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1 Introduction

At the heart of turbulence physics is the idea that some flows can be made sense
of only statistically, and that once we adopt a statistical perspective, universal-
ities and symmetries begin to emerge from the chaos. Usually such statistical
characteristics are identified using frequency spectra or probability distributions
describing the size of fluctuations in the system across different time or length
scales. However, the inherently probabilistic component to the study of turbu-
lence also makes it amenable to more elaborate statistical measures of information
and complexity. While more difficult to interpret than frequency spectra, such
metrics provide a promising new way to look at turbulence, especially turbulence
in plasmas where the electromagnetic character of flows contributes additional
structure. In this thesis, statistical metrics known as permutation entropy and
Jensen-Shannon complexity will be applied to datasets describing turbulent fluctu-
ations in several laboratory and astrophysical plasmas. These metrics decompose
a time series generated by discrete measurements of some physical parameter into
ordinal patterns, similarly to how Fourier analysis decomposes a waveform into si-
nusoidal modes. By studying ordinal dynamics, or patterns in the relative sizes of
successive values in a time series, essential information about the statistical nature
of the fluctuations can be obtained. The work presented here and in [1] represents
the first application of complexity and entropy measures based on ordinal pat-
terns to astrophysical plasma turbulence or the comparison of different turbulent
plasma sources. These methods have been used in other recent plasma turbulence
research [2, 3], although these applications of permutation entropy and complex-
ity were limited to a particular laboratory device at the University of California
Los Angeles. The results presented in this thesis highlight important differences
between the various turbulent plasmas studied, demonstrating that different types
of plasma exhibit turbulent fluctuations of different statistical character, with the
well-developed turbulence of the solar wind more random and less complex than
in many laboratory plasmas. Thus measures of entropy and complexity could help
to characterize the effectiveness of laboratory plasmas as models for astrophysical
turbulence. The permutation entropy and complexity of a given turbulent plasma
are shown to depend on the timescale at which the turbulence is considered, and
could potentially be used to identify timescales of physical interest without prior
knowledge of the system in question. Several practical conclusions, connected
to the effects of insufficient statistics on these metrics, the appropriate choice of
parameters, and even issues of terminology in turbulence physics are also made.
On the whole, permutation entropy and Jensen-Shannon complexity constitute
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promising new tools for the statistical study of turbulent fluctuations.
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2 Turbulence Background

In fluid mechanics, turbulence refers to fluid motions which are so irregular that
they warrant only a statistical description. In the late 1800s, it was observed that
for a given geometry the transition to turbulent flow occurred at a specific value
of the dimensionless control parameter

R =
LV

ν
, (1)

where ν is the viscosity, L is the characteristic scale, and V the characteristic veloc-
ity of the flow [4]. This parameter is known as the Reynolds number, and can also
be interpreted as the ratio of the convective and dissipative energies of the flow.
As the convective energy comes to dominate dissipation effects, perturbations on
small scales are magnified and manifest themselves as highly unpredictable large
scale fluctuations. In the process, symmetries present in the smooth, or laminar,
flow of the fluid are broken. However, at very high Reynolds numbers, certain
symmetries are said to be restored, in so far as they hold in a statistical sense
far from the system’s boundaries. This too was observed as early as the 1880s,
when Lord Kelvin noted that a high speed fluid flow through a lattice structure
appears to be statistically homogeneous and isotropic if observed far enough past
the lattice [5].

Unless qualified with a particular spatial direction, to say a flow is statistically
homogeneous is to say that its time-averaged values are independent of position in
each of the three mutually perpendicular coordinate directions. Similarly, a statis-
tically isotropic flow has mean values which are independent of direction. In other
words, for a conventional fluid to exhibit homogeneous isotropic turbulence, all ve-
locity moments must be both translationally and rotationally invariant. One final
statistical symmetry of particular interest in the study of turbulence is stationar-
ity. A turbulent flow is said to be stationary if its mean values are independent of
the time span over which the means are taken. High-Reynolds number turbulence
in which these statistical symmetries are restored is known as fully developed
turbulence.

Since plasmas are capable of sustaining electrical currents, energy can be dissi-
pated either through viscosity or resistivity. Thus there are two sources of turbu-
lence in plasmas. Resistive effects are characterized by another Reynolds number,
given by

Rm =
µ0LV

η
, (2)
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where η is a resistivity. Either effect can dominate the turbulent behavior of
a plasma. Let Re denote the original Reynolds number, characterizing viscous
effects. Then the relative dominance of resistive dissipation in a plasma is given
by the magnetic Prandtl number

Pmag =
Rm

Re

. (3)

As in conventional fluids, fully developed turbulence in plasmas is characterized
by statistical homogeneity and isotropy. However, when dealing with plasmas the
translationally and rotationally invariant moments of interest are usually those of
the fluctuating magnetic field rather than a fluctuating velocity field.

Before discussing turbulence in magnetized plasmas in greater detail, it will
be useful to discuss more historical background to the study of turbulence in fluid
flows. Of particular relevance is the notion of a universal energy cascade and the
use of frequency spectra to characterize turbulent systems.

2.1 Kolmogorov’s 1941 Theory

In 1941, A. N. Kolmogorov published two papers which are widely regarded to
have introduced the concepts of a universal energy cascade and of scale invariance
to the study of turbulent flows, thereby founding modern turbulence theory [6].
The former concept is of primary importance here.

An energy cascade refers to a process in which energy introduced into a system
at large scales nonlinearly couples to smaller scales, thereby distributing the sys-
tem’s energy over many length scales. This effect is often represented using energy
frequency spectra. These time domain spectra can also be represented in a spatial
domain using Taylor’s hypothesis, which states that if velocity fluctuations in a
system are small compared to the mean velocity, temporal variations in velocity
can be reinterpreted as spatial variations of the velocity in the mean flow frame
[7, 5]. In particular, energy cascades are often represented by their corresponding
wavenumber spectra, here denoted E(k).

One important result which follows from Kolmogorov’s work on the universal
character of energy cascades (although it is not explicitly derived in his papers)
is that turbulent spectra obey a −5/3 power law scaling of over a large range of
wavenumbers known as the inertial range. The following simple argument based
on dimensional analysis demonstrates how this result is implied by the assump-
tions of Kolmogorov’s 1941 theory in the case of turbulent velocity fluctuations.

Kolmogorov’s theory was formulated on the assumption that the the energy
wavenumber spectrum followed a power law depending only on k and an energy
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transfer rate per unit mass, ε. In other words,

E(k) = Ckαεβ (4)

for some constant α, β, and C. Note that if it takes energy some characteristic
time τ to be transferred from one scale 1/k to the next, and v is the fluctuating
component of the velocity, then ε ∼ v2/τ .

Given this power law assumption, we can apply dimensional analysis to arrive
at the −5/3 character of E(k). Now

∫
E(k) dk = 〈v2〉, so E(k) ∼ v2/k. Thus we

have that

v2

k
∼ Ckαεβ ∼ Ckα

(
v2

τ

)β
. (5)

Since τ has units of length over velocity, τ ∼ 1/kv, and thus we have

v2k−1 ∼ kα+βv3β. (6)

Therefore β = 2/3 and −1 = α + β, which implies that α = −5/3. We can then
express E(k) as the −5/3 power spectrum

E(k) = Ck−5/3ε2/3. (7)

The inertial range in which this result holds corresponds to the range of scales
at which energy dissipation effects due to viscosity are negligible, and extends from
the energy injection scale to the so-called dissipation scale. One of the hypotheses
of Kolmogorov’s theory was that dissipation occurs on a length scale dependent
only on the energy transfer rate ε and the viscosity ν [5]. It follows from this
assumption that the demarcation between the end of the inertial range and the
beginning of the dissipation range where viscous effects take hold is

Lk =

(
ν3

ε

)1/4

. (8)

This is known as the Kolmogorov dissipation scale, or simply the Kolmogorov
scale. A similar expression describes the end of the inertial range in the case
of resistive dissipation, although the value depends on the particular dissipative
mechanism assumed.

The argument for −5/3 power law scaling proceeds analogously for magnetic
fluctuations, with ε ∼ b2/τ (where b is the fluctuating component of the the
magnetic field) and E(k) ∼ b2/k. However, it relies on the further assumption
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Figure 1: Normalized wavenumber spectra from a variety of conventional fluids,
displaying the -5/3 Kolmogorov scaling. Source: [8].

that the time for energy to be transferred from one scale to another is determined
by the Alfvén speed, vA, which is proportional to b, implying that τ ∼ 1/kb. If
modes faster than vA are present, the energy transfer rate is increased, and we see
deviations from the −5/3 scaling of the inertial range. Indeed, as will be seen in
the next two sections, steeper power law scalings are observed in studies of both
astrophysical and experimental plasma turbulence.

2.2 The Solar Wind

The solar wind is a continuous stream of charged particles (i.e. plasma) coming
from the superhot upper atmosphere of the sun, known as the corona, and extend-
ing all the way to the outer edge of the solar system, called the heliosphere. While
the existence of this plasma had been postulated much earlier [9], and even used
to explain the behavior of comets [10], the solar wind could not be studied in
situ until the 1960s, after the launch of the first satellites. Instruments on-board
satellites have measured the density of the solar wind plasma to be very low, ap-
proximately 10 protons per cubic centimeter. With densities this low, the mean
free path of charged particles in the solar wind is approximately 1 AU, the average
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distance between the sun and earth. For satellites near 1 AU, this means that the
plasma measured by their instruments is essentially collisionless. Satellite mea-
surements have also found that the solar wind plasma can exhibit two distinct flow
patterns, known as fast and slow solar wind. Fast stream wind is emitted from
open coronal field lines, and has typical velocities of 450 km/s to 800 km/s. Slow
wind originates from more complicated coronal structures, and normally flows at
speeds less than 450 km/s [9]. In either case, the flow is supersonic- the Mach
number in the solar wind is near 10.

Although there are variations between fast and slow streams, temperatures in
the solar wind are on the order of 105 K, and magnetic fields are typically on the
order of 10 nT. These fields result from currents flowing within the plasma, and
are therefore convected along with the motion of the plasma. For this reason,
solar wind plasma is said to be completely dynamical. As with most naturally
occurring dynamical plasmas, the solar wind tends to obey an equipartition of
thermal, magnetic, and flow energies. More formally, the plasma beta defined by

β =
nkT

B2/2µ0

(9)

is on the order of one at 1 AU, indicating that magnetic and thermal pressures in
the solar wind are comparable at this distance.

One property of particular interest to turbulent studies of the solar wind is
that the rate at which structures in the solar wind evolve is slow compared to
the mean flow velocity. So for a satellite at a fixed position, in the time it takes
for a particular pattern in the magnetic field or density distribution to sweep by
the satellite, the change in these structures is generally negligible.This condition
is known as Taylor’s hypothesis, and is heavily relied on in traditional studies of
solar wind turbulence.1 In particular, Taylor’s hypothesis allows for frequency
information to be used to extract information about spatial structure. Consider a
structure of size d passing a satellite probe at velocity V . If this structure remains
essentially unchanged over the time d/V required for it to pass the probe, it will
be registered as a frequency f = V/d, thereby encoding spatial information in a
time domain. If we so desire, we could then safely translate this reading over into
wavenumber, or k space, according to the relation k = 2πf/V .

1As mentioned earlier, for fluid fluid flows we can formally interpret Taylor’s hypothesis as
asserting that velocity fluctuations v in the mean velocity frame satisfy v << V , where V is the
mean flow velocity. In the solar wind, V is typically hundreds of kilometers per second, while
fluctuations in velocity, as well as density and magnetic field, are typically much slower, so the
hypothesis generally pertains.
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Turbulence in the Solar Wind

As the only astrophysical plasma which we can study in situ, the solar wind is a
paradigm of plasma turbulence laboratories. The power laws obeyed by density,
velocity, and magnetic field fluctuation spectra from the solar wind indicate that
it exhibits nearly fully developed turbulence, despite being essentially collisionless.
This is made possible by the waves propagating through solar wind plasma, which
play an analogous role to the intermolecular collisions producing turbulence in
conventional fluids. The resulting fluctuations are not only highly unpredictable,
but highly stationary for hours or days at a time [11, 12]. The slow wind in
particular is identified with well-developed turbulence, while the fast wind has
fewer large scale structures and is often said to exhibit less evolved turbulence
[13, 14]

Given the high velocities and astronomic scales characteristic of the solar wind,
the magnetic Reynolds number Rm for plasma flows in the solar wind is on the
order of 107. Reynolds numbers of this size are often either taken to be good indi-
cators of well-developed turbulence, or simply to imply well-developed turbulence
as a matter of definition. In either case, the identification is supported by other
statistical indicators of turbulence.

Although the Reynolds number for the solar wind plasma is very large, and
though it is bounded only by the magnetospheres of individual planets and the
heliosphere surrounding the solar system, satellite measurements indicate that one
statistical symmetry in the solar wind remains broken even as far from the sun as
earth’s orbit. Namely, magnetic fluctuations parallel to the mean field have lower
variance than in any other direction [15]. Thus turbulent flows in the solar wind
are anisotropic. This anisotropy is evident in many statistical studies of solar
wind turbulence, such as frequency spectra, discussed next.

As an example of the spectral character of the solar wind, consider Figure 2
from Sahraoui, et al [16]. This frequency power spectrum was generated from
three-hour, fast stream time series collected by the Cluster spacecraft. In order to
cover a larger spectral range then previously studied, spectra from the Flux Gate
Magnetometer (FGM) and STAFF Search-Coil (STAFF-SC) on-board the space-
craft were merged at f = 1.5 Hz. For both spectra, measurements perpendicular
and parallel to the mean magnetic field are shown separately. As a result of the
anisotropy of the solar wind, the perpendicular fluctuations are more energetic
and thus shifted vertically from the parallel fluctuations. Since both directions
display similar slopes, it would appear that this anisotropy does not depend on
scale. Dotted black lines indicate noise levels, and solid black lines indicate power
law fits.
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Figure 2: Typical frequency power spectra for magnetic fluctuations in the solar
wind, generated from Cluster spacecraft data.

Much of the range covered by the FGM data displays a power law character
consistent with the −5/3 prediction derived from Kolmogorov’s 1941 hypotheses.
However, a break point occurs near the (Doppler-shifted) proton gyrofrequency2,
marked fρp , and the magnetic energy spectrum continues with a new power law
dependence down to the electron gyrofrequency fρe , after which it falls off sharply,
likely due to dissipation effects. The source of these breakpoints and the power law
character between fρp and fρe is discussed in [16], but for our present purposes it is
sufficient to note the departure from neutral fluid turbulence, and the important
role of frequency power spectra in the study of solar wind turbulence.

