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Abstract

Using a visible light HeNe interferometer, operating at 632.8 nm, we measure the
line-averaged density of spheromaks in the SSX experiment. Phase shift ambiguities
associated with normal interferometers are resolved by circularly polarizing the reference
beam and sending the recombined output of the interferometer through a Wollaston
prism, which generates two outputs 90◦ out of phase with each other. The plasma
densities measured are correlated with triple probe measurements of density and electron
temperature.
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1 Introduction Density Studies on SSX

Figure 1: A solar flare as seen from the TRACE (Transition Region and Coronal Explorer) satellite.
(NASA)

1 Introduction

Plasma is often described as the fourth state of matter. It can be thought of as a superheated
gas, where the individual electrons acquire enough energy to ionize. This produces a mixture
composed of electrons and ions. Since the plasma is presumably formed from some substance
that is neutral before ionization, plasmas are often neutral or very close to neutral when
taken as a whole. In fact, quasi-neutrality is part of the definition of plasma. However,
since plasmas consist of unbound charges, they become good conductors.

Conductors can have the ability to possess high amounts of current flowing through them.
Basic electromagnetic theory states that whenever you have charges, you have electric fields
and whenever you have moving charges, i.e. current, you have magnetic fields. This means
that plasmas are affected by magnetic and electric fields and often have magnetic fields.

Plasmas with embedded magnetic fields provide interesting magneto-fluid phenomenon.
One such phenomena is magnetic reconnection. Magnetic reconnection occurs when two
anti-parallel field lines merge and settle into a new equilibrium state, as shown in figure
2. Magnetic reconnection occurs naturally in many processes, the most prominent being in
solar flares, as seen in figure 1. It is believed that magnetic reconnection governs the solar
flare process, particularly in the releasing of energy.

The Swarthmore Spheromak Experiment (SSX) studies magnetic reconnection in the form
of twomerging toroidal plasmas, called spheromaks, with self confining toroidal and poloidal
fields (figure 3). There is no need for apparatus in the ‘hole’ of the spheromak, enabling
it to translate in an appropriate container, so it is ideally suited for formation at a site
different from the measurement site. In SSX, this characteristic enables us to generate

1



1 Introduction Density Studies on SSX

(a) (b)

Figure 2: Magnetic Reconnection. (a) Two field lines of opposing direction come and merge,
causing (b) some of the field to annihilate and reconnect on the sides. The annihilation of field lines
converts the energy stored in the B field in the form of the kinetic energy. This increase of kinetic
energy accelerates the plasma out of the reconnection region.

two spheromaks at a formation site and send them to a separate interaction site free of the
interference and fields of the formation equipment. These two spheromaks can then interact
via the process of magnetic reconnection.

Since plasmas do have magnetic fields, it is relatively easy (in theory) to measure the
electromagnetic properties of plasmas. “Tangible” characteristics such as density are often
harder to measure. One way to measure the density of a plasma is to use interferometric
techniques.

Interferometry has been around for a long time. One of the most famous of interferometers
to be used in the name of science was the instrument designed by Albert Michelson and
Edward Morley to measure the motion that the æther induces in light waves. Their device
was so accurate that they discovered that the æther did not induce a change in the speed
of light, leading to the conclusion that the æther did not exist, thus laying the groundwork
for Albert Einstein’s Theory of Special Relativity.

Interferometry relies on the interference between two or more beams of light. Changes in
the density of the plasma create predictable phase shifts in the light transversing it. This
allows for a non-intrusive method for measuring plasma density.

Another more common method of measuring the density and the temperature is to use
a Langmuir probe, which consists of a conductor situated in the plasma. Though very
simple in construction, relatively detailed measurements can be obtained. Unfortunately,
Langmuir probes are intrusive and can disrupt the physics of the experiment.

This thesis explores some of the general characteristics of spheromaks, methods for extract-
ing specific characteristics, and a set of findings based on these two methods.

2



2 Basic Spheromak Physics Density Studies on SSX
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Figure 3: A spheromak consists of a toroidal ‘donut’ of plasma with self confining toroidal and
poloidal fields. Spheromaks in SSX are confined by means of a flux conserver.

2 Basic Spheromak Physics

2.1 Plasma Confinement

As previously mentioned, plasma is an ionized gas. The energies often needed to ionize a
gas are on the order of magnitude of a few eV1, so the particles in a typical plasma are quite
“hot.” With particles this energetic, it is relatively easy for them to reach the edge of the
container holding them and recombine at the wall. Thus, confinement schemes are needed
in order to create a plasma which will remain without regenerating it. Since a plasma is
composed of electrons and ions, one can develop magnetic confinement schemes, using the
fact that charged particles will feel a force F = qv×B while moving in magnetic field.

One can construct a complicated confinement mechanism for plasmas, but the spheromak is
confined by one of the simplest ones. By imbuing the spheromak with poloidal and toroidal
currents (figure 3), which generate the toroidal and poloidal magnetic fields, the spheromak
provides for its own confinement as long as the toroidal field of the spheromak is zero at
the wall of the vessel containing it. Most other types of magnetic confinement do not have
this condition; as a result, large external magnets are often used to generate the necessary
fields. In the case of tokamaks and stellerators in particular, one must put confinement
apparatus in the ‘hole’ of the torus, robbing the plasma of any large scale mobility.

All that is needed to ensure that the toroidal magnetic field is zero at the vessel wall is the
use of a “flux conserver”. A flux conserver is simply a container made out of conductive
copper. Being a conductor, the copper does not allow for flux to pass through it very
quickly. Whenever a current approaches the flux conserver wall, an image current flows in
the copper, preventing the magnetic field from passing through. Since the plasma obeys
something called the frozen-in-flux constraint and flux is not allowed to pass through the
flux conserver, the plasma is contained. The frozen-in-flux constraint basically states that
all the magnetic field lines in the plasma are frozen into the plasma itself; when the plasma
moves, the particular field lines associated with it also move, as shown in figure 4 (Kornack,
1998). This feature arises from the plasma being a perfect conductor. Any electric fields are

11 eV = 11,604 K
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Figure 4: As a tube of plasma moves from configuration (a) to configuration (b), the magnetic field
line this “flux tube” encircles moves with it.

immediately cancelled by moving charges in the plasma, and any change in the magnetic
flux is likewise prevented. As a result, the plasma can only move along contours of constant
flux, preventing it from moving with respect to the magnetic fields. The magnetic fields
and plasma form a magnetofluid. Any external fields applied to this magnetofluid affect it
as a whole; the component magnetic fields and plasma cannot act independently. Thus, the
currents that are driven in the plasma itself are enough to provide for confinement.

Since spheromaks are elegantly self-sufficient with respect to confinement, one is able to
utilize them in ways that many other plasmas cannot be used. The most obvious is the
generation of a spheromak at a place remote from an interaction site where measurements
are done. This allows for the use of instrumentation that would normally be of no use due
to the inherent noise of the generation processes.

2.2 Spheromak Formation

Spheromaks are formed in SSX by means of magnetic coaxial guns. Gas is puffed into guns
by means of specially designed valves (see figure 14 on page 18) (Kornack, 1998). Once the
gas is introduced into the gap between the inner and outer electrodes of the gun (figure
5a), a capacitor bank discharges approximately 5 kV across the electrodes, ionizing the gas
in the gap (figure 5b). Current flowing through the plasma and electrodes interacts with
its magnetic field, accelerating the plasma out of the gun. A stuffing field is applied to the
center electrode of the gun. When the plasma encounters this field at the opening of the
gun and resists the change in field according to Faraday’s law, currents flow in the plasma as
the stuffing field distends (figure 5c). Given enough magnetic pressure, the torus of plasma
can exceed the tension of the stuffing field, breaking away to form a spheromak (figure 5d).
This can be likened to blowing soap bubbles. The plasma encountering this stuffing field is
similar to one blowing on the soap film; given the right conditions, the soap film distends
and reconnects with itself, forming an independent bubble.

