind tunnel
at the midplane. The mean field from the ensemble average is
about 0.5 T for the typical single plume condition, and nearly

constant during the stationary phase of the turbulence (40–
60 µs, indicated by the dotted vertical lines). The fluctuations
are large, however, with δB/B ∼ 0.2. The magnetic structure
appears at the midplane about 10 µs after detachment from
the gun about 0.5 m upstream, so the flow speed is roughly
50 km s−1. The corresponding signal on the low flux, low
helicity shot is much smaller, about 0.1 T.

In panel (d), we show the line-averaged electron density
as a function of time. Plasma density appears before magnetic
field because the interferometer chord is upstream of the
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Figure 22. Average decay data. Top panel is |B|, middle is Mach
flow Mz, lower is density.

midplane. The HeNe beam is passed through a small hole
in the flux conserver wall, so the distance over which the
density is averaged is the diameter of the wind tunnel. The
density for the low flux case is much higher and more variable
than our typical single plume discharge. For the typical single
plume case presented in figure 20, the density settles to about
1015 cm−3 with density fluctuations of about δn/n ∼ 0.1. The
low flux case exhibits density fluctuations of order unity.

In panel (e), we report the Mach flow (M = v/cs) from
the Mach probe, located about 1 cm from the wall of the
wind tunnel (i.e. near the edge). The Mach number is of
order unity consistent with a sound speed of 50 km s−1 and
a Te + Ti = 30 eV proton plasma. Fluctuations about the mean
are also large (of order unity). From panel (f ), we see that
the ion temperature exhibits burstiness but has a mean value
of about Ti = 20 eV. The SXR signal in panel (g) reflects the
population of energetic electrons. Mach flow, ion temperature,
and SXR are all measured at the midplane.

Figure 22 shows averaged time traces of the three main
plasma parameters, B-field, edge Mach flow, and density
presented in log-linear format in order to highlight exponential
decay of the signal (which appears linear in this scaling). The
magnetic data and the density data average 80 shots combining
the 1.0 and 0.75 mWb runs. The Mach probe data has only 22
shots.

The blue lines indicate a best-fit exponential function for
a region toward the end and beyond the typical analysis region.
This shows that all three quantities exhibit exponential decay
after plasma injection ceases. The density has the longest

Figure 23. Comparison of spectra for raw Ḃ versus integrated B.

decay time so the plasma remains confined for longer than it
has appreciable flows or magnetic fields. The flow fluctuations
and the magnetic fields have essentially equal decay times.
Since magnetic fields decay resistively and velocities decay
viscously, the fact that magnetic fields and velocity fields decay
at the same rate means that resistive and viscous diffusivities
are similar in the SSX plasma wind tunnel, i.e. the magnetic
Prandtl number Pr = 1. In practice, we have found that
Prandtl numbers range from about Pr = 1–4.

We noted above that recording raw Ḃ data with a magnetic
probe affords a higher bandwidth than using, for example,
an active integrator circuit. Our analysis technique is to
construct the spectrum for Ḃ (either FFT or wavelet), then
divide the spectrum by f 2. Figure 23 shows a comparison of
wavelet spectra constructed using raw Ḃ data that has been
scaled by the square of the frequency in order to convert to B

fluctuation spectra to time series data that is converted directly
to B by performing numerical integration first. The numerical
integration method might be expected to introduce some noise
to the signal and potentially reduce the frequency resolution.
Figure 23(a) shows that globally, the difference between the
two forms of spectrum are very small. Figure 23(b) shows how
the ratio of the two methods compare (with integrated spectrum
over Ḃ spectrum). If the computed spectra were exactly alike,
the ratio would be flat at 1.0. However, there is clearly some
variation. The lines tend to drift upward at higher frequencies
which is an indication of the noise introduced by integration
method. However, the spectra do not deviate from one another
by much more than 15–20%. While most of the analyzes are
conducted using the Ḃ data, use of the integrated B data is
nevertheless useful.
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Figure 24. Comparison of spectra for merging versus single plume.

Virtually all of our initial analysis for the SSX MHD
plasma wind tunnel has been for a single plume launched down
the length of a cylindrical flux conserver. Relaxation of the
unraveling flux rope drives MHD turbulence to small scales.
High velocity merging of plasma plumes is more complicated.
First, there is more total energy available for turbulence (a
factor of two). Second, the flow is stagnated near the midplane
driving reconnection and interpenetrating flows. Finally, the
injection scale or the reservoir of energy to drive turbulence is
modified. Figure 24 shows a plot of 1.0 mWb stuffing flux total
magnetic fluctuation data for merging (red) and single plume
(blue) datasets. Note that the two-gun power is overall larger
and has a clear peak at 40 kHz. This could be reflective of a
smaller injection size caused by the collision process, since the
single plume data peaks at a lower frequency (larger scale).

While we have shown that varying the magnetic helicity of
the MHD turbulent flow has a dramatic effect on intermittency
[64], the time series and spectra are less sensitive to variations
in other experimental quantities. Figure 25 shows total
magnetic spectrum for changes in three different variables.
In the first, single plume datasets are compared for discharge
voltages of 4.0 and 3.5 kV. The shapes of the spectra are
comparable, but the 3.5 kV discharge fluctuations actually
have slightly more magnetic fluctuation energy than the 4.0 kV
dataset. The second panel shows a scan of stuffing flux, 0, 0.5,
1.0 and 1.5 mWb, but for merging plumes rather than single
plumes. As was the case for single plumes, the stuffing flux
does not appear to modify the spectral shape, in the 100 kHz to
10 MHz range, but the 1.0 and 0.5 mWb datasets show slightly
more spectral energy than the 0.0 and 1.5 mWb sets in that
bandwidth. Since these are two gun runs, the peak in energy
occurs at a higher frequency than the single gun. The third
panel shows a comparison of gas delay timings which are a
proxy for varying the amount of initial hydrogen gas present

Figure 25. Comparison of spectra for three variables: (a) gun
voltage; (b) gun flux; (c) gas load.

for the discharge, again for merging plume data. The spectra
show very little variation, even less than the other scans. There
does appear to be a slight inverse trend in overall fluctuation
energy from long gas delay (red) to short gas delay (blue).

5. Conclusions

We have presented a review of laboratory sources of turbulent
plasma, with a particular emphasis on MHD turbulence and
on a new source called the SSX MHD plasma wind tunnel.
Turbulence in devices designed for magnetic confinement
fusion applications is strongly influenced by the strong applied
toroidal (or axial) magnetic field. Natural plasmas often
exhibit turbulence in which fluctuation energy in all dynamic
quantities is comparable (magnetic, kinetic, thermal). The
MHD plasma wind tunnel is an experimental approach to
studying plasma turbulence more similar to that found in
natural plasmas.
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