Further evidence of deviations from conventional fluid turbulence in the solar
wind is provided by studies using the method of temporal increments. In a truly
random signal, after some delay τ one would expect to see as many increases in
the signal value as decreases, and large excursions should be rare. The deviation
of magnetic time series from this expectation can be quantified by calculating

2The proton gyrofrequency, or cyclotron frequency, is the angular frequency of a proton’s
circular orbit about magnetic field lines in an approximately uniform field.
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Figure 3: PDF of increments for one component of ACE spacecraft magnetic
data and simulated data in 2-D and 3-D. A Gaussian distribution with the same
mean and variance as the ACE data is shown for comparison.

increments

∆b = b(t+ τ)− b(t) (10)

for values in the series and considering the probability mass function constructed
from the record of these increments. This PDF should be closer to Gaussian
the more random the corresponding time series. As fully developed turbulence
in conventional fluids is highly stochastic, the presence of coherent structures in
turbulent plasmas absent in turbulent neutral fluids can be detected by compar-
ing the PDF of increments from a turbulent plasma source to fitted Gaussian
distributions. For example, regions of high magnetic stress in plasma flows result
in large, sharp changes in the increments of the signal, skewing the distribution
towards the edges. It has been well-established that PDFs of increments for mag-
netic fluctuations in the solar wind are much wider than corresponding Gaussian
distributions [17, 18, 19]. These “fat tails” are taken as good evidence for the
presence of coherent structures in solar wind turbulence which are absent from
conventional fluid turbulence. More quantitatively,

F (τ) =< ∆b4 > / < ∆b2 >2 (11)
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characterizes the flatness of a distribution, and while F = 3 for a Gaussian dis-
tribution, PDFs of increments from the solar wind can be as much as an order of
magnitude flatter.

Figure 3 shows one such comparison between a PDF of increments from solar
wind data and a Gaussian fit, from [20]. The increments distribution was con-
structed from one component of a 27-day magnetic signal from the ACE space-
craft, split into 12-hour subintervals. A delay of 4 minutes was used to compute
each increment. In addition to the normalized PDF of increments for the ACE
dataset and the Gaussian distribution, Figure 3 shows the PDFs of increments
for data from both 2-D and 3-D simulations. The ACE data displays the “fat
tails” expected, and most closely matches the 2-D simulation data. Analysis of
this simulation indicated that many small-scale sheets of current between ropes of
magnetic flux are the main source of this preponderance of large excursions from
the mean.

Many of the statistical tools used to study solar wind turbulence yield sim-
ilar results when applied to the MHD, or magnetohydrodynamic, turbulence in
the plasma wind tunnel configuration of the Swarthmore Spheromak Experiment,
which we turn to now.

2.3 The SSX MHD Plasma Wind Tunnel

Like the solar wind, the plasma studied in the MHD wind tunnel of the Swarth-
more Spheromak Experiment (or SSX) is completely dynamical, as there is no
applied magnetic field. Spheromaks, or donut shaped blobs of plasma, are gen-
erated by a discharge of pure hydrogen gas in a plasma gun. A high voltage
is applied, ionizing the gas. The resulting current flow heats the plasma and
accelerates the spheromak to speeds of about 50 km/s.

These plasma plumes have stored magnetic energies on the order of 1 kJ, and
magnetic helicities which can be finely controlled by varying the magnetic flux
through the core of the gun [21]. This gun flux is referred to as the “stuffing flux”.
Magnetic helicity corresponds to the degree of twistedness in the magnetic field, so
varying injected helicity affects the resulting turbulent dynamics of the plasma as
it evolves towards a relaxed helical state, known as a Taylor state [22, 23, 24]. This
minimum energy Taylor state of the plasma is set by the boundary conditions in
the device (i.e. a conducting cylinder). This relationship between injected helicity
and the turbulence of the plasma’s evolution into its minimum energy state will
be explored further in Section 4.4. Note that the entire relaxation process takes
only 10s of microseconds.
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Figure 4: Power spectra for B-field, density, and Mach number fluctuations in
the SSX MHD wind tunnel configuration, with fitted scaling exponents.

The body of the wind tunnel consists of a 1 m long cylindrical copper flux
conserver with radius 0.08 m, equipped with probes to measure turbulent fluctu-
ations in the evolving spheromak. Measurements of Ḃ acquired by a 16-channel,
3-direction, single-loop pickup coil probe array located at the midplane of the
tunnel are used to study magnetic fluctuations. The probe array has a 65 MHz
sampling rate and 14 bit dynamic range. The entire flux conserver is embedded
in a high vacuum chamber. A cryogenic pump prepares the 10−8 torr vacuum.

Turbulence in the SSX MHD wind tunnel

Taking the tunnel radius as the characteristic length scale and typical mean ve-
locities as characteristic, the magnetic Reynold’s number Rm for plasma plumes
in the SSX device is a few hundred. The exact value varies depending on which
dissipation mechanisms are taken as primary, but the order of magnitude remains
unchanged. Thus Rm for the SSX MHD wind tunnel is approximately five orders
of magnitude less than Rm in the solar wind. In other words, the solar wind
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exhibits more fully developed turbulence, with greater active degrees of freedom
than SSX plasmas. Even so, the turbulent fluctuations in these two systems do
display certain similarities when analyzed statistically.

As in the solar wind, turbulent fluctuations in the SSX MHD wind tunnel
exhibit deviations from neutral fluid turbulence when studied in frequency or
wavenumber space. Power spectra for SSX magnetic field, density, and Mach
number fluctuations from [25] are shown in Figure 4. Note that magnetic field
spectra are calculated by taking Ḃ spectra generated directly from exerimental
time series and dividing by the square of the frequency. The shot-averaged spec-
tra for the three magnetic field components indicate that magnetic fluctuations
are isotropic, so only the θ component is shown. Only the Mach number spec-
trum, which serves as a proxy for the velocity spectrum, is very close to the
−5/3 ≈ −1.66 Kolmogorov scaling, with an exponent of −1.62. The other two
quantities display steeper power law scalings, with the magnetic spectrum by far
the steepest.The origin of this scaling and the break in the magnetic spectrum are
not well-understood. However, the steeper scaling of this magnetic spectrum than
the solar wind spectrum in Figure 3 may reflect a resistive dissipation mechanism
that is present in SSX wind tunnel plasma but absent in the solar wind [25].

The method of temporal increments also shows similarities between turbulence
in the solar wind and the SSX MHD wind tunnel. Figure 5(a) shows PDFs of
increments for SSX Ḃ signals calculated for two different time steps τ , with fitted
Gaussian curves for comparison. At the smaller time scale analyzed, the distribu-
tions are much broader and less Gaussian, indicating more large fluctuations at
these scales. As the larger time scales considered, the PDFs are more Gaussian.
These results suggest the presence of coherent structures, such as reconnection
sites, at small scales, as is thought to be the case in the solar wind. This sugges-
tion is further supported by simulations including such structures which display
similar trends to the experimental data when analyzed using the increments ap-
proach [25].

Intermittency in SSX data also displays an interesting dependence on the he-
licity of the injected plasma plume. Figure 5(b) shows plots of the flatness of
PDFs of temporal increments F (τ) over a wide range of time steps, at a variety
of injected helicities. As observed earlier, when larger time steps are used, mag-
netic fluctuations begin to appear entirely uncorrelated. In other words, F (τ)
approaches 3, the flatness of a random, Gaussian distribution. This trend appears
across helicity settings, but there is also a general trend of increased flatness for
greater helicities. The exact physical mechanism for this trend is unknown, but it
appears that the value of the magnetic helicity of the injected plasma has impor-
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Figure 5: PDFs of temporal increments for magnetic fluctuations in the SSX
MHD wind tunnel, using two different time steps. The fat tails of the distribution
generated with a smaller step size indicate the presence of coherent structures at
small time scales. When larger time scales are analyzed, the PDF becomes more
Gaussian. Dashed lines indicate fitted Gaussian distributions. (b) Measures of
flatness as a function of time scale, for a variety of helicity states. Only fluctuations
in the radial magnetic field component were used here.

tant consequences for the frequency of large fluctuations in the resulting turbulent
dynamics [23].

The dependence of the spectral character of SSX magnetic fluctuations on
helicity are also studied in [23]. However, little or no difference in the frequency
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Figure 6: Comparison of spectra for three experimental parameters: (a) gun
voltage, (b) stuffing flux, and (c) gas load.

power spectra for different helicity settings could be identified, suggesting that
the same basic cascade process occurs irrelevant of the magnetic helicity.

SSX spectra also appear fairly robust to variations in other experimental pa-
rameters [26]. Figure 6 shows frequency spectra for several settings of the voltage
applied to the plasma gun, the stuffing flux through the gun (closely connected
to injected helicity, as mentioned earlier), and the gas shutoff delay, a proxy for
the amount of hydrogen present in the gun during discharge. There is little varia-
tion in spectral character for changes in all of these parameters. Once again, this
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suggests that the same basic turbulent cascade is occurs across settings. It would
seem that either higher order moments, such as temporal increments, or more so-
phisticated statistical tools, such as measures of complexity, would be required to
capture any dynamical changes taking place when such experimental parameters
are varied. However, only the dependence of complexity measures on the stuffing
flux parameter will be discussed here.
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3 Measures of Entropy and Complexity

Physicists use many different metrics to quantify the uncertainty of probabilistic
processes, although the Shannon entropy may be the most general. Given a
discrete probability distribution P = {pi : i = 1, . . . , N}, Shannon’s entropy is
defined:

S[P ] = −
N∑
i=1

pi log pi (12)

Where the product 0·log(0) is taken to be 0, and the log is usually base 2 as a mat-
ter of convention. When normalized to its maximum value, the Shannon entropy
is often denoted H. This definition is widely accepted as a measure of uncertainty,
randomness, or information content in theoretical physics [27]. For example, while
a prefect crystal can be described by a probability distribution centered around
a single, dominant state, and is thus highly predictable, an ideal gas is equally
likely to be found in any one of its accessible states, and is thus maximally un-
predictable, or random. Put differently, while the amount of information needed
to describe the perfect crystal (such as the distances between neighboring vertices
and the symmetries of its structure) is quite small, the amount of information
needed to specify the state of the ideal gas is maximal. These intuitive observa-
tions are quantified by the Shannon entropy, which would be minimal given the
probability distribution associated with the perfect crystal and maximal for the
uniform distribution associated with the accessible states of an ideal gas [28]. Note
that for the ideal gas, the Shannon entropy actually yields Boltzmann’s entropy as
a special case: the Shannon entropy of the uniform distribution Pe = { 1

N
, . . . , 1

N
}

is

S[Pe] = −
N∑
i=1

1

N
log

1

N
= − log

1

N
= logN, (13)

where N denotes the number of accessible states. Since it was introduced as a
general definition of entropy in the 1940s, Shannon’s entropy has found a wide
variety of applications across physics, mathematics, and information theory [29].

While efforts to formalize our intuitions about the order of a perfect crystal
and randomness of an ideal gas in terms of entropy have largely been met with
success, a general mathematical definition of the complexity of a physical system
or process based on its probabilistic description have proven more elusive [27]. Un-
surprisingly, the concept of complexity is rather complex, and may describe very
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different statistical characteristics depending on the context in which it is applied.
One particular kind of complexity, related to the notion of “non-triviality”, is of
interest here, as it constitutes the framework within which the Jensen-Shannon
complexity will be defined.

Motivated by the intuitive identification of both the minimally entropic perfect
crystal and maximally entropic ideal gas with minimal complexity, the authors of
[28] proposed a general measure of complexity

C = HD, (14)

where H is Shannon entropy and D is a quantity called a disequilibrium, quan-
tifying how far a system’s associated probability distribution is from the uniform
distribution. For example, the perfect crystal would have a high disequilibrium,
since only one state prevails, while the ideal gas would have minimal disequilib-

Figure 7: A graphical representation of the intuitive variations of “unpredictabil-
ity” or “information content” (H) and “disequilibrium” (D) across different sys-
tems of particles. A general trajectory for C = HD, intended to capture the basic
intuitive behavior of the notion of complexity, is also shown. Source: [28].
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rium by construction. The logic to this definition of complexity can be illustrated
graphically as in Figure 7. While both the crystal and ideal gas systems are low in
complexity, one in virtue of its low entropy and the other its low disequilibrium,
other, intermediate systems of particles can exhibit larger complexities.

This is all rather vague, but interpreting the more mathematically and oper-
ationally precise Jensen-Shannon complexity in later sections will be much more
straightforward with this notion of complexity as a product of an entropy and
a disequilibrium in mind. One last qualitative feature of statistical measures of
complexity which I would like to highlight is that of scale. Defining complexity
statistically in terms of a probability distribution across some accessible states
introduces an inherent dependence on temporal or spatial scale, since more or less
states may be accessible to a system depending on the scale at which it is consid-
ered. As we shall see, the dependence of statistical complexities of this form on
scale is actually one of their great strengths, as this scale dependence may allow us
to make inferences about particular physical mechanisms and the scales on which
they operate.

3.1 the Permutation Entropy

The permutation entropy, PE, is just Shannon’s entropy, S, from information
theory applied to a specific probability distribution, which is sometimes called the
ordinal pattern distribution. The ordinal pattern distribution is not defined for
a given physical system per se, but a time series of equally spaced measurements
of the system’s state. We can think of the calculation of this distribution as
a decomposition of the time series into its constituent ordinal patterns. Each
probability in the distribution is the frequency of occurrence of one of the n!
possible ordinal patterns of n successive terms in the time series. Let’s take a step
back and introduce some formalism in order to clarify this definition.

Ordinal patterns

In the terminology used by Bandt and Pompe [30] and by Amigo [31], an ordinal
pattern of length k is defined for a segment of a time series {x0, . . . , xk−1} as the
permutation σ of the index set {0, 1, . . . , k − 1} corresponding to the ranking of
the xi in ascending order, namely xσ0 < xσ1 < . . . < xσk−1

.3 For example, if our

time series has three successive terms x0 =
√

5, x1 = −3, and x2 = 1
3
, then since

3If xi = xj where i < j, then in the ranking xi < xj as a matter of convention.
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Figure 8: A graphical representation of two L = 5 time series, and their associated
length n = 3 ordinal patterns. Note that the corresponding permutations would
be 102 and 012.

x1 < x2 < x0, our ordinal pattern is the permutation σ = 120. Another simple
example is shown schematically in ??.