The spheromak is not stable once it is generated. As stated in section 2.1, the plasma be-
haves according to the frozen-in-flux constraint. If there is nothing to contain the magnetic
fields, then nothing will contain the plasma and the spheromak will just dissipate. The
flux conserver confines the magnetic fields, which then holds back the plasma. However, as

4
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(a) (b) (c) (d)
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Figure 5: Spheromak formation in a magnetic coaxial gun. (a) Gas is puffed into the gun and a
magnetic stuffing field is applied to the inner electrode by the electromagnetic coils. (b) A large
potential is applied to the inner and outer electrodes, which leads to the creation of plasma and the
toroidal gun field. (c) The toroidal plasma moves further down the “gun barrel” and the stuffing
field wraps around the plasma. (d) The stuffing field pinches off around the plasma, creating the
poloidal field of the plasma, while the gun field creates the toroidal field of the plasma. A spheromak
is born.

the spheromak exits the gun, it does have room to expand somewhat into the larger flux
conserver. The spheromak relaxes into an equilibrium state of the lowest energy configu-
ration of the magnetic fields with the pressure forces of the plasma (Kornack, 1998). This
equilibrium is described most simply by balancing the particle forces in the plasma with
the magnetic (Lorentz) forces, as shown in the following equation:

ρ
∂v
∂t

= −∇p+ J×B = 0

∇p = J×B (1)

Spheromaks are defined as low β plasmas, where β is defined in equation 2.

β ≡ ΣnkT
B2

2µ0

=
Particle pressure

Magnetic field pressure
(2)

Because of this, one can assume that ∇p → 0. This simply means that only the J × B
contributes to the equilibrium of the plasma. Thus, equation 1 can be rewritten as:

J ×B = 0 (3)

Since we know from Ampere’s Law that J ∝ ∇×B, this equation can be written as:

∇×B×B = 0 (4)

Since ∇×B ‖ B,

∇×B = λB (5)

where λ can either be a constant or a function of flux. Solutions of constant λ (from
equation 5) for circular boundary conditions are a decent approximation to the first order
for spheromaks in SSX (Geddes, 1997).
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Figure 6: Examples of interference: (a) constructive interference (b) destructive interference (c) a
combination of the two.

3 Interferometry

3.1 Introduction to Interferometry

Basic interferometry uses the wave nature of light to make extremely precise measurements.
Interferometry has been around since the beginning of the 1800’s, when Thomas Young laid
the foundations for it with his double-slit interference experiment. The basic principle
behind interferometry is sending a source of light down two or more paths and recombining
them at some later point. Due to small differences in the optical paths of the separated
beams, when the beams are recombined at a detector, interference patterns form.

Interference patterns occur when two sources of light recombine. Depending on the phase
differences of the light sources, the light waves can either add constructively (peak plus
peak) leading to bright areas or destructively (peak plus trough), which results in dark
fringes (figure 6). Since the difference between a light and a dark fringe is only one half of a
wavelength of light, one is able to measure path length differences with extreme precision.

Since interferometry is so heavily dependent on wavelength, it is often necessary to find
light sources that are easily filtered or put out a very narrow range of wavelengths. With
the invention of the laser, this has become a moot point. The single wavelength output of
lasers make them very easy to use in the creation of interference patterns. As an added
bonus, lasers are coherent light sources, allowing them to pass over long distances with
little divergence. This breakthrough in technology has allowed interferometry to progress
tremendously.

In this setup, we used a Mach-Zehnder interferometer, as shown in figure 7. The advantages
of the Mach-Zehnder interferometer are that one can get a large separation between the
reference beam and the scene beam and that each beam only traverses its path once, unlike
other types of interferometers, such as a Michelson interferometer.

6
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Figure 7: A basic Mach-Zehnder interferometer.

Traditionally, interferometers were used to measure many things, such as spherical aberra-
tion in lenses or air flow around objects. However, due to the electromagnetic properties of
plasma, one is able to use interferometry to measure the average density of plasma over a
straight line. In order to make this measurement, one must use a source of light which pos-
sesses a frequency higher than the frequency of the plasma (ωpe). In plasmas, the electrons
are much more mobile than the ions due to the electrons’ lighter mass. Since they possess
this mobility, they try to establish neutrality in the plasma. Because of their inertia, the
electrons tend to overshoot the ions, oscillating around them. This frequency of oscillation
is the plasma frequency ωpe. A simple Helium Neon laser (HeNe), with a frequency of
4.741× 1014Hz, is sufficient in most plasmas.

As one tunes the interferometer into better alignment, the size of the fringes present grows,
until finally, the output of the interferometer is either all dark or all light, since one has
focused down to an individual trough or peak. Where one focuses the interferometer depends
on the application. It is easy to set a detector on a fringe in a many fringe pattern by
spreading the output of the interferometer with some type of objective lens. However,
this “throws away” a lot of the output. When measuring extremely dynamic plasmas
like a spheromak, with lifetimes in the microseconds, it is necessary to use extremely fast
detectors. Often, detector signal strength is sacrificed for speed. As a result, “throwing
away” interferometer output is a bad idea when using fast detectors. Thus, in this case,
we closely aligned the interferometer and chose not to spread the output with objectives,
allowing us to utilize the most of the output of our HeNe laser and enabling our use of fast
detectors.

3.2 Wave Dispersion Relation and Phase Shift

When the interferometer is set up properly, the presence of plasma will introduce a phase
shift in the scene beam , causing fringes to shift in the output. This phase shift is calculated

7



3.2 Wave Dispersion Relation and Phase Shift Density Studies on SSX

by first calculating the wave dispersion relation for plasma, starting from Faraday’s law (eq.
6) and Ampere’s law (eq. 7).

∇×E = −1
c

∂B
∂t

(6)

∇×B =
1
c

∂E
∂t

+
4π
c
J (7)

We then take take the curl of both sides of eq. 6, and with some manipulations, arrive at
eq. 8.

∇× (∇×E) = −1
c
∇× ∂B

∂t

∇× (∇×E) = −1
c

∂

∂t
(∇×B)

∇× (∇×E) + 1
c

∂

∂t

(
1
c

∂E
∂t

+
4π
c
J
)
= 0 (8)

We then Fourier transform eq. 8.

0 = ik ×
(
ik× Ẽ

)
− iω

c

(
4π
c
J− iω

c
Ẽ
)

(9)

Using the fact that J ∝ Ẽ, shown in the following derivation, one arrives at equation 12.

F = ma

mev̇e = −eE

Applying a Fourier transform to this equation results in:

meve =
eẼ
iω

ve =
−ieẼ
ωme

(10)

Remembering the definition of J and using equation 10, one gets equation 11.

J = −nevee

J =
ie2ne

ωme
Ẽ (11)

Using the above relation, one gets equation 12 from equation 9.

=− (ik)2 Ẽ − iω

c

(
4πie2ne

ωcme
Ẽ − iω

c
Ẽ
)

=k2c2Ẽ + ω2
peẼ− ω2Ẽ (12)

8
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Where ωpe is the plasma frequency, defined as:

ωpe ≡

√
4πe2ne

me
(13)

Solving for ω2 gives us the wave dispersion relation, eq 14.

ω2 = ω2
pe + k2c2 (14)

Using the definitions of the index of refraction, N , and the speed of light in a medium, vφ:

N ≡ c

vφ
(15)

vφ ≡ ω

k
(16)

N =
kc

ω
(17)

we can take equation 14 and get equation 20.

1 =
ω2

pe

ω
+

k2c2

ω2

k2c2

ω2
= 1−

ω2
pe

ω

N 2 = 1−
ω2

pe

ω2
(18)

Applying a geometrical optics (WKBJ) (Hutchinson, 1987) solution to this situation, one
can find the phase lag due to the difference of the arms of the interferometer:

∆φ =
∫

(kplasma − k0) dl (19)

∆φ =
∫

(N − 1)
ω

c
dl (20)

Defining the cutoff density nc as the density of plasma at which our selected wavelength of
light is too long to effective penetrate the plasma. This is a constant with a given wavelength
of light, using 632.8 nm in the following equation.

nc ≡
meω

2

4πe2
= 2.788× 1021 cm−3 (21)

We can now solve for the phase shift as a function of plasma density (eq 22).

∆φ =
∫

(N − 1)
ω

c
dl

=
ω

c

∫ ((
1− ne

nc

) 1
2

− 1

)
dl

9
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(a)

1.

2.

(b)

1.

2.

Figure 8: Intensity of interferometer output. Homodyne interferometry (a) enables measurement
of the phase shift, but still leaves ambiguity of the sign of ∆φ. Certain shifts appear the same as in
(1) and (2) from a detector standpoint. Heterodyne techniques (b) allow one to use two detectors,
90◦ out of phase, enabling one to measure the phase shift direction by correlating the data from the
two detectors. (Circles represent detectors.)

Since our cutoff density nc is so much larger than our value for ne (∼ 1014 cm−3), we can
make an approximation here.

∆φ ≈ ω

c

∫ (
1− 1

2
ne

nc
− 1
)

dl

∆φ ≈ ω

2ncc

∫
nedl (22)

Equation 22 shows that the electron density of a plasma can be calculated if one knows
the length of the path being integrated over and the phase shift. The output of the inter-
ferometer allows us to measure the phase shift as a function of the light intensity of the
interference pattern. However, some thought must go into exact methods of detecting the
output.

As one can see from figure 8, not all detector placements are created equal. To get the most
contrast and best response out of a detector, it is necessary to place it at the 90◦ or 270◦

phase difference point. This is where the change in fringe intensity in either direction is
approximately linear. If one places the detector at the in phase or 180◦ out of phase points,
one does not get a linear response. This issue however is irrelevant with our setup; we opted
to use a dual detector quadrature method described in Section 3.3.

3.3 Heterodyne Interferometry

Unfortunately, the process described above leaves some ambiguity in results. When the
phase shift changes from a minimum (0◦) or a maximum (180◦), one doesn’t know the sign
of ∆φ (see figure 8a).

The solution to this type of problem is to use a heterodyne2 interferometer. This technique
requires two detectors 90◦ out of phase with each other, so that whenever one of the detectors
is giving ambiguous results, the other detector reports the direction of the phase shift.

This 90◦ phase shift is easy to obtain when using an interferometer that is slightly misaligned
2As opposed to homodyne interferometry. Heterodyne interferometers are also known as quadrature

interferometers

10
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Figure 9: (a) A quarter waveplate takes a linearly polarized beam of light and circularly polarizes
it. (b) The Wollaston prism takes a linearly polarized beam and splits into two orthogonal linearly
polarized beams which are in phase with each other. (c) The Wollaston takes a circularly polarized
beam and splits it into two orthogonal linearly polarized beams which are 90◦ out of phase.

which produces a pattern of many fringes. To achieve the 90◦ separation of the two detectors,
one merely places them at appropriate places, much like in figure 8b.

If one is using a more closely aligned interferometer whose output only spans one fringe
or less, one must find another method in achieving two separate outputs that are 90◦ out
of phase with each other. One way to do this is with the use of clever optics that take
advantage of the characteristics of polarized light (Buchenauer and Jacobson, 1977).

The first specialized optic that one needs in order to accomplish this is a quarter wave-
plate. A quarter waveplate takes a linearly polarized input, and due to the material of the
waveplate, it transmits the ordinary and extraordinary components (which are defined by
the orientation of the waveplate) of the input at different velocities. This causes an output
which is circularly polarized, i.e. the electric field vector traces out a circle in the plane per-
pendicular to the direction of motion of the beam (figure 9a). This waveplate is put in the
path of the reference beam. The scene beam is left linearly polarized. The two beams are
recombined at the final beam splitter and then sent through the second specialized optic,
a Wollaston prism. A Wollaston prism takes the ordinary and extraordinary components
of the input and splits them. The Wollaston prism splits the linearly polarized scene beam
into two components, which interfere with the two components resulting from the Wollaston
prism splitting the reference beam. However, the two components of the scene beam are
in phase with each other (figure 9b), while the two components of the reference beam are
90◦ out of phase with each other (figure 9c). Thus, the Wollaston produces two outputs,
R1 and R2, with interference occurring separately at each output between the scene and
reference beams, 90◦ out of phase.

R1 = k sinφ (23)
R2 = k cosφ (24)

Where k is the fringe envelope amplitude.

k =
(
R2

1 +R2
2

) 1
2 (25)
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3.3 Heterodyne Interferometry Density Studies on SSX

In order to analyze this output, one merely needs to solve these equations for φ.

φ = arctan
(

k sinφ

k cosφ

)
+

nπ

2
= arctan

(
R1

R2

)
+

nπ

2
(26)

Normal homodyne interferometers are not capable of measuring k . Thus when it fluctuates,
there is no way of separating its effects on the output from the phase induced change. Not
only is this method of quadrature interferometry capable of measuring k , the phase shift
calculation φ is conveniently independent of k .

The above procedure works adequately when one knows that at t = 0, clear sin and cos
outputs are available, meaning that one signal is zero and the other is at maximum. It is
also sufficient when the shift caused by a phase offset, possibly caused by noise, vibration,
and/or thermal drift, is small compared to the overall phase shift, such as the case of the gas
calibration technique, discussed in Appendix C. Unfortunately, in the case of measuring the
density of plasma in SSX, the expected fringe shift for the plasma is small, and the error
introduced by an unknown phase offset becomes more of a factor. Thus, an alternative
method for analysis is needed that takes into account any random phase offset at t = 0.

As a result, one must carefully measure the initial amplitude of each of the detector outputs
before taking measurements. These initial values are measured by acoustically disturbing
the apparatus and measuring the resulting signal. The signal depends on both a constant
(k1 and k2), determined by sensitivity of the detector and intensity of the light, and the
phase of the interferometer output, as seen in equations 27 and 28.

V1 = k1 sinφ (27)
V2 = k2 cosφ (28)

As soon as plasma enters the path of the beam, a phase change is induced (∆φ) which
changes the outputs of the detectors, as seen in equations 29 and 30.

∆V1 = k1 sin(φ+∆φ)− k1 sinφ (29)
∆V2 = k2 cos(φ+∆φ)− k2 cosφ (30)

By summing the squares of the detector outputs and dividing through by the appropriate
k, one arrives at a fairly simple expression involving the phase change (∆φ), as seen in
equation 31.(

∆V1

k1

)2

+
(
∆V2

k2

)2

= [sin(φ+∆φ)− sinφ]2 + [cos(φ+∆φ)− cosφ]2

= 2[1− sin(φ+∆φ) sinφ− cos(φ+∆φ) cosφ]
= 2(1− cos∆φ) (31)

One can perform relatively simple manipulations on equation 31 and arrive at equation 32.

∆φ = cos−1

[
1− 1

2

[(
∆V1

k1

)2

+
(
∆V2

k2

)2
]]

(32)

In this manner, one can calculate the phase shift induced by the plasma if the output of
the detectors is known as a function of time and their amplitude ranges.
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4 Langmuir Probe Density Studies on SSX
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Figure 10: A typical graph of the probe characteristic of a Langmuir probe, obtained in SSX’s
calibration device.