The embedding dimension

Now, Bandt and Pompe’s permutation entropy introduced in 2002 [30] is defined
for a given order, or embedding dimension, called n. The order n permutation
entropy for a given time series takes into account all and only ordinal patterns of
length n appearing in the series. Thus we choose n based on what length patterns
we care about. Given n, PE is calculated as Shannon’s entropy for the probability
distribution Pord whose probabilities are given by

p(σ) =
number of length n segments with ordinal pattern σ

total number of length n segments in the time series
. (15)

So each p(σ) is calculated by considering all L− n+ 1 segments n values long
from a time series of length L and determining what fraction display the ordinal
pattern σ. Since there are n! permutations of n elements, there are n! possible
ordinal patterns σ and thus n! probabilities in the ordinal pattern probability
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distribution Pord. Therefore the permutation entropy is given by

PE = S[Pord] = −
n!∑
p(σ) log p(σ) (16)

Where the sum is over ordinal patterns σ and the log is base 2.

The embedding delay

Instead of considering consecutive points in calculating the ordinal pattern prob-
ability distribution for a time series, an embedding delay τ can be used to sample
ordinal patterns on a larger time scale, thereby placing a lower limit on the tem-
poral size of structures resolved, consequently limiting the maximum resolved
frequency. Embedding delays can be implemented as a simple sub-sampling of
data in which only L/τ values of the time series are considered [2, 3] or all por-
tions of the original time series can be used [32], a method referred to here as the
length-preserving method. For example, for an embedding delay τ = 10 using the
former approach, a new time series X ′ of length L′ = 1

10
L is generated by selecting

every tenth value of the original series X and the ordinal pattern probability dis-
tribution calculated for that series in the usual manner. In the length-preserving
method, segments (xt, xt+10, . . . , xt+10(n−1)) of X are used to calculate the ordinal
pattern probability distribution, where t runs from 1 to L − 10(n − 1), thereby
including the 9/10ths of the dataset thrown out in the first method. In general
when using the length-preserving embedding delay, for a time series of length L

# of length n segments considered = L− τ(n− 1). (17)

Equivalently, this is the number of ordinal pattern counts which are used to con-
struct the ordinal pattern probability distribution.

Which embedding delay method is used depends in part on the length of the
time series in question. For practical reasons, the length-preserving method is
used exclusively here. The choice of embedding delay will be discussed in more
detail in Section 4.2.

Interpreting the permutation entropy

As Bandt and Pompe say of the permutation entropy, “this is the information
contained in comparing n consecutive values of the time series” [30]. The more
information contained in the ordinal structure of your typical length n segment of
the series, the more uncertainty there is in the dynamics of the system. Note that
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this uncertainty is small when the time series is skewed towards repeating just
a few patterns in the relative values of consecutive terms and large when there
is much diversity in the ordinal patterns of consecutive terms. In the extreme
cases, PEmin = 0 for a monotonic time series with only one ordinal pattern, while
PEmax = log(n!), for a purely random time series in which every possible length
n ordinal pattern occurs with equal probability p(σ) = 1/n!.

In light of these extremes, the permutation entropy is often normalized as

PEnorm = PE/ log(n!) (18)

so that 0 ≤ PEnorm ≤ 1.

3.2 the Jensen-Shannon Complexity

While the permutation entropy quantifies the randomness in an arbitrary time
series, a measure of statistical complexity such as the Jensen-Shannon complexity
is required to quantify any additional physical structure which might be reflected
in the probability distribution constructed from the signal. The Jensen-Shannon
complexity, or CJS, of the distribution P of N probabilities associated with a time
series is defined as the product

CJS[P ] = QJ [P, Pe]H[P ], (19)

Where H[P ] is the normalized Shannon entropy and the quantity QJ [P, Pe] is a
measure of disequilibrium, where Pe is again the uniform distribution [33]. In other
words, QJ [P, Pe] quantifies how different P is from an equiprobable distribution,
characteristic of a system such as an isolated ideal gas [28]. Therefore the quantity
CJS[P ] will be nonzero only if there exist privileged states among those accessible
to the system, and largest for a given entropy the further the distribution of
accessible states is from uniform. Formally, once the disequilibrium is normalized
such that 0 ≤ CJS ≤ 1, the Jensen-Shannon complexity can be expressed

CJS[P ] = −2
S
[
P+Pe

2

]
− 1

2
S[P ]− 1

2
S[Pe]

N+1
N

log(N + 1)− 2 log(2N) + log(N)
H[P ], (20)

Where S denotes the unnormalized Shannon entropy. When using the Bandt-
Pompe methodology, the distribution P associated with the time series is the
distribution of length n ordinal patterns Pord, so that

CJS = CJS[Pord] = −2
S[Pord+Pe

2
]− 1

2
PE − 1

2
log(N)

N+1
N

log(N + 1)− 2 log(2N) + log(N)
PEnorm (21)
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where N = n!. For brevity, the term “Jensen-Shannon complexity” or “complex-
ity” will subsequently be used to refer to this quantity, although it would be more
accurate to use “Jensen-Shannon permutation complexity”.4

Interpreting the permutation complexity

When the ordinal pattern distribution is used, CJS can be interpreted as a mea-
sure of the non-triviality of the frequencies of occurrence of ordinal patterns in the
time series. This characteristic of the ordinal pattern distribution is not directly
considered in the permutation entropy, so that “evaluating CJS provides one im-
portant additional piece of information”, quantifying “not only randomness but
also the degree of correlational structures” [34].

In order to begin to develop some intuition about these metrics, it will use-
ful to consider a few simple examples. The simplest would be a monotonic time
series, say representing a line with positive slope. The only length n ordinal
pattern appearing in this time series is the permutation (0,1,...,n), and thus the
permutation entropy is −1 log 1 = 0. The corresponding ordinal pattern prob-
ability distribution is far from a uniform distribution, with only one bin filled,
so the disequilibrium is large. Nevertheless, CJS is zero since PE is zero. The
fact that a monotonic time series has zero complexity intuitively matches the
characterization of the Jensen-Shannon Complexity as a measure of structure, or
non-triviality. At the other extreme is a completely random time series, from
a maximally stochastic system where every possible ordinal pattern occurs with
equal frequency 1/n!. By construction, such a series maximizes the permutation
entropy, so that PE = log n!. However, the disequilibrium is zero, so the CJS also
vanishes. This again intuitively fits with the identification of Jensen-Shannon
complexity as a measure of correlational structure.

3.3 Rationale

When talking about mathematical measures of complexity and entropy, it is im-
portant to keep in mind that any particular definition we adopt represents an
attempt to formalize our intuitions about randomness and complexity, and thus
should not be expected to directly represent any physical characteristic of a given
system such as magnetic field strength or velocity. That is not to say that im-

4Amigo and others have proposed the term “permutation complexity” in order to distinguish
the general kind of complexity captured using ordinal analysis [31]. In this terminology, both
PE and CJS [Pord] measure aspects of the permutation complexity of the time series in question.

24



Peter Weck The Ordinal Dynamics of Turbulence March 26, 2015

portant physical information could not be or is not contained in a mathematical
randomness or complexity measure, just that these metrics represent the physics
of a system rather indirectly.

With these words of caution behind us, the main reason for using the per-
mutation entropy as a measure of randomness instead of other incarnations of
Shannon’s entropy or related metrics is that most classical measures ignore the
temporal order of the terms in a time series, thereby leaving out potentially valu-
able causal information [29]. By constructing a probability distribution based on
comparisons of successive terms in a series, the permutation approach incorpo-
rates temporal order and thus causal information. Furthermore, while classical
measures often make assumptions about the system in question or are only suited
to deal with particular kinds of systems [29], permutation entropy can be ap-
plied to arbitrary time series [30]. Practically speaking, permutation entropy also
has the advantage of being computationally faster, simpler, and more robust to
noise than most comparable metrics [34]. Since Bandt and Pompe’s seminal pa-
per was published in 2002, “the power and usefulness of this approach has been
validated in many subsequent papers”, applying the metric to a variety of theoret-
ical, biological, economic, and physical systems [29]. For example, these metrics
have been used to distinguish noise and determinism in mathematical models [35],
track the effects of anesthesia and predict seizures based on the randomness of
EEG signals [30, 36, 37, 38], inform economic policy [39, 40], identify distinct time
scales in chaotic semiconductor lasers [41], and even to study the dynamics of El
Niño [42]. In plasma physics, permutation entropy and complexity were used in
[2] and [3] to study turbulence at the Large Plasma Device (commonly abbrevi-
ated as LAPD). These prior applications of the Jensen-Shannon complexity and
permutation entropy to plasma physics suggested that they could potentially be
used identify new or previously overlooked features of plasma experiments. The
work presented here represents the first extension of these metrics to astrophysical
plasma turbulence or MHD experiments like SSX. Furthermore, this research was
the first comparing turbulence in different plasma sources using the permutation
entropy and complexity.

As was touched on in the previous section, additional information can be
gained when the permutation entropy is considered alongside the Jensen-Shannon
complexity, calculated using the same ordinal pattern distribution of Bandt and
Pompe. In particular, it has been shown that a plane with PEnorm on one axis
and CJS on the other accommodates well-known stochastic processes and chaotic
systems in different planar regions [34]. This so-called CH plane 5 was used in

5C stands for Jensen-Shannon Complexity and H for normalized Shannon entropy, although

25



Peter Weck The Ordinal Dynamics of Turbulence March 26, 2015

conjunction with more traditional methods (e.g. exponential power spectra) as
a means of identifying chaotic vs. stochastic dynamics in plasma systems in the
aforementioned work at LAPD [2, 3]. In addition to its demonstrated capability
of distinguishing between noise and chaos, CJS is preferable to many competing
statistical complexities in virtue of the fact that it is an intensive quantity [33]. So
if a system’s dynamics have been captured by a time series of appropriate length
and sampling rate, increasing the length of the series should not alter the value
of CJS.

3.4 Maximum and Minimum Complexity

As a non-trivial functional of the entropy, CJS can take on a range of values for
a given PEnorm. In particular, CJS is constrained between well-defined bounds,
which are shown for n = 5 by the crescent-shaped curves in Figures 9 and 10.
These curves are derivable from equation (20) using undetermined Lagrange mul-
tipliers to maximize the complexity given fixed entropy as a constraint [43]. The
results are summarized below.

For fixed entropy greater than 0 and less than 1, minimum complexity is
attained when disequilibrium is minimal, i.e. when only one ordinal pattern is
privileged and all n!−1 others are equally likely. Four ordinal pattern probability
distributions of this kind are shown in Figure 9, using n = 5 as a representative
example. Note that instead of pi, −pi log pi is shown on the vertical axis of the
histograms, in order to improve readability. The associated positions for each of
these distributions along the minimum complexity curve are shown in red in the
CH plane on the right hand side of the figure. The possible values the privileged
ordinal pattern frequency p can take on and the possible values of the remaining
n! − 1 probabilities are of course constrained by the condition

∑n!
i=1 pi = 1. The

minimum complexity curve shown is generated by scanning over many possible
values of p and calculating CJS and PEnorm for each of the resulting ordinal
pattern probability distributions.

As might be expected, the ordinal pattern distributions yielding the maximum
complexity curve shown in black in Figure 10 are less straightforward. For fixed
entropy, CJS is maximized when the disequilibrium is maximized. However, in
order to keep the entropy non-zero, more than one bin of the distribution must be
filled. Among those probability bins which are non-empty, differing distributions
of counts correspond to different entropies, so the particular value of the entropy

it should be noted that the ordinal pattern distribution in particular is used to calculate both
quantities in these CH plane analyses
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Figure 9: Minimum complexity bound on the CH plane is shown in black (right).
Sample probability distributions from the family used to generate the curve are
shown on the left, and their CH positions in red on the right.

puts some constraints on the number of bins and number of bins filled simultane-
ously. It turns out that the family of distributions which maximize the complexity
over the full range of PEnorm ∈ (0, 1) have some number N of patterns with for
which pi = 0, one pattern of unique probability p, and the remaining n!−N − 1
patterns with identical, nonzero probability, so that all probabilities sum to unity.6

Technically, the maximum complexity bound is the envelope curve defined by the
CH positions of all probability distributions from the family described. When
1,000 or more distributions from this infinite family are sampled and their CH po-
sitions plotted, a nearly smooth line across the top of the plane is formed without
taking the envelope complexity, as shown in Figure 10. A few distributions from
this family of maximally complex distributions and their associated positions on
the CH plane are also shown, in red.

Based on the definition of complexity as a product of the entropy and a measure
of disequilibrium, the crescent shape of these maximum and minimum complexity
bounds makes good sense. We can make this connection more explicit by logi-

6In particular, the number of probabilities which are 0 must be N = 0, 1, ..., n!− 2, the value
of the unique probability must satisfy 0 < p < 1/(n! − N), and all other probabilities pj are
given by pj = (1− p)/(n!−N − 1).
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Figure 10: Maximum complexity bound on the CH plane is shown in black
(right). Sample probability distributions from the family used to generate the
curve are shown on the left, and their CH positions in red on the right.

cally tracing out the origin of the general arcing trajectory. By construction, the
complexity is constrained to 0 at the H = 0 and H = 1 corners of the CH plane.
Going from left to right, as we increase the entropy, the complexity exhibits a
general increasing trend (due to the H term in the product HD), until we reach
moderate entropies. At this point, we can think of the D term as “pulling down”
the product HD- further increase in H requires the overall distribution of proba-
bilities to fill out into all n! accessible bins, resulting in low disequilibriums. These
competing effects pinch the maximum and minimum curves together at the ends
and result in a complexity maximum at intermediate entropies.

3.5 Reference Models and the CH Plane

The position of a fluctuating time series on the PEnorm × CJS (or CH) plane si-
multaneously represents the unpredictability of the fluctuations and the degree
of correlation between the frequencies of occurrence of these fluctuations in the
series. Such a representation is desirable in large part because it is capable of dif-
ferentiating between stochasticity and chaos, by accommodating these two types
of dynamics in different regions of the CH plane. In order to interpret the implica-
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tions of the CH positions of magnetic fluctuations in turbulent plasmas, it will be
useful to develop some intuition about the plane. To this end, the CH positions
of various mathematical models are examined. In particular, the CH positions of
time series generated by (1) a simple sine function, (2) various chaotic systems of
equations, and (3) a stochastic model known as fractional Brownian motion (or
fBm) will be studied.

Figure 11: The n = 5 CH plane with various mathematical models, including
a sine function (red circle), three chaotic maps (purple square, triangle, and dia-
mond), and fractional Brownian motion for a range of Hurst exponents (dashed
black line).

The sine function

The n = 5 CH position of a sine curve sampled in steps of d = 0.001 over one
full period is marked in Figure 11 by a red circle. It is somewhat non-intuitive
that a sine function would occupy this position of the plane, as it is right near the
curve denoting maximum possible complexity, while sine is a very simple function.
Indeed, if we were to base our measure of complexity on Fourier modes, a sine
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wave would have minimum complexity. However, we are concerned here with
ordinal patterns in consecutive, discrete values of a time series. If a sine curve is
“discretized” by sampling some finite number of evenly spaced values over a range
wider than π 7 to generate a time series the permutation entropy and complexity
of this series will be necessarily non-zero.

For simplicity, consider the n = 4 case, with a time series generated by sam-
pling a simple sine curve in steps of size d over one full period. When d is much
less than π, the vast majority of length n = 4 ordinal patterns appearing in a sine
time series will be either monotonically increasing (i.e. 0123) or monotonically
decreasing (i.e. 3210), as the sine curve only deviates from this behavior at its
maximum and minimum. However, the presence of maxima and minima neces-
sarily introduce some additional ordinal patterns. When the full range spanned
by a given ordinal pattern, τnd, is less than π, the distance from peak to trough,
we can enumerate all possible non-monotonic ordinal patterns. Figure 12 shows
four such ordinal patterns, corresponding to the peak in the curve. There are four
more non-monotonic permutations corresponding to the trough of the sine curve.
Thus in total there are 8 non-monotonic ordinal patterns which might appear in
the time series, and a total of 10 accessible permutations for a sine curve sampled
such that τnd < π. In the n = 5 case, there are 14 accessible permutations.

For example, consider a time series generated by discretizing the sine curve in
steps of d = 0.001 from 0 to 2π. When analyzed with n = 4 and no embedding
delay, only four out of the 6,280 ordinal patterns appearing in this time series were
non-monotonic. The associated permutations were 3201, 0312, 2310, and 1203,
the first two corresponding to the peak of the sine curve and the latter two the
trough. The normalized permutation entropy and complexity of this time series
was found to be PEnorm = 0.22 and CJS = 0.20.

Note that were either d or τ increased for a series still spanning one full period,
the overall number of ordinal patterns would decrease. However, so long as the
condition τnd < π is preserved, there would be no fewer non-monotonic ordinal
patterns, as the presence of the peak and trough will always introduce at least
four into the series. Thus the relative proportion of monotonic ordinal patterns
would decrease, altering the permutation entropy and complexity. This point will
be explored in more detail in Section 4.3.

On the other hand, in the limit as d → 0 (and thus the length of the time
series goes to infinity), the proportion of ordinal patterns which are monotonic
approaches unity. Thus their contribution to the entropy approaches −1 log 1 =

7π is significant as it is the distance from peak to trough, and thus the maximum range
displaying only one ordinal behavior.
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Figure 12: Examples of possible non-monotonic n = 4 ordinal patterns and their
associated permutations for a sine curve with τnd < π.

0. Only a few non-monotonic patterns will appear irrespective of how small d
becomes, so the proportion of non-monotonic ordinal patterns will approach 0,
and since the limit as p approaches infinity of p log p is 0, these ordinal patterns
will also make no contribution to the entropy. Therefore the permutation entropy
and complexity of a sine function over a single period approach 0 in the limit of
infinitesimally small sampling rates.

Chaotic Maps

Figure 11 includes the CH positions of three, paradigmatic chaotic maps. While
deterministic chaos is highly unpredictable, reflected by moderately high entropies,
there are intricate structures embedded in chaotic dynamics, reflected by near-
maximal complexities on the CH-plane. A hallmark of mathematical chaos is
the existence of forbidden patterns in the dynamics described by a system of
equations [31]. As a result, fewer ordinal patterns are accessible to the system,
and the disequilibrium is larger than it would be for most other processes with
comparable uncertainty. For more information about chaos and the difference
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between a chaotic and a stochastic system, see Appendix B.
These three chaotic maps are the Henon map, the skew tent map, and the

logistic map. All three only exhibit chaos when the parameters in each model
take on particular values, or values within a specific range. The definitions for
each map, and the parameters used here, are as follows:

(1) The logistic map, which was originally developed in connection with pop-
ulation modeling, is given by {

xn+1 = rxn(1− xn) (22)

r = 4 was used here, which puts the map in a chaotic regime. A time series is
produced by setting some initial value x1 and then iterating this equation with
the parameter r held fixed.

(2) The Henon map, which can be viewed as a two-dimensional extension of
the logistic map [34], is given by{

xn+1 = 1− ax2n + yn
yn+1 = bxn

(23)

where the model parameters a and b were set to 1.4 and 0.3 respectively, corre-
sponding to a chaotic regime. If plotted in phase space (i.e. x-y space), this map
with these parameters would generate a so-called strange attractor, with fractal
dimensionality.

(3) The skew tent map, a continuous, piecewise function, is given by{
x/ω for x ∈ [0, ω]
(1− x)/(1− ω) for x ∈ [ω, 1]

(24)

ω = 0.1847 is used here to generate chaotic time series sampled from this function.
These maps were iterated to generate time series of length L = 105 which

were then used to calculate the complexities and entropies marked by the purple
triangle, square and diamond in Figure 11. Note that x and y in the Henon map
have the same fundamental ordinal structure, and consequently occupy the same
position on the CH plane.

Fractional Brownian Motion

As a paradigmatic example of an inherently probabilistic, or stochastic, model,
the CH positions of various fractional Brownian motion processes are shown in

32



Peter Weck The Ordinal Dynamics of Turbulence March 26, 2015

Figure 11. fBm, is a generalization of Brownian motion, often represented BH(t),
where t is a real number greater than 0. While both processes are self-similar and
Gaussian, Brownian motion has increments which are independent of one another,
while in fBm increments BH(t + 1) − BH(t) need not be independent [34]. The
correlation between increments is determined by a model parameter called the
Hurst exponent, H ∈ (0, 1). When H > 1/2 increments are positively correlated,
and when H < 1/2 they are negatively correlated. H = 1/2 corresponds to
classical Brownian motion. The covariance for these stochastic models is given by

E
(
BH(t)BH(s)

)
=

1

2

(
t2H + s2H − |t− s|2H

)
, (25)

where s, t ∈ R, and E(...) denotes the expectation value.
Fractional Brownian motion time series were generated for eight different Hurst

exponents over a representative range, H = 0.1 to H = 0.8 in steps of 0.1. Each
time series was 103 values long. The CH positions of these time series are con-
nected by a dashed black line in Figure 11. As we might expect, longer memory
fBm (i.e. positive correlation between increments) displays greater complexities,
tending towards the middle of the plane. When increments are independent as
in ordinary Brownian motion, the model is high entropy and relatively low com-
plexity (H ∼ 0.9, C ∼ 0.18). Negative increments push the model closer to the
stochastic limit, H = 1, C = 0. Interestingly, as found in Rosso et al, Gaus-
sian processes such as fBm models tend to exhibit slightly lower complexity than
comparable non-Gaussian processes. These models were selected here as repre-
sentative stochastic processes in large part due to their Gaussian character, and
fairly wide range of ordinal behavior.
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4 Permutation Analysis of Turbulence Data

4.1 Datasets

Data from four different sources of turbulent plasma were studied using the CH
plane methodology: solar wind data collected by the WIND spacecraft, SSX MHD
wind tunnel data, a dataset from the Large Plasma Device (LAPD) at the Uni-
versity of California, Los Angeles, and a single time series from a liquid metal
experiment at the University of Wisconsin-Madison. In this section, basic de-
scriptions are given for each of these datasets.

WIND data

The WIND spacecraft is a satellite positioned near 1 AU, equipped to measure
fluctuations in all three orthogonal components of the magnetic field as streams
of solar wind plasma blow by. Measurements are made using a flux gate magne-
tometer, which provides a DC magnetic field measurement by recording the bias
required for zero current to flow in a coil of wire subjected to a changing magnetic
field. The sampling rate of the resulting time series is 3 s.

Multi-day long time series from a fast wind stream (Jan 14 - Jan 21 2008) and
a slow wind stream (Jan 24 - Jan 29 2010) with large scale magnetic fluctuations
on the order of 10 nT are analyzed here. The fast stream magnetic signal consisted
of almost 230, 000 values, and the slow stream signal of over 170, 000. Both signals
were highly stationary. As discussed in Section 2, this means that mean values
were independent of the time span over which the mean was taken, and thus that
a set of subseries could be treated as an ensemble. It will be noted whenever the
time series are partitioned in this way.

SSX data

Magnetic fluctuations in the SSX MHD wind tunnel are measured by 16-channel,
3-direction, single-loop pickup coils. These coils actually measure Ḃ fluctuations,
sampled at a rate of 65 MHz. The Ḃ time series can be used to generate B data,
but the integration process artificially smooths the fluctuations. For this reason,
the CH analyses presented here focus on Ḃ time series, although B series are also
briefly considered. The dataset studied here consisted of Ḃ fluctuations acquired
at 8 different stuffing flux settings. About 40 runs were done at each setting. Since
the pickup coil probe array has 16 channels, corresponding to 16 different radial
positions in the midplane of the tunnel, and each channel measures fluctuations
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Figure 13: The fast wind Bx (in the radial direction outward from the sun) time
series on the scale of (a) days, (b) hours, (c) minutes and (d) seconds. Each
successive subplot shows a close-up of the section of the prior subplot plotted in
a matching color.
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in all 3 components of the magnetic field, the dataset consisted of a total of about
8× 40× 16× 3 = 15360 Ḃ time series.

A single “shot” by the plasma gun lasts approximately 100µs. The first 40µs
or so are the “build up” phase, before the plasma has reached the tunnel midplane.
After the plasma reaches the midplane, there is a relaxation phase, lasting about
20µs. This 40 to 60µs window after the initial discharge is primary source of
statistics for SSX turbulence studies. Ḃ time series spanning this window are
1300 values long, and fairly stationary. Unless otherwise noted, these are the
series used to study the position of SSX magnetic fluctuations on the CH plane.

Figure 14: 4.5 microsecond portion of an SSX Ḃ time series (green) and the
corresponding integrated B time series (blue).

LAPD data

The LAPD device consists of a 20-meter long, 1 meter diameter cylindrical vacuum
chamber, in which plasmas are produced from a cathode-anode discharge from one
end. A series of large electromagnets encircling the chamber provide a background
field which can be varied in strength from 400 gauss to 2.5 kilogauss. Densities in
LAPD plasmas are on the order of 1012cm−3, and temperatures generally a few
eV .
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The LAPD time series studied here are ion saturation current signals acquired
by probes inserted radially into the device.[44] Measurements of ion saturation
current (or Isat) fluctuations within a probe provide information about several
important plasma parameters, including magnetic field and temperature, although
here Isat time series are treated as surrogates for magnetic signals. Each such
time series was sampled at 1.5 MHz, from a radial location of 26cm [45]. This
corresponds to the outer edge of the plasma, where fluctuations are dominated
by nonlinear interactions between waves generated by the pressure gradients that
naturally develop between the plasma near the center of the device and the plasma
near the chamber wall [46].

Time series from 25 shots on the LAPD device are used, each 5000 values
in length. Previous work using frequency spectra has suggested that the edge
fluctuations of magnetized plasmas in the LAPD and other similar devices are
chaotic in nature [47], so the expectation was that LAPD time series would occupy
a region of the CH plane closer to chaotic maps than the other plasma datasets
analyzed.

Liquid Metal data

The fourth dataset studied was from a liquid metal experiment at the University
of Wisconsin-Madison, constructed to study the dynamo effect. The experiment
consisted of a 1 m diameter spherical vessel filled with liquid sodium, which was
stirred to generate a turbulent flow whose inductive response could be probed
with an applied magnetic field [48]. Due to the low kinematic viscosities ν in the
experiment, the magnetic Prandtl number

Pmag =
Rm

Re

=
ν

η
(26)

was small (about 9× 10−4). However, the magnetic Reynolds number Rm was on
the order of 100 [48]. Such a small Pmag and relatively large Rm corresponds to
an extremely large Re = LV/ν Reynolds number, on the order of 105. The liquid
metal experiment is therefore highly turbulent, with high flow speeds dominat-
ing viscous effects and magnifying small scale perturbations into unpredictable
large scale fluctuations. It was anticipated that this unpredictability in the liquid
sodium flows would carry over into unpredictable fluctuations of the magnetic
field, reflected by a CH position comparable to stochastic systems. Magnetic time
series from this experiment were generated by magnetic Hall-effect probes, at a
sampling rate of 1 kHz. Signals were sent through a low-pass filter to reduce the
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noise level before being digitized. Only one such time series, 16,380 values in
length, was analyzed here.

4.2 Parameter Selection

The values of PE and CJS for a given time series are strongly dependent on the
parameters used to calculate these quantities. The primary parameters deter-
mining these values, and thus the CH position of the system, are the embedding
dimension n and the embedding delay τ . In certain situations, it is also useful to
consider the length L of the time series as a parameter jointly determining the CH
position with n and τ . The obvious question then arises: how should these param-
eters be chosen? The answer depends on the nature of the research question being
explored. For example, if the CH methodology is being used to identify particular
time scales associated with different physical mechanisms, then n and L are often
held fixed and the embedding delay varied, as in [49] or [50]. We are also inter-
ested here in more general questions of the relative randomness and complexity of
time series from different physical systems. For these applications, the selection
of τ and n is determined (or at least constrained) by a combination of practical
limitations and physical, application specific considerations. Unfortuately, the use
of the CH plane in plasma physics is not yet well-established, so there is no agreed
upon formula for parameter selection specific to characterization and comparison
of turbulent plasmas.

Practical considerations

In their seminal paper, [30], Bandt and Pompe recommend embedding dimensions
n between 3 and 7, for “practical purposes”. Even n = 3 captures very little of
a time series ordinal dynamics, only considering 3! = 6 permutations. In general,
larger values of n seem preferable, in order to capture what longer correlational
structures might appear. However, the length of a time series and the computa-
tional speed required for the application strongly limit the use of large n, hence
Bandt and Pompe’s recommendation of embedding dimensions less than or equal
to 7.

Length is an especially important consideration here, since the SSX time series
used are only 1300 values long. Unless L � n, the number of length n segments
L−τ(n−1) in the time series will not be sufficient to “fill out” the ordinal pattern
probability distribution in accordance with the true dynamics of the system. This
will tend to artificially decrease the entropy of the signal. For this reason, it
is often recommended that n be selected such that L > 5n! [51]. In any CH
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analysis presented here involving SSX data, n = 5 is used, in accordance with this
condition. The time series from the other three systems are sufficiently long to
warrant the use of an n = 6 embedding dimension, and the solar wind series so long
that n = 7 is reasonable, but the focus here will be on the n = 5 CH plane so that
comparisons can be drawn with magnetic fluctuations in SSX. n = 5 is preferable
to smaller embedding dimensions since as noted earlier, smaller dimensions reflect
only a few, relatively simple possible ordinal dynamics, and appear less capable
of differentiating between systems.