4 Langmuir Probe

4.1 The Simple Langmuir Probe

The Langmuir probe is one of the simplest possible diagnostics to construct for obtaining
measurements of plasma. The probe is constructed out of a conducting material and housed
in a sheath capable of withstanding the heat of the plasma. In operation, one applies a
voltage bias to the probe. This voltage induces a current, composed of ions or electrons,
depending on the bias. When this voltage is below that of the plasma, ions are collected;
when the voltage V is above the plasma potential φp, the probe collects electrons, and the
current is positive.

The ion saturation current i+ and electron saturation current i− occur when the probe tip
is biased at a large enough value so that all accessible electrons or ions in the surrounding
area are being attracted to the tip of the probe. This saturation current is much higher for
the electrons, mainly due to mass differences between ions and electrons.

When the probe is biased higher than the plasma potential, V > φp, the electron saturation
current is given by equation 33 (Ji et al., 1991).

i− =
1
4
A−e−ne

√
8Te

πme
(33)

If the probe bias is lowered past the plasma potential, the Boltzmann factor is added to the
electron current, as seen in equation 34.

i− =
1
4
A−e−ne

√
8Te

πme
e−e(φp−V )/kTe (34)

When electrons are no longer being collected by the probe, one has reached the ion satu-
ration current. The saturation current density for the ions is given by the ion density near

13



4.2 The Triple Probe Density Studies on SSX

the probe times the ion charge times the velocity of the ions, which is near the sound speed
Cs (Cohen, 1995). Multiplying by the surface area of the probe tip, we arrive at equation
35 for the ion saturation current.

i+ = A+e−neCs (35)

Cs =
(
γZkTe

mi

) 1
2

(36)

A+ and A− denote the ion and electron gathering area on the probe. These are essentially
equal to each other and are determined by the construction of the probe. Cs is the ion
sound speed.

In general, the above equation for the ion saturation current is for large planar probes.
Small cylindrical probes are used in SSX and in general, they are more common in the
study of plasma. Thus, equation 35 is modified by an extra term (e−

1
2 ), as shown in the

following equation.

i+ = e−
1
2A+e−neCs (37)

These two saturation currents determine what is called the probe characteristic, given in
equation 38. A typical probe characteristic appears in figure 10.

Ip =
{

−i+ + i−e
−e(φp−V )/kTe V ≤ φp

i− V ≥ φp
(38)

One can fit equation 38 to the plot of the probe characteristic to arrive at values for the
electron density ne and electron temperature Te. The problem with using a Langmuir
probe to make this measurement is that one must scan a range of voltages to measure the
current drawn on the probe. This unfortunately takes more time to take a measurement
than allowed in an experimental environment such as SSX. An alternative to the regular
Langmuir probe that allows one to measure time-varying plasmas is the triple probe (Ji
et al., 1991).

4.2 The Triple Probe

The triple probe is an assemblage of three Langmuir probes connected in a particular way,
illustrated in figure 11. The following analysis follows Ji et al. (1991). P2 measures the
floating potential of the plasma Vf . The floating potential is the voltage measured when no
current flows through the probe with very high impedance. Vd2 is the potential difference
between P1 and P2. Vd3 is a constant voltage applied between probe tips 1 and 3 (P1 and
P3). This induces a current to flow from the plasma through P3 and out P1, denoted by I1,
which is equivalent to the ion saturation current. Using equation 38, one can calculate the
current running through the three probes, finding:

−I1 = −i−e−
V1
Te + i+ (39)

0 = −i−e−
V2
Te + i+ (40)

I1 = −i−e−
V3
Te + i+ (41)
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Figure 11: (a) Circuit for triple probe and (b) potential diagram for triple probe.

where Vi is the voltage difference of the ith tip and φp.

Using these equations and the definitions of Vd2 = V2 − V1 and Vd3 = V3 − V1, one arrives
at equations 42 and 43 (Ji et al., 1991).

1
2
=

1− e−
Vd2
Te

1− e−
Vd3
Te

(42)

i+ =
e−

Vd2
Te

1− e−
Vd2
Te

(43)

Plotting these two equations as a function of Vd2 and with different values of Vd3, one gets
the graphs in figure 12. In the region Te < Vd3/2, the curves for specific values of Vd3

are mostly linear. Using this fact, one can take the limit of equation 42 in the case that
Te � Vd3 and get the following simple relationship:

Te ≈
Vd2

ln 2
(44)

The triple probe, and all Langmuir probes, can also be used to measure density. Going
back to equation 35, the equation for the ion saturation current, one can see that since i+ is
being measured, once one has calculated Te, it is very easy to calculate the electron density.

ne =
e

1
2

A+e−

√
mi

γZkTe
(45)
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Figure 12: The triple probe’s measurements are dependent on the value of Vd2 used. The lines on
each graph correspond to different values of Vd3. The graph on the left shows the dependency of Te

on Vd2, while the second graph shows I+/I1. Notice the fact that the curves are linear in the region
Te < Vd3/2.

5 Experimental Setup

5.1 Physical Dimensions

The experimental environment of SSX is illustrated in figure 14 on page 18. The vacuum
chamber is a barrel shaped container one meter in length, shown in gray in figure 14, that
subdivided by the two flux conservers, shown in black. Each flux conserver has a radius
of rcons = 25.4 cm and has a length Lcons = 30.8 cm. Two coaxial spheromak guns are
mounted on the vacuum vessel, one on each end of the chamber. The guns have radius of
rgun = 8.41 cm.

The two flux conservers are separated by a 2.5 cm gap, which is the plane of reconnection.
This gap is a channel for any particles accelerated out of the reconnection region to exit
the area without interference from the magnetic field or neutral gas from the plasma of the
spheromaks. Also visible on figure 14 are chevron-shaped cutouts, approximately 10 cm
by 5 cm, in the flux conserver wall bisecting the machine. These cutouts are the actual
sites of interaction and reconnection between the two spheromaks. The cutouts allow for
a partial interaction to occur while still preventing the two spheromaks from completely
merging. These cutouts also serve the function of localizing the interaction in these two
regions, allowing instruments to be focused in only one or two spots.

Diagnostic instrumentation can be installed at various points along the vessel. Three large
ports are accessible, one on the top and two on the sides. The fourth of these is occupied by
the cryo-pump needed to maintain the vacuum. These large ports all lie on the perimeter
of the reconnection plane. One of these ports is used for the upcoming three dimensional
magnetic probe array (Schlossberg, 2001), which records over 600 channels of data. The top
port is used as a stage for several smaller instruments which are aimed at the reconnection
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5.2 Operating Parameters Density Studies on SSX

(a) (b)

Figure 13: (a) shows the east side of SSX. The back of the interferometer yoke can be seen clearly.
(b) shows the west side of SSX. The triple probe is the brass instrument on the upper right side
of the vacuum chamber. The interferometer optics can be seen on the yoke, with the waveplates,
Wollaston prism, and detectors on the left side.

region. These instruments document the energetic particles coming out of the reconnection
region.

Smaller ports are also located on the machine. There are eight located on the perimeter
of the middle of each flux conserver, and an additional four more are located in the same
plane as the large ports. These smaller ports are host to a couple of valves for pumping
down the machine and several diagnostics, including a monochromator, a particle analyzer,
a photon analyzer, a triple probe (described in section 4), and lastly, the entrance and exit
windows for the HeNe interferometer. The windows used for the interferometer are made
out of fused silica, providing better than 90% transmission. Both the triple probe and the
interferometer are located out of the plane of reconnection, allowing measurements to be
made only on the noninteracting part of the spheromak.

5.2 Operating Parameters

SSX is operated within a certain optimal range of parameters for the discharge of the
capacitor banks attached to the coaxial spheromak gun and for the stuffing flux of the gun.
This optimal range was determined from the study of Kornack (1998).