Practical considerations similarly limit the size of the embedding delay τ . The
number of ordinal pattern counts L − τ(n − 1) going into the calculation of the
distribution will also become too small if large embedding delays are used, artifi-
cially shifting the CH position of the time series. This phenomenon is explored in
greater detail in the next section, but for now it suffices to note that for a given
system there is a maximum delay beyond which the effect of insufficient statistics
on the values of PE and CJS becomes especially pronounced.

Physical considerations

System-specific physical considerations can also guide the choice of parameters.
For example, perhaps there is a minimum n which is needed to appropriately
distinguish the system from other systems. More commonly, it is the choice of
the embedding delay which is guided by the system in question. If a particular
physical mechanism or mode is of interest, τ should be selected so that the effective
sampling rate is comparable to the frequency of the phenomenon in question.
Going in the other direction, scales of interest can be identified based on local
extrema in the entropy and complexity at particular values of τ [49]. In general,
τ should be selected such that time scales of interest are larger than τ/fsample, or
equivalently, so that the range of frequencies of interest lies both below and near to
fsample/τ . The system specific considerations for the datasets analyzed here will be
described in detail later. For now it suffices to note that the cadence of the WIND
dataset forces us to consider frequencies in or below the inertial range in choosing
τ , while SSX data is limited to a dissipation range and further constrained by
the existence of a high-frequency noise mode. In the LAPD dataset, the optimal
choice of τ will be determined by the existence of important modes in the plasma
at relatively small time scales.
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4.3 Effect of the Embedding Delay on CH position

Delay studies of a simple sine function

In order to better understand the role of the embedding delay in determining
the CH position of a given system, time series generated by a simple sine function
were analyzed. For all studies presented in this section, time series were generated
by evaluating the sine function from Python’s math module over a discrete range
of evenly spaced values. Both the number of points used (i.e. the length of the
time series) and the step size were varied, but the underlying system was the
same period 2π sine function in all cases. In a sense, these sine time series can be
regarded as a highly simplified model for time series collected at varied sampling
rates and time spans from a physical system with some inherent time scale. Thus
understanding the effect of the embedding delay on the entropy and complexity of
these model time series could be informative about general relationships between
the delay, the inherent time scale of the system in question, and the sampling rate
and length of time series collected from the system.

First, a few general words about systems with inherent time scales are in order.
When the range τnd of a given ordinal pattern becomes larger than the inherent
time scale of a system, the permutation entropy and complexity will no longer be
“seeing” the inherent ordinal behavior. This effect can be thought of analogously
to aliasing. Exactly how it should be manifested in the CH position of the time
series may not be clear a priori, so it will be treated in some detail. On the other
hand, in systems with high frequency noise contamination, the essential dynamics
will also be obscured if τnd is too small compared to the inherent time scale.
This effect will be demonstrated by adding noise to a simple sine time series and
considering the effect of the embedding delay on shifting the position of the series
into the appropriate periodic region of the plane.

The analogue of an inherent time scale for the sine function might be considered
to be 2π, the period of the function, or more appropriately for our purposes, π,
since as noted in Section 4.3, this is the maximum ordinal range over which the
simple monotonic permutations characteristic of the sine curve are accurately
captured. Thus for scans of the embedding delay with fixed n and step size d, we
expect the embedding delay τc satisfying τcnd = π, or

τc =
π

nd
, (27)

to be significant. In particular, delays larger than τc will yield artificially diverse
distributions of ordinal patterns, while for time series with added noise, delays
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much less than τc will appear overly stochastic, with much broader distributions
of ordinal patterns.

The first study conducted with these simple sine time series was to vary the
quantity of data while holding the range of behavior analyzed constant. For
example, one time series was generated by sampling the sine function between 0
and 10 in multiples of 10−4 (resulting in a time series of length L = 105), and
another by sampling over the same 0 to 10 domain but in steps of 10−3 (resulting
in a time series L = 104 values long). Since both 10−4 and 10−3 are orders of
magnitude smaller than π, the expectation was that both these time series would
provide reasonably good statistics over a large range of embedding delays (τc
defined above is on the order of 6000 for the d = 10−4 case and ≈ 628 for the
d = 10−3 series).

A scan with the d = 10−4 time series of delays ranging from τ = 1 to τ = 1000
in steps of 50 is shown in Figure 15(a), and a scan over the same range of delays
with the d = 10−3 series is shown in 15(b) The CH position of longer time series
with smaller step size does not display significant dependence on embedding de-
lay, although there is a clear trend to increased complexity and entropy as τ is
increased. This makes sense when the permutations in a sine curve are thought
about qualitatively. The finer the sine function is sampled, the greater proportion
of all permutations will be the monotonic 01234 and 43210 permutations. This is
because a sine curve over a finite domain only departs from continuously increas-
ing or decreasing behavior at the maxima and minima, as discussed in Section
4.3. Conversely, as the embedding delay is increased, the proportion of ordinal
patterns representing the basic monotonic permutations will go down. This effect
is exaggerated for the d = 10−3 series shown in 8(b) by the larger step size used
to generate the time series, as can be seen looking at the resulting ordinal pat-
tern probability distribution. Figure 16(a) shows the ordinal pattern probability
distribution of the d = 10−3 series for τ = 100 < τc, 16(b) the distribution for
τ = 628 ≈ τc, and 16(c) for τ = 800 > τc. For τ < τc, the vast majority of
patterns are monotonic, as expected. However, for delays near τc, the frequen-
cies of monotonic and non-monotonic ordinal patterns become comparable, and
thus the distribution more uniform. For τ = 800, the distribution is even more
uniform, while still limited to the 14 permutations accessible to a sine time se-
ries. Increased uniformity causes PE to increase. However, since the accessible
permutations are still only a fraction of the 120 permutations of order n = 5, the
ordinal pattern probability distribution remains far from a true uniform distribu-
tion. Thus the disequilibrium of the distribution remains more or less unchanged,
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Figure 15: (a) n = 5 CH positions of a time series generated from a sine functions
in steps of d = 10−4 for a range of embedding delays. (b) CH positions of a sine
time series generated with d = 10−3 over the same range of embedding delays.
Chaotic maps are shown in purple and fBm in dotted black for reference.
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Figure 16: Ordinal pattern probability distributions of the d = 10−3 sine time
series for n = 5 and (a) τ = 100, (b) τ = 628, and (c) τ = 800.

and the complexity increases roughly in proportion to the entropy, in accordance
with equation (14), or equivalently (19). The almost linear relationship between
complexity and entropy in Figure 15 is therefore to be expected.

Note that for delays near τc, this effect is sufficient to inflate the complexity and
entropy of the d = 10−3, L = 104 sine time series near to that of the chaotic maps.
This does not reflect the underlying dynamics of the sine function (of course) or a
failure of the CH methodology, but our choice of step size and embedding delay.

Interestingly, if the embedding delay is scanned over an even larger range, the
CH trajectory of the series undergoes a leftward “hook” and starts to decrease in
both entropy and complexity. This phenomenon is shown in Figure 17, for a scan
of the embedding delay up to τ = 2500 in steps of 100 with the d = 10−3 series.
An almost identical plot is generated if the time series spans the same range but
with an order of magnitude larger or smaller step size and corresponding order of
magnitude larger or smaller delays. For the d = 10−3 series, the hook occurs near
τ = 1000. The ordinal pattern probability histograms indicate that for delays
much larger than this, the total number of different permutations appearing in
the signal is actually less than 14. Because at these delays the ordinal range is
on the order of two periods, the permutations which do appear are often different
from the 14 permutations accessible to a series satisfying τnd < π. However,
limitations in the range of the full series constrain them to just a few newly
accessible permutations. As the delays are increased further, these constraints
become more stringent, and fewer and fewer different permutations appear. This
reduces the entropy, resulting in the reversed trend after the hook. Eventually, the
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Figure 17: The n = 5 CH positions of the sine time series sampled at d = 10−3

for a wider range of embedding delays, up to τ = 2500.

number of available ordinal patterns L − τ(n − 1) becomes very small, resulting
in extremely low complexities and entropies just in virtue of the lack of statistics.
The limit case is of course when no ordinal patterns of the requisite length are
available, which occurs for this series at τ = 2500. Thus it should be kept in mind
that the behavior explored here is more an artifact of the finite range covered by
a given time series and insufficient statistics than any inherent dynamics. These
strange effects are of interest because insufficient statistics and limited domains
are often encountered when working with experimental datasets.

The final study of the delay dependence of sine time series was to add noise to
the time series analyzed, and look for the embedding delays required to move the
CH position of the series near the noise-free range shown in Figure 15. This was
done by adding a random number between 0 and 0.1 (a tenth of the amplitude)
to each term in the d = 10−3 series analyzed above. This can be thought of
analogously to noise at a frequency comparable to an experimental sampling rate.
The analogue of Figure 15(b) with this high-frequency noise is shown in Figure
18.
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Figure 18: The n = 5 CH positions of a sine time series with high-frequency
noise sampled at d = 10−3 for a range of embedding delays up to 1000.

For delays of τ = 1 and even τ = 50, the series appears highly stochastic, with
entropies and complexities comparable to fractional Brownian motion. It is not
until delays of 150 or 200 that the CH positions becomes comparable to those of
Figure 15(b). Interestingly, this delay is about as small compared to τc ≈ 628 as
the delay at which the hook behavior appears is large compared to τc. This was
anticipated, since delays less than but comparable to τc should be required to “see
past” high-frequency noise. Said in other words, the ordinal range τnd at these
delays is around π/3 or π/4, the same order of magnitude as the “inherent time
scale” π. Even at larger delays, the entropies of the noise-added series remain
slightly higher than without noise, but the point remains that the qualitative
delay-dependent behavior is only accurately captured for delays comparable to τc
when high-frequency noise is added to the time series.

Delay scans and insufficient statistics

By analyzing the CH position of a physical system over a range of embedding
delays, details about the length scales on which different physical mechanisms
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and dynamics are dominant might be extracted. However, as seen in the previous
section, there are also effects such as insufficient statistics which artificially alter
the CH position of a time series. Since time series from the SSX MHD wind
tunnel consist only of 1300 values, understanding the artificial effects connected
to insufficient statistics is of paramount importance.

Figure 19 explores the effect of large embedding delays on relatively short time
series for all four datasets. Time series from each dataset were partitioned into
sections of 1300 values, and the CH position calculated for each section separately
and then averaged. The hope was that by holding the length of all time series an-
alyzed constant and comparing their CH positions at high embedding delays, any
striking commonalities which emerge across all four datasets could be attributed
to the artificial effects of insufficient statistics. This would help determine the
range of delays appropriate for reliable studies of SSX time series (reliable in the
sense that changes in the CH position with embedding delay could be attributed
primarily to physical sources instead of a lack of statistics). For reasons discussed
in Section 4.2, n = 5 was chosen for this analysis. Each CH plane in Figure 19
includes the chaotic maps and fBm curve introduced earlier. Identical red curves,
of the same basic shape as the maximum and minimum complexity bounds to
the CH plane, were overlayed onto each of the subplots to ease comparison of
high-embedding delay trajectories across datasets. These curves do not represent
any CH computation, but merely a visual point of reference across subplots.

Each trajectory shown represents the (ensemble averaged) CH position as a
function of the embedding delay, which is visually represented by a blue tone color
scale. The first point in a given trajectory is the undelayed (τ = 1) CH position,
the next is the τ = 10 position, then τ = 20, and so on in steps of 10 over a range
between τ = 1 and τ = 200. For the SSX delay scan in Figure 19(a), trajectories
for both Ḃ (right side of the plane) and integrated B (left side) were calculated.
Note that each point represents an ensemble average over approximately 40 shots
at each of 8 helicity settings, as well as over the innermost 4 channels of the
probe array and all three components of the magnetic field. Similarly, each point
in the WIND trajectory in 19(b) consists of an ensemble average over the 1300
value sections and all three components of the magnetic field. Only the fast wind
time series was used. The LAPD trajectory, shown in 19(d), represents averages
over 1300 value sections of time series from 5 different runs. Finally, the liquid
metal trajectory was calculated by averaging over 1300 value sections of the single
magnetic time series available for this project.

The embedding delay trajectories for the four datasets naturally begin in dif-
ferent regions of the plane, with LAPD data at a high complexity and moderate
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Figure 19: The n = 5 CH plane with embedding delay scans from τ = 1 to
τ = 200 of (a) SSX Ḃ on the right hand side of the plane and B on the left, (b)
fast solar wind B, (c) liquid metal B, and (d) LAPD Isat time series, all of length
L = 1300. Each point represents an average, either over multiple time series,
1300 value sections of single series, or both. The red curve was drawn to provide
a common reference to aid comparison across subplots. Chaotic maps and a range
of fBm points are also shown.
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entropy, SSX Ḃ data at fairly high entropy and complexity, and solar wind and
liquid metal data at extremely high entropies and low complexities. The signifi-
cance of these systems occupying such disparate regions of the CH plane will be
explored in later sections. What is of interest here is the overall CH trajectories
followed by each system as the embedding delay τ is increased past the point
where the number of n = 5 segments of every τth value in the series becomes
insufficient to fill out the ordinal pattern probability distribution. In particular,
note that for low embedding delays, there is a wide range of behaviors exhib-
ited by these trajectories, while at high embedding delays, certain commonalities
emerge. For example, for low to moderate delays, the CH position of LAPD data
moves rapidly towards the high entropy and low complexity corner of the plane,
while liquid metal CH positions increase in complexity and decrease in entropy.
At high delays, all four trajectories execute a “left hook”, followed by a monotonic
decrease in entropy and increase in complexity, tracing comparable arcs towards
the top of the CH plane. The fact that this high-delay trend occurs across all
four systems suggests that it represents an artificial effect connected to a lack of
statistics.

However, note that the “hook” occurs at different delays for each system.
Finer delay scans indicated that the hook occurred much later for LAPD data, and
earliest for WIND data. The table shown below displays the estimated embedding
delay after which these ensemble averaged trajectories over 1300 value sections
decrease in entropy and increase in complexity monotonically.

Dataset τhook

SSX 34
WIND 6
LAPD 126

Liquid Metal 31

This variation in the value of τhook may be accounted for by the differing num-
ber of distinct ordinal permutations occurring in each time series. For example,
Figure 20 shows the ordinal pattern probability distributions for τ = 1 of both
an L = 1300 solar wind fast stream time series and an L = 1300 LAPD time
series. While 119 out 120 different length 5 ordinal patterns occur in the solar
wind series, only 80 appear in the LAPD series. Recall that for a given delay τ ,
L− τ(n− 1) ordinal patterns are available for analysis. Since L is not very long
to begin with, we can think of the ordinal patterns from the solar wind series
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Figure 20: Ordinal pattern probability distributions for (a) fast stream Bx WIND
data and (b) LAPD Isat time series, each 1300 values in length, with no embedding
delay. Note both the varying number of different permutations between the two
datasets, as well as the difference in y-axis scales.

for τ = 1 as already “spread thin” across the all 120 permutations accessible to
the system at that time scale. The effect of insufficient statistics associated with
large τ should be more significant for systems with broad distributions like the
solar wind than for systems with more concentrated ordinal pattern distributions,
simply because a histogram of counts from an inherently broad distribution is
more likely to get accesible bins with no counts when the total number of counts
is reduced. When fewer bins are getting counts, the system will start to look more
complex, and the system will move up on the CH plane. Of course, differences in
physical structure across length scales can also tend to increase or decrease the
complexity and entropy as the embedding delay is increased. These trends might
tend to push this artificial left hook behavior to earlier or later delays than would
expected just by looking at the distributions at τ = 1. In any case, generally
speaking it makes sense that if the first portion of a system’s trajectory is in a
high entropy, low complexity region of the plane (i.e. the distribution of ordinal
patterns is broader) then that trajectory would execute a left hook and move up
the plane monotonically due to a lack of statistics at a lower embedding delay
than a system which occupies a more complex region of the plan.

When the length of the time series considered is varied, most qualitative fea-
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tures of the CH trajectories over scans of the embedding delay occur at approxi-
mately equal delays. However, the embedding delay at which the left hook effect
described above occurs depends strongly on the length of the time series used,
further indicating that these are artificial effects of insufficient statistics. For ex-
ample, Figure 21 shows zoomed-in CH trajectories of different length time series
from the liquid metal dataset, for embedding delays from τ = 1 to 150 in steps of
1. 21(a) was generated by averaging the CH position over 1300 value sections of
the original series, as in Figure 19, while (b) was generated by averaging over 2600
value sections. The qualitative behavior of these trajectories is quite similar. Both
trajectories reach a local maximum in complexity near τ = 11, which may indicate
that some physical mechanism operating on time scales near 11× 1/fsample = 11
ms contributes additional structure to the magnetic fluctuations in the metal. On
the other hand, while both exhibit the hook-like behavior, the hook occurs near
τ = 72 instead of τ = 31 for the 2600 value sections. This suggests that unlike
the local complexity maximum at τ = 11, the hook does not reflect any physical
structures.

Figure 21: Close-ups of the trajectories of (a) 1300 value sections and (b) 2600
value sections of the liquid metal time series, for a scan of the embedding delay
from τ = 1 to 150 in steps of 1.

Similar observations can be made when comparing the results from partitioning
the 5000 value LAPD time series into L = 1300 sections to those from analyzing
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the full time series. Figure 22 shows close-ups of trajectories from these two cases
over a range of delays from τ = 1 to 100, again in steps of 1. The qualitative
behavior is again similar over this range- both exhibit a local maxima in complex-
ity near delays of τ = 10, although for the 1300 value case the local minimum in
complexity occurs at τ = 20, vs τ = 14 when the full time series is used. Like the
local maximum in complexity for the liquid metal, this common feature occurring
at similar delays could represent some additional structure on that time scale, in
this case approximately 6 to 10 µs. On the other hand, while the hook behavior
sets in near τ = 126 for 1300 value sections of the LAPD dataset (just beyond the
range shown in Figure 22), no hook is identifiable for the full length time series
until after τ = 800. Once again, these observations corroborate the hypothesis
that a monotonic increase in complexity and decrease in entropy for delays which
are large compared to the series length indicate that there are insufficient statis-
tics available to accurately estimate the ordinal pattern probability distribution.

Figure 22: Close-ups of the trajectories of (a) 1300 value sections and (b) full
length of the LAPD Isat time series, averaged over 25 runs, for a scan of the
embedding delay from τ = 1 to 100 in steps of 1.

As we will see in Section 4.3, the left hook behavior may be less relevant for
identifying the effects of insufficient statistics in longer time series, such as the full
solar wind time series, which are hundreds of thousands of values long. However,
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it seems reasonable to conclude that 1300 value SSX time series should not be
analyzed with embedding delays past τhook if we are only interested in physical
mechanisms. With this in mind, we now turn to what physical conclusions might
be drawn from delay scans, and CH analysis more generally, of the SSX and WIND
datasets.

Unfortunately, τh is fairly small for SSX time series, limiting the range of
time scales which can be investigated. In particular, the complexity and entropy
can only be calculated reliably for embedding delays corresponding to time scales
between about 1/fsample ≈ 15 ns and 1/fsample× τh ≈ 523 ns. In frequency space,
this corresponds to an upper bound on resolved frequencies between 65 MHz and
about 2 MHz. With delay steps of 10, Figure 19(a) only provides a rough estimate
of the delay dependence over this range. A finer scan of the embedding delay, in
steps of 1, is shown over the same τ = 1 to 100 range in Figure 23. The 15 ns to
523 ns range corresponds to the trajectory up to τh = 34, corresponding to the
turning point beyond which the trajectory enters a monotonic leftward arc. In this
range, the average CH position of the dataset fluctuates rather rapidly, attaining
its maximum complexity for the undelayed case, dropping immediately to its
minimum complexity for τ = 2, reaching its secondary maximum for τ = 8, and
subsequently working its way down and to the right. With such rapid fluctuations
in complexity and entropy, it would be more difficult to identify a candidate time
scale for some physical mechanism or mode than for, say, the simpler trajectory
shown in Figure 21. It is interesting, however, that there is such a large increase in
the stochasticity of the dataset at τ = 2. This spike in stochasticity corresponds
to a frequency of about 30 MHz. The SSX plasma gun is known to generate a high
frequency noise mode at a frequency between 10 and 20 MHz. In a time domain,
this high frequency mode corresponds to spans of about 133 ns, while each value
in a τ = 2 ordinal pattern for is about 31 ns apart. Thus it seems likely that the
average position of SSX Ḃ signals moves to a more stochastic region of the CH
plane at τ = 2 due to the noise mode which is being near optimally resolved at
that timescale.

4.4 Further Permutation Analysis - SSX

As can be seen in Figure 6 from Section 4.1, SSX magnetic frequency spectra follow
a fairly steep, approximately -11/3 power law scaling for frequencies ranging from
1 MHz to about 10 MHz. The entire range of the CH trajectory in 23 from the
secondary complexity maximum at τ = 8 to the hook at τ = 34 corresponds to
frequencies between about 2 MHz and 8 MHz, so well within this steep power
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Figure 23: Close-up of the trajectory of helicity, channel, field component, and
shot averaged SSX data for a scan of the embedding delay from τ = 1 to 100 in
steps of 1.

law range. In [25], it is suggested that the fact that SSX spectra exhibit this
epoch of steeper power law scaling than the -5/3 of the solar wind could indicate
a dissipative mechanism active in SSX but not the solar wind. As the embedding
delay is increased in this range (i.e. as we move leftward in frequency space up
towards the end of the -11/3 scaling regime), there seems to be a general trend
towards greater stochasticity. If a dissipative mechanism is in fact responsible
for the steeper power law scaling, it may also be connected to the changes in
entropy and complexity over this τ = 8 to τ = 34 portion of the trajectory. Past
this range, insufficient statistics prevent us from learning much about the overall
dependence of the entropy and complexity of SSX magnetic fluctuations on time
scale.
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SSX CH spread for τ = 1 and τ = 8

In generating Figure 23, the CH position of the SSX dataset for a given embed-
ding delay was found by averaging over components of the magnetic field, several
channels, and numerous shots over a range of helicities. Recall that the magnetic
helicity is a measure of the degree of ”twistedness” of the plasma. Only the 40
to 60 µs stationary period of the plasma discharge was considered. We now turn
to the dependence of the CH position of SSX time series on these various ad-
ditional parameters. For simplicity, only two embedding delays are considered:
τ = 1 and τ = 8. τ = 1 is considered because the complexity is maximum at
this delay, indicating that certain small-scale structures are being resolved which
may be lost at larger delays.8 However, a delay greater than 7 or so is required to
avoid contamination from the high frequency noise mode discussed above. Thus
the secondary complexity maximum at τ = 8 is also used in many of the plots
presented in this section. Note that this also keeps us well below the left hook at
τ = 34. As before, all CH planes with SSX data were generated using n = 5.

Figure 24 shows the overall spread of SSX data on the CH plane, for three
different analysis windows and both τ = 1 (left column) and τ = 8 (right col-
umn). The first row displays the CH positions of all of the more than 15000 SSX
time series in the dataset, analyzed between 40 and 60 µs after initial discharge.
The blue circle indicates the average position, and the error bars the standard
deviation horizontally and vertically from this average. The second row of plots
was generated by analyzing the same dataset from 60 and 80 µs after discharge,
by which time the plasma has developed into its helical minimum energy state
and resistive dissipation has set in. Finally, the last row corresponds to an 80 and
100 µs analysis window, during which resistive dissipation has all but destroyed
the magnetic field.

After the primary period of turbulent fluctuations is over and the plasma has
relaxed, the average position of the data on the CH plane shifts to higher entropies
and lower complexities, more characteristic of highly stochastic systems. The
fluctuations in the magnetic field are becoming more random as it dies away due
to the energy loss from resistive heating. Interestingly, this effect is either non-
existent or less pronounced when going from 40 to 60 µs to 60 to 80 µs for τ = 8.
Overall, with a τ = 8 embedding delay the data is markedly more stochastic.

8There is nothing particularly special about the fact that this is the undelayed case- were the
experimental sampling rate in the device faster, the maximum in complexity would likely occur
at some larger delay.
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Figure 24: (a), (b), and (c) show the full spread of SSX data on the CH plane for
n = 5 and τ = 1, using analysis windows of 40 and 60 µs, 60 and 80 µs, and 80
and 100 µs, respectively. (d), (e), and (f) show the spread of data over the same
three regimes calculated using an embedding delay of τ = 8. Blue circles indicate
average positions, and error bars indicate standard deviations above, below, to
the right, and to the left of the mean.
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Perhaps most striking about these plots are the large deviations from the mean,
especially for later analysis windows. While some time series fall very far towards
the stochastic limit of H = 1, C = 0, others lie near the chaotic maps, or reach
towards the low entropy, low complexity region occupied by periodic functions.
Two observations are in order here. First, much of the spread could be due to
the shortness of each analysis window. If the stationary period in the discharge
lasted longer than 20 µs, then time series would be longer than 1300 values and
consequently more statistics would go into the calculation of the entropy and
complexity. This would give us a more accurate picture of the dynamics at work,
and potentially reduce the spread of the data on the CH plane. Secondly, even
after we consider the effect of the length of SSX time series, there may be physical
differences across helicity settings, probe positions, or components of the magnetic
field which result in large deviations from the average CH position of the dataset
as a whole. We turn next to a more detailed analysis of the effect these various
parameters have on the CH position of SSX data.

Figure 25: The CH positions of innermost probe channel SSX Ḃ time series,
averaged over shots and components of the magnetic field, for eight different
injected helicities. The color bar represents stuffing flux, in units of mWb.
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Helicity Dependence

Figure 25 shows the shot and magnetic field component averaged CH position
of SSX Ḃ data for eight different stuffing flux settings (0.0, 0.1, 0.25, 0.5, 0.75,
1.0, 1.25 and 1.5 mWb), corresponding to eight different helicities, or degrees
of twist, of the injected spheromak. Each time series came from the innermost
probe channel in the SSX device, and was analyzed only over the usual 40 to 60
µs window. There was little variation observed depending on which component of
the magnetic field was used, so they were averaged over (and a dedicated section
on field component dependence left out of this thesis). As in Figure 24, the results

Figure 26: The CH positions of SSX time series for stuffing fluxes of 0.0 and 0.5
mWb, from all three magnetic field components of the 4 innermost probe channels,
and all shots, with averages and standard deviations indicated. Not that results
are shown for both τ = 1 and τ = 8.
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are shown for both τ = 1 and τ = 8. For both embedding delays, there appears to
be a loop-like path, or cycle, traced out on the CH plane as the helicity is varied.
For τ = 1, the entropy decreases for stuffing fluxes from 0.0 mWb to 0.5 mWb,
and then increases from 0.5 mWb to 1.5 mWb, while the complexity remains more
or less constant. For τ = 8, the cycle is more vertical, i.e. it is the complexity
that reaches an extremum at 0.5 mWb and takes on similar values for both the
0.0 and the 1.0 mWb stuffing flux settings. In any case, there appears to be a
trend towards greater stochasticity in the SSX data the farther the stuffing flux
applied in plasma gun during discharge is from approximately 0.5 mWb.

This effect is further illustrated in Figure 26, which shows the overall spread of
data at the 0.0 and 0.5 mWb settings which was averaged over in creating Figure
25. The entire “cloud” of SSX points is closer to the upper-middle region of the
plane at the 0.5 mWb stuffing flux setting, and farther down and/or to the right
(i.e. more stochastic) for the 0.0 mWb setting. As for the plots of the full spread
of the SSX dataset, using τ = 8 instead of τ = 1 seems to yield slightly more
stochastic CH positions.

The question naturally arises: why a cyclic dependence on the magnetic helic-
ity of the injected spheromak? One possible answer is that the minimum energy
Taylor state of the plasma introduced in Section 2.3 has a magnetic helicity close
to that generated by a 0.5 mWb stuffing flux shot. The spheromak can be thought
of analogously to a stretched or compressed spring, with the compression repre-
senting magnetic helicity. If you only compress the spring a little, it will return to
its equilibrium position without much oscillation, or with fewer dynamics, than
if it is stretched or compressed a great deal. Similarly, if the injected spheromak
has to ”twist” around more in order to reach its equilibrium state, it will undergo
more dynamics in the process, potentially yielding more stochastic magnetic fluc-
tuations than if the injected helicity nearly matches the minimum energy helicity.
Thus the CH position of the magnetic fluctuations will be farther down and to
the right the farther the injected helicity is from that of the Taylor state. This is
only a qualitative argument. Further work would be required to develop it into a
working hypothesis about the relationship between injected helicity, the helicity
of the relaxed state, and the CH position of the resulting magnetic fluctuations.