Typical gun parameters are Vgun = 5kV and Bstuff = .9mWb. A typical shot appears in
figure 15. Varying the delay that triggers the capacitor bank discharge effectively changes
the stuffing flux. This is because the plasma generated by the capacitor bank discharge en-
counters the stuffing field at a different time in the stuffing field’s strength. This relationship
is shown in figure 16.

During the typical “run,” we take data for only 250µs. The first 50 µs of the data is an
empty buffer right before the “shot.” Time t = 0 µs is set as the discharge of the capacitor
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Figure 14: A schematic of the experimental apparatus from the (a) top and from the (b) east side.
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Figure 15: A typical gun shot is shown in the graphs above. (a) depicts the voltage on the capacitor
bank which discharges into the gun, while (b) shows the current.
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Figure 16: This graph shows the relationship between the delay on the capacitor bank trigger and
the effective stuffing field.
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Density ne ≈ ni 1014 cm−3

Temperature Te ≈ Ti 15 eV
Magnetic Field Btypical 500 G (1000 G max.)
Beta β 10%
Alfvén speed vAlf 10 cm/µs
Lundquist Number S < 1000
Electron skin depth c/ωpe 0.5 mm
Ion skin depth c/ωpi 2.3 cm
Larmour radius ρi 0.9 cm
Sweet-Parker thickness δS−P 0.15 cm (L′ = 10 cm)
Collisionless thickness δC 4.6 cm

Table 1: SSX Plasma Parameters

banks. The spheromak formation occurs between t ≈ 15 µs and t ≈ 40 µs. We record
data for an additional 160µs, though most of interesting physics occurs early on, and by
t ≈ 170 µs, the spheromak has dissipated to the point of being unmeasurable.

Typical plasma characteristics are summarized in table 1.

5.3 Interferometer Construction

As mentioned in section 3, the HeNe interferometer used on SSX is based on the Mach-
Zehnder design. The interferometer uses several specialized optics not normally found
in Mach-Zehnder interferometers; the use of these is discussed in section 3.3. The exact
specifications of the components used in the interferometer designed by the author are
discussed in appendix B.

Normally an interferometer of this sort would be mounted on an acoustically isolated op-
tical bench. Such measures are necessary in order to isolate such a sensitive system from
disturbances. Though a mounting arrangement like this is technically possible, it is not
necessarily economic in terms of funding or in space. Fortunately, the time scale of the
SSX experiment is extremely short, on the order of 100 µs. At such a short duration, most
acoustic disturbances are of too short a frequency to noticeably affect the interferometer.
As such, using an isolated optical bench is somewhat overkill. This allows us to use a much
simpler and cheaper design.

The frame used for mounting the interferometer components, which can be seen in figure
17 on page 21, is an inverted U constructed out of 6-inch U-channel. Metal plates were
welded onto the legs of this frame which provide for the interface to the legs of the whole
structure. Two inverted V’s were constructed out of 3-inch U-channel as legs, each with
square plates welded onto the legs and the apex of the V’s. The apex of each V was attached
to the bottom of the U-frame. The modularity of this design allows for layers of insulation
(such as neoprene) to be added between the U-frame and the legs, further isolating the
interferometer components if needed. Swivel feet with rubber bottoms were attached to the
bottoms of the legs, providing for another layer of insulation. Each foot is adjustable in
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Figure 17: A schematic of the interferometer mount.

21



5.4 Triple Probe Construction Density Studies on SSX

Figure 18: Illustration of the triple probe in its fully retracted position.

height so one may level the whole structure if needed.

The surface of the U-frame was strategically perforated with 1
4-20 tapped holes on 1 inch

centers so that optical components could be mounted with standard optical bench mounting
hardware. Tapped holes were also put in the sides of the mount. This allows for the
installation of a lucite covering over the path of the beam, if needed, to isolate air currents
in the future. The mock-up for the interferometer was checked for response to air currents.
The overall affect of these air currents was measurable, but deemed insignificant on the SSX
timescale.

All analysis was performed in Matlab. The analysis routine for the interferometer can be
found in appendix D and is based on equation 32.

5.4 Triple Probe Construction

The triple probe installed on SSX consists of four Langmuir probes housed in a single body.
The probe tips are arranged in a square pattern. The probe tips are constructed out of
tungsten wire, 1 mm in diameter. Each tip exposes only 1 mm of the length of the wire,
given a total exposed area of A+ = A− = 3.6 × 10−6 m2. The four probes run down the
same protective sheath, seen in white in figure 18. Attached to the top of the vacuum
flange is a bellows that allows the probe to be moved in and out without endangering the
integrity of the vacuum. Two threaded shafts (1

4-28) control the amount that the triple
probe is extended. When installed, the probe can measure anywhere from RSSX = 1 to
RSSX = .75, defining RSSX = 1 as the radius of the flux conserver, rcons = 25.4 cm. The
brass housing at the top of the triple probe merely provides a mounting area for the BNC
connectors.

Cabling is attached to the BNC connectors on the triple probe which runs back to the
control cage. Three of these cables are attached together in the circuit shown in figure 11.
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5.4 Triple Probe Construction Density Studies on SSX

The voltage Vd2 is measured between probe tips P2 and P3 by means of a Tektronix Voltage
Isolator.3 I1 is measured by a current monitor.4 Instead of using a traditional power supply,
the applied voltage was supplied by means of a capacitor of capacitance 176 µf so as not to
introduce electrical noise into the system. The capacitor was charged up to a voltage Vd3 =
30 to 45 V.

The fourth probe in the triple probe housing is isolated from the other three probe tips.
This probe is also attached to a Tektronix Voltage Isolator, allowing measurements of Vf

to be taken.

All analysis was performed in Matlab. The analysis routine for the triple probe can be
found in appendix D and is based on equations 42-45.

3Model A6909 Sony/Tektronix Two Channel Isolator.
4The current monitor was Pearson current monitor, model 411, with an output of .1 V per A.
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Figure 19: A typical measurement made by the interferometer. (a) shows the raw data, while (b)
shows this data after analysis. The large spikes are most likely due to noise.

6 Experimental Results

6.1 Interferometer Data

Prior to any actual data taking, the mount of the interferometer is acoustically disturbed
by tapping on it. This results in the output of the detectors going to their maximums
and minimums. The amplitudes of these signals are recorded as k1 and k2 of equation 32.
Figure 19a shows what the typical data from the interferometer looks like. This data is then
run through the analysis routine shown in section D, giving us the output shown in figure
19b. At the beginning of the spheromak’s “life,” one can see a lot of noise and a couple
of particularly high spikes. These features are due to the large amount of RF noise and
Φ̇ generated by the spheromak formation. Φ̇ is the change in magnetic flux with respect
to time. During formation, the ∆ΦB is relatively large in a short amount of time ∆t, so
contributions from Φ̇ can be large.

∆ΦB

∆t
= Φ̇ = ε (46)

As a result of these byproducts of spheromak formation, any large narrow spikes should be
considered as noise or Φ̇. One can see from this graph that after this period of turbulence,
the density of the spheromak tops out at about 5 × 1013 ne cm−3. A short period later,
density drops off to about 2− 3× 1013 ne cm−3, where it remains for a relatively long time.
Near the end of the recorded data, the spheromak’s density begins to die off.

Referring back to figure 5, one can see that the amount of stuffing flux can be changed by
adjusting the delay on the trigger for the capacitor banks. As described in section 2.2, this
stuffing field acts as a soap bubble; when the plasma hits this field, the field distends and
wraps around the plasma. To continue the analogy of a soap bubble, if one doesn’t blow
hard enough on the film (if the stuffing field is too strong), the film distends a little and
then bounces back, never ripping free. In this case, the soap film (stuffing field) acts like
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Figure 20: Each of the four traces depicts density as a function of stuffing flux on the spheromak
gun. Each trace is sampled at a different time, i.e. the top trace shows the density at time t = 41.9µs
as function of stuffing flux.

a stiff rubber band. The other extreme is if one blows too hard at the soap film (i.e. the
stuffing field is too weak). In this case, the soap film blows apart. The analogous condition
in a spheromak gun prevents spheromak formation. Instead, a gush of unconfined plasma
is launched out of the end of the gun, not giving the stuffing field a “chance” to enclose the
plasma.

In figure 16, one can see the effects on the plasma density of varying the stuffing field. The
graph displays the density of the plasma as a function of gun flux. Each trace represents a
different time, with the uppermost line being the earliest and ending with the bottom line.
This method of graphing, though slightly unintuitive, was chosen to allow for the inclusion
of error bars. It would be possible to plot several plasma densities as a function of time,
each at different times, but this would not allow us to calculate mean values or error bars
for the density.5 To see the time evolution of density at a given gun flux setting, one would
hop from trace to trace. This data was taken over the course of a day, with any where from
5 to 20 shots per flux setting.

As one can see, at all flux settings, the density drops off from 41.0 µs to 141.9 µs. For
the low flux settings, the plasma density starts off relatively high, but the plasma rapidly
dissipates. This is indicative of poorly confined plasma that is rocketing out of the end of
the spheromak gun without giving a chance for the stuffing field to encapsulate it. Early
on at around .9mWb of flux, the density of the plasma is lower, but it remains relatively
consistent throughout the experiment’s duration. Centered around 1.4mWb of flux, the
initial density pops back up, but at a cost to the density later on. If too much stuffing flux
is applied (≥ 1.6mWb), then the stuffing field starts to act as the aforementioned “rubber

5Mean values and error bars were calculated in KaleidaGraph 3.5.
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Figure 21: Typical data from the triple probe. (a) shows temperature as a function of time and
(b) shows density as a function of time. Both measurements were made from a point 39.3 mm from
the outer wall of SSX. This position corresponds to a radius RSSX = 0.808.

band,” and at (≥ 2mWb) the field completely clamps down on the plasma letting very little
escape the gun. This is evident by the negligible results of density at these settings.

We choose to run SSX with a stuffing field of .9mWb on the guns because the provides
the most stable consistent spheromaks, as seen in figure 20. Though higher initial densities
could be attained by adjusting the stuffing flux in either direction, sacrifices would have to
be made. The spheromaks would not be as consistent in their density. The range of their
densities is much greater during the course of a run, giving to the suspicion that they are
less stable. Since the purpose of the stuffing field is to provide the necessary B fields for
confinement, we choose the setting that provides for the most stable confinement, even if
that is at the cost of density.

6.2 Triple Probe Data

Typical triple probe data after analysis is shown in figure 21. This data corresponds to
measurement made at a radius of RSSX = 0.808 (39.3 mm from the outer wall) with probe
bias Vd3 = 36.5V. Figure 21a shows the temperature as measured by the triple probe,
while 21b displays the density. The temperature of a typical shot peaks anywhere from
10− 15 eV and usually displays comparable stability to the shot shown in this figure. Most
measurements of density also look similar to this graph. Notice the comparison between
the shapes of figures 19b and 21b and how they both display the same characteristic shape.
However, one can easily note that the actual measured values for ne between the two
diagnostics do not correspond. Langmuir probe densities are often off by some multiplicative
constant (Owens, 1980). This constant can be determined by calibrating the triple probe by
other means, in this case an interferometer. Even though both sides of SSX are technically
identical, since the triple probe was located on the west side of SSX and the interferometer
was on the east, we were unable to perform this calibration. Both diagnostics should be
sampling the same plasma. This remains to be done in the future.
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Figure 22 shows the results from a scan from the outer wall of SSX RSSX = 1 down to
RSSX = .75 At each value for RSSX , between 8− 20 measurements were made. This data
was analyzed and then organized according to RSSX , allowing us to obtain mean values
and error bars at each value of RSSX .6 Peak values of Te and ne were used for these
graphs. It is interesting to note that at values of RSSX ≤ .9, around 2.5 cm in from the
wall, the temperature shown in figure 22a begins to level off. Whether this trend continues
is unknown; a longer device is required to probe further. Interesting behavior also occurs in
density shown in figure 22b. As one moves towards the center of the vacuum chamber, the
density of the plasma rises, then dips, rises again, and dips one final time. What this means
over all is hard to tell since we cannot measure any more deeply in the plasma, though it
is interesting that a thin shell of plasma which is denser than the rest lies very close to the
outer wall of the vacuum chamber. Both Te and ne drop to zero as they approach the wall,
which is to be expected.

Figure 23 shows data from the same set as shown in figure 22. Instead of using the peak
values for Te and ne, four different times were sampled, similar to the process used for figure
20. In this graph we can get a rough idea of how the radial profiles for Te and ne change
with time. Not surprisingly, both values gradually fall away.

6Mean values and error bars were calculated in KaleidaGraph 3.5.
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Figure 22: Radial profiles of peak (a) temperatures and (b) density occurring during a shot, as
measured with the triple probe.
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Figure 23: Radial profiles of peak (a) temperatures and (b) density occurring during a shot, as
measured with the triple probe. Each trace shows the temperature or density at a different time,
i.e. the top trace is for time t = 40µs.
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7 Future Directions

SSX is anticipating exciting directions in the near future. A three-dimensional magnetic
probe is nearing completion which will measure over 600 channels of data from the interac-
tion region where the two spheromaks reconnect. This probe is the next in the progression
from the linear and 2D probes detailed in Kornack (1998). Other new directions in the area
of diagnostics includes a newly completed AXUV device for measuring soft x-rays, discussed
in Schlossberg (2001).

Pertaining to the topic of this thesis, the most important action to be taken in the future is to
finally calibrate the triple probe with the interferometer. Once both diagnostics are up and
running on the same side, a more detailed study of the physical nature of the spheromaks
can be pursued. Other suggested experiments include comparing ne to Hα, measured by
the DD3 detector, and a comparison of the plasma density before and after the conversion
of the capacitor banks. The conversion will double the capacitance, which should lengthen
the lifespan of the spheromak by approximately ×

√
2. One last study would be to compare

simulation data, as described in Lukin (2000), to the line-averaged results of ne from the
interferometer and the radial profiles of both Te and ne from the triple probe.

Once this suite of diagnostics is completed and fully tested out, SSX will begin its next phase
of experimental operations where dividing walls between the flux conservers will be removed.
This will allow for the two colliding spheromaks to fully merge. Other measures will be
taken, including installing the necessary external coils needed to supply the stabilizing B
fields, which will convert the two merging spheromaks into a Field Reverse Configuration
(FRC).
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Appendix A: Interferometer Setup

This section will detail how to setup and align the interferometer. The interferometer is
easiest to setup when working from the beginning of the optical path and setting up each
component in the order that the beam encounters them. If set up in proper order, there
should be no reason to be tinkering with more then two components at a time: the ones
located at each end of the beam path that you are currently aligning.

As a result, the laser is the first part that needs to be setup. It is helpful to make sure that
the laser is oriented parallel to the working surface. Aim the laser at the center of the beam
steering mirror (component M1 in figure 24) and rotate the laser barrel so that its plane of
polarization makes ≈ 45◦ angle with the working surface. A polarizer is handy during this
step.

Once the laser is set up, reflect the beam at a 45◦ angle onto the first beam splitter (BS1).
Again, try to aim the beam at the center of the beam splitter; this will make later fine
tuning much easier. If 2” optics are used, it is less important to target the centers of the
optics than if 1” optics are used.