Position Dependence

The last source of spread in the CH position of SSX data which was analyzed is the
radial position of the pick-up coil acquiring the data, or probe channel. The CH
position of the data was averaged over helicity settings, shots, and components of
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the magnetic field, and plotted as a function of probe channel for two embedding
delays. These CH plots are shown in Figure 27. The color bar indicates the
probe channel, with channel 0 representing the innermost radial position on the
probe and 15 the outermost. For τ = 1, no clear trend is evident, although
when the embedding delay is τ = 8, there appears to be a positive correlation
between stochasticity and increasing radial distance. This dependence is quite
possibly due to edge effects imposed by the chamber walls and ports, and along
with helicity dependence probably accounts for much of the spread observed in
the CH positions of SSX time series.

Figure 27: Dependence of CH position on probe channel (i.e. radial position in
the wind tunnel). Each point was averaged over all shots at all helicity settings,
as well as all 3 components of the magnetic field. Red tone color scale represents
radial position in cm from the center of the device.

4.5 Further Permutation Analysis - WIND

The WIND dataset studied does not contain nearly as many different parameters
as the SSX dataset, and displays much less spread in its CH position across time
scales. Six time series are studied: three components each of the magnetic field in
a fast and slow stream. Figure 28(a) shows the zoomed-in section of the n = 5 CH
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Figure 28: The CH positions of all three components of both fast stream (blue)
and slow stream (red) magnetic fluctuations for τ = 1 (a) and τ = 100 (b)

plane showing all three components of the magnetic field for both fast and slow
stream WIND data for τ = 1. As for SSX, this embedding delay is of interest not
because it is the sampling rate per se, but because it corresponds to a local max-
imum in the complexity, and thus maximally captures what correlated physical
structures are present. The delay dependence of the dataset will be described in
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detail later. For now only the dependence on magnetic field component and fast
vs. slow stream for a single delay is considered.

Figure 28 shows fast stream data in blue, and slow stream data in red. There
is little difference in CH position depending on which component of the magnetic
field is analyzed, indicating a degree of isotropy. However, all three components
of the fast stream signal are more entropic and have less complexity than any of
the slow stream signals. The difference in complexity and entropy is only about
0.01, so it is not immediately clear that it reflects any physical feature of the two
streams. However, the greater stochasticity of the fast stream does persist when
larger time scales are analyzed. For example, Figure 28(b) shows the enlarged
CH positions of these time series for τ = 100, corresponding to a time scale of
5 minutes. One possible source for the higher entropy and lower complexity of
the fast stream is that the higher incidence of uncorrelated Alfvénic fluctuations9

in the fast wind contribute to a greater degree of stochasticity [52]. The greater
stochasticity of the fast stream will be revisited later in the section.

CH trajectory for small τ

As discussed in Section 4.3, the effects of insufficient statistics seem to set in for
smaller embedding delays for the highly stochastic solar wind time data than for
SSX data. Consequently, the trajectory of the full wind time series for scans of
the embedding delay is quite different from that of the 1300 value sections used
to generate Figure 19. When the full time series is used, the solar wind data
remains in a highly stochastic region of the CH plane over an enormous range of
embedding delays, corresponding to time scales ranging from seconds to minutes
and even hours. For example, Figure 29 shows the CH trajectory of the fast wind
Bx time series over a range of time scales ranging from the 3 second sampling rate
(τ = 1) to 3 minutes (τ = 60), for n = 5. There is a clear trend towards greater
stochasticity in the direction of increasing embedding delays. The plot was not
generated for a larger range of delays because the trajectory remains in the same
corner of the plane all the way up through embedding delays corresponding to
time steps of several hours.Like the fast wind, the slow wind time series displays
general a trend towards decreased complexity and increased entropy over a wide
range of embedding delays. Figure 30 shows a close-up of a delay scan of the slow
wind data’s n = 5 CH position over the same range of embedding delays as in
Figure 29.

9Alfvén waves are low-frequency oscillations of ions along magnetic field lines, analogous to
waves propagating in a string.
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Figure 29: Embedding delay scan from τ = 1 to τ = 60 for the fast wind Bx

time series. The color bar indicates the embedding delay used.

Figure 30: Magnetic field component-averaged positions of the slow stream
WIND data over a range of embedding delays from τ = 1 to τ = 60 in steps
of 1.
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As will be examined in greater detail later, the slow wind data tends to have
slightly higher complexity and lower entropy than the fast wind. Otherwise the
scale-dependence appears quite similar.

What is the source of these increased entropies and reduced complexities at
time scales of many seconds? As when examining the scale dependence of PEnorm
and CJS in the SSX device, it will be useful here supplement the CH analysis
with frequency spectra for the data. Figure 31 shows the frequency spectrum
of the fast wind Bx time series, with a -5/3 power law plotted for comparison.
The minimum frequency plotted corresponds to approximately 1 day. Note that
with a 3 s sampling rate, the dataset is already well into the inertial range, where
energy cascade physics dominate. Time scales all the way up to a little over an
hour are contained within this range, corresponding to embedding delays up to
about τ = 1200. Thus the trend towards high stochasticity may be connected to
the physics of the energy cascade in the inertial range. As the embedding delay
is increased, the maximum resolved frequency is effectively shifted deeper up into
the inertial range, and thus farther from the dissipation scale. It would seem the
result is that fewer physical structures are resolved, and that the fluctuations look
more and more random.

Figure 31: Frequency spectrum of WIND fast Bx time series, with -5/3 power
law shown for comparison.
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Additional structure may be present on the scale of a few days, which can be
studied by conducting scans using larger values of the embedding delay.

CH trajectory for large τ

When much larger delays are used, the WIND data departs from the trend towards
decreasing complexity and increasing entropy observed above. Figure 32 shows
the results of a delay scan corresponding to time scales of about 1.6 to 2 days
using the fast wind data. Note that steps of 400 were used in this scan of the
embedding delay in order to reduce computation times. There is a general trend
towards increased complexities for embedding delays of this magnitude, although
finer scans indicate that this trend is far from monotonic. Furthermore, at least
some of the trend is likely a result of insufficient statistics- for a delay of τ =
57200, only a few hundred ordinal patterns go into the ordinal pattern distribution.
However, the trend towards greater complexity appears to set in for delays of only
around 50000, at which there are almost 30000 ordinal patterns entering into
the permutation entropy calculation, so this trend is probably not completely
artificial.

Figure 32: Magnetic field component-averaged positions of the fast stream WIND
data over a range of embedding delays from τ = 47200 to 57200 in steps of 400,
corresponding to time scales ranging from about one and a half to two days.
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The same embedding delay scan could not be calculated for the slow wind
data, due to the shorter length of the time series. For the range of delays over
which both fast and slow streams could be studied, their trajectories appear quali-
tatively similar. Interestingly, this similarity breaks down when larger embedding
dimensions n are implemented, as discussed next.

Scans of the embedding delay for n = 6 and n = 7

As discussed in Section 4.2, when dealing with SSX data practical considerations
limit the choice of embedding dimension to no more than n = 5, while for the
solar wind we are free to use n = 6 and even n = 7. At a given embedding delay
(i.e. timescale), additional structure may emerge when longer ordinal patterns are
studied. With this in mind, the values of PEnorm and CJS were calculated over
a range of embedding delays for Bx solar wind time series, at n = 5 ,6, and 7.
The results are presented in the scatter plots shown in Figure 33. Each column
of scatter plots represents a different embedding dimension n. The first row of
plots was generated using the slow wind time series, and the second the fast wind
series.

As we might expect, the overall complexity of the solar wind dataset is greater,
and the permutation entropy less, for larger embedding dimensions. Considering
longer ordinal patterns captures structures which remain hidden for smaller di-
mensions of the embedding space. More interestingly, peaks in the complexity
which are barely noticeable for n = 5 become pronounced when larger embedding
dimensions are used. For example, for the slow stream series, there is an increase
in complexity of less than 0.01 near τ = 7200 (a time scale of about 6 hours) for
n = 5. In the n = 7, scatter, the same peak occurs, but is over twice as large.
This suggests a greater sensitivity to variations in structure across time scales for
n = 7.

Perhaps most interestingly, while the general trend to higher entropies and
lower complexities for time scales ranging from seconds to minutes holds up even
at for n = 6 and n = 7 in the fast wind, the trend reverses for larger embedding
dimensions in the slow wind time series. In other words, the difference between
fast and slow streams becomes more pronounced when n = 6 or n = 7 is used, such
that the slow wind actually exhibits greater structure at large time scales while
the fast wind remains highly stochastic over a wide range of time scales. The slow
wind originates from more complex magnetic topologies in the corona than the
fast wind [13], and does not exhibit as many uncorrelated Alfvénic fluctuations
[52], so these factors are possible sources of the additional complexity of the slow
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Figure 33: Scatter plots of the complexity and entropy of solar wind Bx time
series for a range of embedding delays and embedding dimensions.
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stream data. However, the particular character of the scale-dependence of the
slow stream data will require further work to explain.

4.6 CH Plane Comparison of Turbulent Plasmas

The focus in the previous few sections has been on using the CH plane methodol-
ogy to identify inherent time scales of a system, characterize the type of dynamics
exhibited on particular scales, and identify the effects of various physical parame-
ters on CH position within a given system. Much of the usefulness of this method-
ology lies in its generality. We can make further use of this generality by treating
the CH plane as a common canvas on which to compare the dynamics of seem-
ingly disparate systems. This has already been done to some degree here, using
mathematical models as points of reference and comparison to identify stochas-
tic, periodic, and chaotic like behavior. In this section, turbulent fluctuations in
various plasmas are compared directly using the CH plane.

Figure 34 shows the n = 5 CH plane, with representative positions of turbulent
SSX, WIND, and LAPD fluctuations, as well as the usual three chaotic maps, fBm
curve, and a sine function (d = 0.0001, L = 105). Naturally, the positions of the
three plasma systems reflect the dynamics dominant on a particular temporal
scale (and where Taylor’s hypothesis pertains, spatial scale). Given the practical
limitations inherent in each dataset, the embedding delay was carefully chosen for
each so as to provide a good point of comparison. For example, past work has
suggested that LAPD fluctuations can be chaotic, due to the nonlinear interactions
of particular modes in the plasma [2]. The sampling rate of the dataset studied
here is just barely sufficient to capture the scale on which these modes exist, and
thus adding an embedding delay makes the fluctuations appear far less complex
than when no delay is used, as can be seen in Figure 19. Thus τ = 1 was used here,
in order to maximally capture the chaotic dynamics in LAPD Isat fluctuations.
Similarly, for the WIND dataset it was found that for n = 5, implementing an
embedding delay only tended to reduce complexity and increase entropy unless
extremely large scales on the order of several days were considered, thereby moving
past the range on which turbulent cascade physics dominate. Thus τ = 1 was
chosen to calculate the CH position of WIND data shown in Figure 34. The choice
of embedding delay for comparison across datasets was somewhat more difficult
for SSX magnetic fluctuations. As was seen in Section 4.4, the length of SSX
time series limits the range of time scales, or frequencies, which can be studied
with the CH methodology. In particular, the range of frequencies over which
SSX magnetic spectra display a relatively shallow power law scaling comparable
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to the inertial range in solar wind turbulence is inaccessible. Only the steeper
−11/3 power law region is accessible, where an additional dissipation mechanism
not active in the solar wind could be dominant. SSX data also has an unwanted
high-frequency noise mode near 10 or 20 MHz. With this limitations in mind,
τ = 8 was selected for comparison, thereby avoiding the high frequency mode and
probing the dynamics in the somewhat mysterious −11/3 power law scaled region.

Figure 34 also includes separate points for fast and slow solar wind streams,
SSX B and Ḃ fluctuations, and two helicity settings for each type of magnetic
fluctuation. The associated error bars are intended to represent the typical degree
of spread within a given system under a fixed experimental setting. They were
calculated from the standard deviations in CH position across ∼ 40 shots, 3
magnetic field components, and the innermost 4 probe channels. Error bars for
LAPD data, reflecting standard deviations across 25 runs, were not included, as
they were approximately within the size of the marker. Solar wind points also do
not include error bars, as they represent averages only over three components of
the magnetic field, which display little difference in CH position.

Unsurprisingly, out of all the plasma systems considered, the LAPD edge fluc-
tuations have entropies and complexities closest to those of the chaotic maps, with
H = 0.544 and C = 0.318. SSX Ḃ fluctuations are considerable more entropic,
especially for the 0.0 mWb stuffing flux setting. With H = 0.688 and C = 0.311,
these fluctuations are actually occupy a region of the CH plane very near to fBm
with slight positive correlations between increments. Although SSX B fluctua-
tions exhibit similar complexities (C = 0.288 and C = 0.314 vs. C = 0.311 and
C = 0.247), they are far less entropic than their Ḃ counterparts, even more so
than the LAPD Isat fluctuations. Whether this a general trend between variables
and their derivatives, or an artificiality of the integration process is unclear. How-
ever, since the smoothing from the integration occurs on the scale of two or three
consecutive values, with τ = 8 it should not be having a very large effect.

Solar wind fluctuations are by far the most stochastic of all the plasma sys-
tems considered. With H = 0.929 and C = 0.105, the fast wind is even more
stochastic than classical Brownian motion (fBm with Hurst exponent 1/2), in
that it its distribution of ordinal patterns is even closer to uniform. The high de-
gree of stochasticity makes sense when we consider that the solar wind turbulence
is much more developed than SSX (for example, as noted earlier, the magnetic
Reynolds number is approximately five orders of magnitude larger). Solar wind
fluctuations develop for many days, and boundary conditions are imposed only
by astrophysical bodies, while in SSX, fluctuations are confined to a space on the
order of a few meters, and only last for tens of microseconds. Even so, there may
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Figure 34: The n = 5 CH plane, with a variety of mathematical models and
turbulent plasma fluctuations. Chaotic skew tent, Henon, and logistic maps are
represented by the purple star, cross, and X markers, respectively. The pentagon
marks the CH position of a discrete time series generated from the sine function.
Fractional Brownian motion over a range of Hurst exponents is shown by the
dashed black line.
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be additional factors contributing to the ∼ 0.2 difference in normalized entropies
and complexities. In particular, the aforementioned practical limitations prevent
us from comparing SSX and WIND fluctuations in strictly analogous frequency
ranges. If the dissipation range is in general associated with more complex dynam-
ics than the inertial range, then this could account for some of the discrepancy.
Finer solar wind sampling or longer SSX signals would be required to compare
across respective inertial and dissipation regimes, and see if there is a deeper con-
nection between these two spectral regimes and the positions of the corresponding
time series on the CH plane. Based on the findings of the previous section, there
also seems to be a relationship between how “over” or “under” twisted the in-
jected plasma is and how turbulent the resulting Ḃ fluctuations are. This could
be taken advantage of to push SSX turbulence closer to solar wind turbulence on
the CH plane.