At this point, make sure the laser beam is aimed at the center of the scene beam mirror
(M2). This is the mirror that is in the path of the laser which is transmitted through the
first beam splitter (BS1). Then aim the beam splitter so that the reflected portion of the
split beam hits the center of the reference beam mirror (M3). Then the two mirrors should
be positioned so that they in turn reflect their beam to the center of the final beam splitter
(BS2). This is an important step. One should be sure that both beams incident on the final
beamsplitter (BS2) are aimed at the same point on the surface of the beamsplitter that is
closest to the output of the interferometer that you are using. There should be two outputs
of the interferometer at this point; one is generally not used at and in our specific setup; it
is completely ignored. Thus, the beam that is transmitted through the final beamsplitter
(BS2) should exit at the point that the reflected beam hits the final beam splitter. At this
point, the last step to take is to aim the final beamsplitter so that the reflected beam is
aimed at the same spot that the transmitted beam is aimed at.

Now that the basic interferometer is established, one can start looking for interference
patterns. It is handy to use an objective lense at this stage so that the interference patters
are easy to see with the naked eye. The easiest way to locate interference patterns is to
tweak the final beamsplitter’s (BS2) tilt about the vertical axis using the provided adjuster
on the back. This is the adjuster that is located on the end of the bottom of the optic
mount, not the adjuster on the corner7. One notices that as the interferometer gets closer
to alignment, the fringes get larger until the output of the interferometer is dominated by
one large fringe. During this process, it is useful to adjust the angle of the fringes so that
they are aligned vertically by using the adjuster at the top of the mount. This adjuster tilts
the mount about a horizontal axis. By a combination of the two adjusters one can trace out
the traditional bullseye interference pattern. However, our use of the instrument requires
the interferometer to be set at a point where only one fringe, or a fraction thereof, is seen

7This adjuster translates the whole mount in a direction perpendicular to the plane of the optic.
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Figure 24: Basic layout of SSX interferometer.

at the output.

Once the desired output is achieved, the next step is to adjust the optics necessary to
produce a second output beam 90◦ out of phase with the original beam. Place the Wollaston
prism at the output of the interferometer, aligned so that its optical axis is horizontal to the
working surface. This should produce a two-beam output. The alignment of the Wollaston
prism is correct when the two output beams lie in a plane parallel to the working surface.
Place the two detectors in their positions.

Block the reference beam at this point and monitor the output of the detectors placed at
the Wollaston output. Rotate the angle of the laser, changing the plane of polarization so
that the Wollaston prism evenly divides the scene beam, producing the same signal in each
detector. Unblock the reference beam and block the scene beam.

Place the λ
4 plate in the reference beam. Make sure that its orientation, denoted by the

marking on the optic which is labeled “fast,” is horizontal to the working surface and
makes a ≈ 45◦ with the plane of polarization of the laser beam. Place the λ

2 plate after the
first beam splitter in the reference beam, but before the λ

4 plate. This will allow precise
alignment of the plane of polarization of the laser beam entering the λ

4 plate. Adjust the
angle of the λ

2 plate by loosening the thumbscrew on the rotation stage and adjusting the
angle of the stage by hand. Tighten the thumbscrew and then make fine adjustments using
the micrometer adjuster. Adjust until the signal in the two detectors is the same.

The interferometer should now generate two output beams which are 90◦ out of phase with
each other. Check this by inspecting the output of the detectors on an oscilloscope. In order
to do this, center each trace on the screen. One easy way to do this is to turn on only one
trace and tap the interferometer yoke. This will produce a signal that should touch both
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boundaries of the signal. Center this and repeat for the other channel. Once this is done,
let the interferometer sit for several seconds and examine the output. When one signal
crosses the midline, the other trace should be reaching either a minimum or maximum. If
this is the case, then you are finished. If not, fine tune the λ

2 plate until this occurs. The
interferometer should now be complete.
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Appendix B: Component Specifications

Since interferometry is such a sensitive measuring tool, it is necessary to obtain relatively
high quality components. Interferometers are often used to find defects in lenses; this
illustrates the sensitive device it really is. As a result one must be careful of the grade
of components used. In selecting the components used for our instrument, we took in to
account optical quality, ease of use, and stability. We ordered primarily from Newport
Corporation, Coherent, and Thorlabs Inc. for the optical hardware, UDT Sensors, Inc. for
the sensors, and ISI for the vacuum viewports. A complete model list is included at the
end of this section.

All component specifications were reached after extensive testing on a mock-up interfer-
ometer built on an optical bench with previously available components. After this testing
phase, specific components were settled on and ordered. A second testing phase was entered
using the newly procured parts. During this period, the gas density calibration described in
section C was performed, as well as the designing of the mounting yoke described in section
5.3.

All the optical mounting hardware, including posts, post holders, bases, and optic mounts
were obtained from Thorlabs. Their Ultrastable Kinematic optical mounts provided the
most stable and affordable solution while still giving us fine control over translation8 and
tilt about the horizontal and vertical axes. Posts and post holders used were of the regular
3” variety. For the most flexibility in placing each optic, we ordered the large bases from
Thorlabs, which come predrilled for many mounting possibilities. Two lens mounts were
purchased in case it was decided that the twin beam output of the Wollaston prism needed
to be focused on the detectors to prevent signal loss.

Optics were bought from both Coherent and Thorlabs. Since we were operating at such
a precise frequency, 632.8 nm, it made the most sense to buy optics specifically tuned for
HeNe9 lasers. This would give us the best performance for the price. However, Thorlabs
has a line of broadband dielectric mirrors that provide more than 99% reflectivity at a 45◦

of both the S and the P10 polarizations. These mirrors feature a 15-5 scratch-dig11 and
are flat over the surface12 of the optics to within λ

10 . The Coherent beam splitters used
were of the non-polarizing variety which were tuned for HeNe light at 632.8 nm, providing
an almost exact 50/50 split of incident light at this wavelength, regardless of polarization.

8In the direction perpendicular to surface of the optic.
9Helium Neon.

10S polarization is when the E field is normal to the plane of incidence, while P polarization denotes that
the E field is parallel to the plane of incidence.

11Scratch-dig ratings are based on a subjective scale of how numerous and how large the scratches and
pits on the surface of the optic. A rating of 40-20 is around the lower limit that the naked eye can detect.
This rating was not overly important for our device, as any light reflected by any surface scratches will be
directed out of the path of interferometer, meaning that it would just contribute to lost signal, and not lead
to bad data.

12The flatness of the optic is usually measured in terms of some arbitrary wavelength usually around 633
nm. This specification was relatively important to our instrument, as an extremely flat optic would not
contribute to distorting the shape, size, and coherence of the beam like a relatively curved optic would.
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These beam splitters have scratch-dig of 10-5 and are flat to within λ
10 . The Wollaston

prism was also obtained from Coherent. The only choice in selecting this optic was size;
we decided on the 12 mm aperture prism as the best combination of convenience and price.
It has scratch-dig of 20-10 and is flat to λ

8 at 589 nm. Both waveplates were ordered from
Thorlabs, who by far had the best price on these products. We decided to purchase the
zero order waveplates, as these are not dependent on temperature, angle of incidence, and
degree of collimation as multiple order waveplates are. Also, zero order waveplates are
less sensitive to change in wavelength. Our waveplates, both the λ

2 plate and λ
4 plate, are

specifically made for 633 nm light and possess a scratch-dig rating of 20-10 and are flat to
λ
10 . As the last optical component, we found it beneficial to use a filter centered at 632.8 nm
to block out any unwanted signal, especially the Hα light produced in the SSX discharge.
This filter was obtained from Coherent and has a FWHM13 of 11 nm and has a minimum
peak transmission of 80%.

We obtained most of the laser hardware from Newport, with the exception of the post and
post base, which was bought from Thorlabs. The laser is mounted in a Newport mount,
possessing adjusters for two axes, which is in turn installed on a post clamp, which attaches
to the post. This structure gives us the most flexibility and security. The laser is a Uniphase
10 mw polarized HeNe laser with a polarization ratio of 500:1.