So based on currently available datasets, it appears that the SSX plasma wind
tunnel configuration would require some kind of modification to attain fully devel-
oped turbulence to the extent that is observed in the solar wind. However, if SSX
plasma has turbulent regimes analogous to the inertial and dissipation ranges in
the solar wind, we may just be comparing the two systems in different regimes.
There may be fundamental differences between the complexity of magnetic fluc-
tuations at dissipation scales and inertial range scales, and while the 3 s sampling
rate of the WIND dataset restricts us to the inertial range of the solar wind, the
short length of SSX time series restricts us to relatively small scales on which
dissapative mechanism may dominate. To compare these plasmas over analogous
turbulent regimes, we would need to either prolong the period of turbulent fluctu-
ations in the SSX device with higher energy plasmas or study higher cadence solar
wind data. Preliminary results on the difference in complexity between inertial
and dissipation regimes using data from a satellite with a faster sampling rate are
presented in Appendix A.
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5 Conclusions

The CH methodology was developed as an multidisciplinary mathematical tool
for understanding and distinguishing between different types of dynamics. The
beauty of this tool lies in its generality- it can be applied to arbitrary time series,
describing anything from stock markets and electrical impulses in the brain to
magnetic fluctuations in the solar wind, and identifies dynamical commonalities
between these seemingly unrelated phenomena. While the CH methodology has
been applied to study plasmas in LAPD [3, 2], it remains far from established
in the plasma physics community, and consequently its appropriate application
is not well-understood. For example, the effects of series length on CH plane
position, the conditions under which disparate systems can be compared based
on the region they occupy in the CH plane, and the extent to which physical
conclusions can be drawn by studying the complexity and entropy of a dataset
are unclear. In the work presented here, these practical questions were explored
and the CH methodology extended to solar wind turbulence, dynamical laboratory
MHD turbulence, and liquid metal turbulence. While definitive answers remain
elusive, there are a number of hypotheses, lessons, and tentative conclusions which
can be drawn from this analysis:

(1) It should be kept in mind that the position of a system on the CH plane
represents the complexity and entropy of that system at a particular time
scale (or rather over a particular range of time scales) set by the choice of
embedding delay and the sampling rate used to generate the time series. Thus
plotting the CH position over a wide range of embedding delay most truthfully
reflects the nature of the fluctuations in question.

(a) Furthermore, plots of the complexity as a function of embedding delay
seem to constitute a promising tool for identifying time scales of physical
interest based on local extrema in the complexity.

(2) In addition to the oft-cited condition L� n [51], intended to avoid the effects
of insufficient statistics, the ordinal pattern probability distribution would
ideally be constructed from a time series satisfying L� τ for the same reason.
However, practically speaking this condition is often unattainable. The work
presented here suggests that for relatively short time series, the embedding
delay τ should at most take on the value for which the CH trajectory of the
series begins a monotonic, leftward arc (i.e. the “left hook”) across the CH
plane. Recall that this upper bound, τh, appears to be smaller for highly
stochastic time series with greater numbers of accessible ordinal patterns.
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(3) Although the same term “turbulence” is used to describe fluctuations in many
different plasma systems, including the solar wind, the LAPD edge plasma,
and the SSX MHD wind tunnel device, the CH analysis presented here sug-
gests these systems actually exhibit a great variety of different dynamics. Fur-
thermore, in the spirit of (1), what type of dynamics (e.g. stochastic, chaotic,
etc.) a given system exhibits is highly scale-dependent. This suggests the
following refinements to our terminology:

(a) Words like “stochastic” and “chaotic”, already complicated by the fact
that they are concepts borrowed from mathematics, should be qualified
with reference to a particular temporal or spatial scale when used to
describe physical systems.

(b) The use of the word “turbulence” should perhaps be restricted or qualified,
since some so-called turbulent systems are highly stochastic and others
exhibit correlational structure characteristic of chaos.

(4) With these notes of caution in mind, magnetic fluctuations in the solar wind
appear highly stochastic over a wide range of length scales, all within or below
the inertial range in frequency space, while SSX Ḃ and integrated B signals
span a wide region of the CH plane, depending on the time scale considered,
the helicity of the injected plasma, the time after discharge, and perhaps the
radial position in the tunnel. Overall SSX occupies an intermediate region
of the CH plane, more complex than the WIND data, but also closer to fBm
with positive correlations between increments than chaotic maps or LAPD
edge fluctuations. The fact that the well-developed turbulence in the solar
wind occupies a region associated with high stochasticity on the CH plane
suggests that this may be a hallmark of well-developed turbulence, and thus
that SSX fluctuations are a less developed form of turbulence.

(5) The CH plane methodology is sensitive to such dynamical differences as those
associated with different injected helicities in SSX (using n = 5) and the
variable degrees of structure vs. stochasticity in fast and slow stream plasmas
(using larger embedding dimensions such as n = 7).

(6) Potential future applications of the CH methodology to plasma physics in-
clude:

(a) Identifying time and/or length scales of physical import with no prior
knowledge of these scales based on the dependence of complexity and
entropy on embedding delay.
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(b) Identifying when noisy-looking fluctuations in a plasma are the result of
high degree of freedom, well-developed turbulence, and when they result
from the non-linear interactions of coherent modes in the plasma, based
on the proximity of the system to stochastic vs. chaotic models on the
CH plane.

Item (6) would be especially interesting to explore in future work. In particu-
lar, do the time scales of greater complexity identified here in the various plasma
datasets analyzed correspond to any important physical mechanisms, and with
regard to (b), where do edge fluctuations in tokomaks and other fusion devices
fall on the CH plane? Potentially interesting further research could also explore
shorter time scales in the solar wind, capturing dynamics associated with dissipa-
tive mechanisms instead of just inertial energy cascades, and in the LAPD device,
where the sampling rate of the dataset used here was just barely fast enough to
capture the high-frequency modes associated with non-linear, chaotic interactions.
For the SSX MHD wind tunnel device, this analysis has both indicated potential
boundary condition limitations on our ability to accurately model astrophysical
plasma turbulence in the lab, and opened the door to new techniques for studying,
for example, the connection between turbulence and plasma helicity. In conclu-
sion, measures of complexity based on ordinal patterns represent a promising new
tool for the study of turbulent plasmas.
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6 Appendix A: Cluster Dataset

The solar wind analysis presented in this thesis was limited to relatively large
time scales by the 3 s sampling rate of the WIND dataset. In frequency space, the
WIND data spans the inertial range of the frequency spectrum of the solar wind,
where the −5/3 Kolmogorov scaling is dominant, without capturing much of the
smaller-scale physics of the dissipation range. Preliminary CH analysis was also
done on a second solar wind dataset from the Cluster II mission, which covers a
greater portion of the dissipation range due to the faster sampling rate used. The
results are presented in this appendix.

Figure 35: CJS and PEnorm of the Cluster Bx time series as functions of time
scale, in seconds (τ = 1 to τ = 1500). n = 7 was used.

Cluster II is a mission of four spacecraft arranged in a tetrahedral formation,
launched primarily to study Earth’s magnetosphere. However, the highly elliptical
orbit of the spacecraft also allows them to make in situ measurements of the solar
wind at a position roughly comparable to that of the WIND spacecraft. Cluster
spacecraft acquire magnetic field measurements every 0.04 seconds, 75 times faster
than WIND. Time series were analyzed from all four Cluster spacecraft, along the
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same three orthogonal directions in which WIND acquires magnetic field time
series. However, only the results for one Cluster spacecraft are presented, since
there was little variation in complexity or entropy observed between spacecraft.
Each time series from this spacecraft was 986, 091 values long, spanning a period
of about 11 hours. This allowed the embedding delay to be selected from an large
range using an n = 7 embedding dimension without concern regarding insufficient
statistics. n = 7 was selected over smaller embedding dimensions since, as for the
WIND datasets, trends in the complexity as a function of embedding dimension
became more pronounced for larger embedding dimensions.

Figure 36: CJS of both Cluster and slow WIND Bx time series over the same
range of time scales as in 35, again for n = 7.

Figure 35 shows CJS and PEnorm for the Bx time series 10, plotted as functions
of time scale. For example, for an embedding delay of 100, the corresponding time
scale is 0.04 s ×100 = 4 s. The maximum embedding delay used was τ = 1500,
corresponding to a time scale of one minute. The complexity starts relatively

10As for the WIND dataset, magnetic field components are represented in GSE coordinates,
with Bx aligned with the earth-sun direction, Bz the axis of the earth, and By orthogonal to
the other two.
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high at the time scale of the sampling rate, near CJS = 0.35, but rapidly drops
almost to CJS = 0.1 as the time scale is increased to about 1 s. Over the same
range of time scales, the entropy increases from about 0.65 to approximately 0.95.
In frequency space, t = 1 s is right at the transition from dissipation to inertial
range. For time scales larger than this transition, there is a gradual but steady
increase in complexity and decrease in entropy.

A similar shift in complexity from the dissipation to inertial range is suggested
by the WIND dataset, although the larger sampling rate only catches the tail end
of the transition. Figure 36 plots the complexity of the slow WIND Bx data
along with that of the Cluster Bx data, over the same range of time scales as
in the previous figure. For ease of comparison, the Cluster data was aliased to
have the same effective sampling rate as the WIND data (i.e. only every 75th
Cluster point was plotted so as to have a 3 s interval between successive points
from both datasets). The transition seems to be sharper for Cluster, but the same
basic behavior is displayed by both datasets. Whether this difference is due to the
different locations of the two spacecraft in the solar wind, the different filtering
processes used to produce each dataset, or some other quirk of the time series is
unclear. However, it seems clear that there is a rapid decrease in the complexity
of magnetic fluctuations in the solar wind going from the dissipation dominated
scale of 0.1 s into inertial range scales 1 s on.

The gradual, almost linear increase in complexity after the dissipation-inertial
transition continues for time scales all the way up to 20 minutes, as shown in Figure
37 . The complexity is plotted for all three orthogonal magnetic field components,
against the logarithm of the time scale to better display the transition occurring
at small time scales. The same general trend appears for all three components of
the magnetic field. However, the By series is more complex at large time scales,
potentially indicating additional structures in fluctuations transverse to the earth-
sun direction.

Finally, plotting the Cluster data on the CH plane with SSX and fBm reveals
that at smaller time scales, solar wind turbulence is much more similar in entropy
and complexity to SSX turbulence than was apparent using the WIND dataset.
Figure 38 shows the Cluster Bx data over a range of time scales between 0.04 s
and 2.0 on the n = 5 CH plane. The same chaotic map, fBm, and SSX Ḃ markers
as in Figure 34 are included for comparison. Further work will be required to
work out the details, but there appears to be a striking correspondence between
the CH position of solar wind data in the dissipation-inertial range transition
and fBm models with decreasing correlation between increments. At time scales
in the dissipation range, the CH position of Cluster data also corresponds very
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Figure 37: CJS of the Cluster dataset for all three components of the magnetic
field as a function of the logarithm of the time scale (τ = 1 to τ = 30000), using
n = 7.
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Figure 38: The n = 5 CH plane, with Cluster Bx data for a range of time
scales between 0.04 s and 2.0 (τ = 1 to τ = 50), represented by the red color
scale, in seconds. Chaotic skew tent, Henon, and logistic maps are represented by
the purple star, cross, and X markers, respectively. Fractional Brownian motion
over a range of Hurst exponents is shown by the dashed black line, barely visible
beneath the Cluster data. The same two average SSX Ḃ positions from Figure 34
are also included for reference.
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closely with that of 0.0 mWb SSX data, suggesting that the turbulent regime
in SSX accessible using the CH methodology corresponds most closely to the
dissipation range of solar wind turbulence. As mentioned in Section 4.6, the 100
µs lifetimes of SSX plasmas would need to be extended in some way to generate
longer time series and thereby extend the CH analysis to larger time scales. In
view of these results, it is likely that a similar transition in complexity to that
from the dissipation to inertial ranges in the solar wind (Figures 35 and 36) would
be observed.
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7 Appendix B: the Chaotic-Stochastic Distinc-

tion

Although words like “chaotic” and “random” or are used interchangeably in ev-
eryday speech, the formal definitions for these words are very different.. Roughly
speaking, chaos refers to the irregular behavior of solutions to certain nonlinear,
deterministic equations. For example consider a simple iterated map, defined by

xn+1 = f(xn),

where f is single-valued. Since this map is deterministic, given equal initial values
the orbits traced out after some N iterations will always be identical. However,
we say the dynamical system defined by this equation is chaotic if initial values x0
arbitrarily close together (but not equal) result in exponentially divergent orbits.
Time series generated from such maps often appear random. However, when the
state space of solutions to chaotic systems of equations are studied, it is often
found that the seemingly random fluctuations actually relax to complicated but
bounded attractors, which often exhibit fractal structure.

In physical systems, the equations describing the dynamics can be chaotic in
this formal, mathematical sense. For example, the double pendulum equations of
motion are chaotic at certain energies, as are the equations describing voltage in
a Chua circuit. However, even when the exact equations of motion are unknown,
chaotic-like behavior can be identified based on statistical analyses of time series
collected from the system. So even if true mathematical chaos is not strictly
speaking present, we can describe, say, a time series of magnetic fluctuations in
a plasma as chaotic in this approximate sense. For the purposes of convenience,
“chaotic” is used in this thesis to refer to both systems exhibiting chaos in the
true, mathematical sense and those physical systems which bear the statistical
hallmarks of chaos.

While the mathematical definition of chaos applies only to deterministic sys-
tems, stochastic systems are inherently probabilistic. If a dynamical system is
stochastic, not only will arbitrarily close initial values generally yield different
orbits, but identical initial values will result in different orbits. Thus “stochastic”
is generally synonymous with “random”. 11 While physical systems are stochas-
tic on a quantum mechanical level, on a macroscopic scale where deterministic

11It might be argued that while random implies stochastic, the reverse is not quite accurate.
For example, while an idealized coin toss is both stochastic and perfectly random, tossing a
coin weighted to land heads 90% of the time is certainly a stochastic process, but not perfectly
random.
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models hold to a high degree of accuracy the concept may appear inappropriate.
However, in turbulent systems where the number of (approximately) deterministic
interactions is so great that only a statistical description is available, we observe
dynamics which are almost indistinguishable from those of truly stochastic mod-
els. In such circumstances, as for the chaotic analogue, the term “stochastic” has
been used in lieu of the more unwieldy “stochastic-like”.
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