Detectors were purchased from Thorlabs and UDT Sensors. From Thorlabs, two high-speed
amplified detectors, with a 50MHz bandwidth and a transimpedance gain of 1× 104 V/A,
were bought. However, these products are AC powered, and as this poses a problem in
terms of possible AC line contamination during a plasma discharge, Photops detectors that
are capable of operating under battery power were ordered from UDT Sensors. Originally,
the Thorlabs detectors were going to be battery-powered, but it was discovered that they
would run out a typical 9V battery in 10-15 minutes. The UDT detectors are also high-speed
amplified detectors, but unlike the Thorlabs detectors, do not come packaged in a completed
circuit layout. This enables one to determine the exact gain by final circuit design. The
detectors have a Gain Bandwidth Product of ∼ 20MHz and Slew Rate of ∼ 35V/µs.

Two fused Silica vacuum viewports were bought from ISI for installation on SSX itself.
These ports offer better than 90% transmission and a scratch-dig of at least 40-20.

13Full width at half maximum. At half transmission of the optic, this is the measure of the width of the
filter, in terms of nm.
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# Component Supplier Product Number
2 2” HeNe Beam Splitters Coherent 44-1634
3 2” Broadband Dielectric Mirrors Thorlabs BB2-R1
1 λ

2 Plate Thorlabs WPH0M-633
1 λ

4 Plate Thorlabs WPQ0M-633
1 Wollaston Prism Coherent 43-8564
1 632.8 nm Bandpass Filter Coherent 35-4126
1 10mW HeNe Laser Newport U-1335P
1 Tilt Laser Mount Newport ULM-TILT
1 Rod Clamp (for Laser Mount) Newport 340-RC
1 8” Mounting Post Thorlabs P8A
1 Mounting Post Base Thorlabs PB1
5 2” Ultrastable Kinematic Mounts Thorlabs KS2
3 1” Ultrastable Kinematic Mounts Thorlabs KS1
2 Lense Mounts Thorlabs AC-1
1 Precision Rotation Stage Thorlabs PRM1
13 3” Posts Thorlabs TR3
13 3” Post Holders Thorlabs PH3-ST
13 Bases Thorlabs BA2
2 High-speed Amplified Photodetectors Thorlabs PDA155
2 Photops High-speed Photodetectors UDT Sensors UDT-455HS
2 Fused Silica Vacuum Viewports ISI 9722005

Table 2: Component List

35



C Gas Density Calibration Density Studies on SSX

Appendix C: Gas Density Calibration

In order to check that the interferometer, detection instrumentation, and processing gear
are interfaced properly, it is necessary to calibrate the device using a test medium of known
index of refraction. Since the instrument is so sensitive and an ordinary glass window
introduced into the scene beam introduces a shift of several hundred fringes, it is necessary
to come up with a device with a much lower index of refraction than glass (around 1.52). It
was decided to fabricate a chamber of known length (15cm) with glass windows on each side
and two swagelock fittings installed. This allows one to evacuate the chamber to a known
pressure using one of the swagelock fittings. By releasing the valve on the other fitting , one
can produce a relatively quick pressure change of a known value inside the chamber. Since
the index of refraction of air changes with its density in a linear manner, one can easily
predict the amount of phase shift this sudden pressure drop brings about.

∆N =
l

λ1
− l

λ2

= l∆
(
1
λ

)
= l
(
−λ2∆λ

)
(47)

Where l is the length of the chamber. In order to proceed from equation 47, one must
calculate the value of ∆λ. It is helpful to know the relation seen in equation 48.

λ =
v

ν
=

c

νn
(48)

∆λ =
∆v

ν

=
c

ν

(
1
n1

− 1
n2

)
(49)

From this point, one can quickly solve for the amount of fringe shift (∆N ) in terms of cavity
length (l), wavelength (λ), and the indices of refraction (n1 and n2).

∆N = − cl

λ2ν

(
1
n1

− 1
n2

)
= − l

λ

(
1
n1

− 1
n2

)
(50)

The index of refraction for air is 1.000292. At a pressure of ∼ 660mmHg, the index of
refraction is 1.000253, calculated by the fact that the index of refraction scales linearly with
the density of air. Using this figure and length of the chamber as 15cm, one would expect to
measure approximately 9 fringes going by when letting this partial vacuum equilibrate with
normal atmospheric pressures. When this was measurement was performed, we measured
about 51

2 fringes (see fig. 26). Using the experimental data and back into equation 49, this
measured fringe shift predicts an pressure of about ∼ 700mmHg. Since the measurement of
the pressure inside the chamber was done with a simple handpump/gauge, this is a relatively
small error.

Another measurement made with this same apparatus was the pumping of helium into the
calibration chamber. This was performed by turning the calibration chamber so that both
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Figure 25: Output of the detectors from an evacuated to normal atmospheric pressure run. (a)
Raw data from the two detectors. (b) Processed data from the two detectors. Both signals have
been normalized and centered about the origin. The gray lines signify the fringe envelope amplitude.
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Figure 26: The fringe shift associated with the raw data from figure 25.
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Figure 27: Output of the detectors in a air to helium calibration run (a) Raw data from the
two detectors. (b) Processed data from the two detectors. Both signals have been normalized and
centered about the origin. The gray lines signify the fringe envelope amplitude.
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Figure 28: The fringe shift associated with the raw data from figure 27.
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swagelock fittings were on the bottom. When the helium was turned on, it pushed the air
in the chamber out of the other orifice, since helium is lighter than air. In other words, the
air “fell” out of the chamber. Since Helium’s index of refraction is only 1.000036 compared
to air’s 1.0002926, we expected to see a fringe shift of 60.8 while doing this. Experimental
results showed a fringe shift of ∼ 55, as show in figures 27 and 28. This is very close to the
desired result when one considers that when the measurement is concluded, it is hard to
verify if all of the air in the chamber has really been displaced by the helium.
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Appendix D: Analysis Routines

These analysis programs were run in Matlab 5.2 on an Apple Power Mac G4 450 MHz.

D.1 Interferometer Routine

% Refer to dataanalysis.pdf for assigning of variable names
clear all;
filename = input(’File Name? ’, ’s’);
filt=input(’Reduction factor? ’);
ki=[1.852 1.641]; % k1&k2 Max amplitude of signals (Range assuming min=0)

% ---- FILE HANDLING ---- %

fid=fopen(filename); %fid = file identifier #
file_header_string=fgetl(fid); %Read header & make a matrix of it
header={};
k=1; name=’’;
for i=1:size(file_header_string,2)

ch=file_header_string(i);
if (ch~=’ ’)

name=[name ch];
else

header{k}=name;
name=’’;
k=k+1;

end
end

[filematrix,count]=fscanf(fid,’%e’,[size(header,2),5000000]);
%reads the rest of the data %(excluding headers)
filematrix=filematrix’;
fclose(fid); %We’re done with it now.

for i=1:size(header,2) %assigns names to data columns
switch header{i}

case ’t-secs’, time=filematrix(:,i)’;
case ’Int 1’, S1=filematrix(:,i)’;
case ’Int 2’, S2=filematrix(:,i)’;

end
end
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% ---- FILTERING AND AVERAGING ---- %

if (filt ~= 0)
ed=reshape(S1,filt,length(S1)/filt);
ed2=reshape(S2,filt,length(S2)/filt);
ed3=reshape(time,filt,length(time)/filt);
clear S1 S2 time;
for i=1:length(ed)

S1(i)=sum(ed(:,i))/filt;
S2(i)=sum(ed2(:,i))/filt;
time(i)=sum(ed3(:,i))/filt;

end
end

% ---- ANALYSIS ---- %

baseline=[sum(S1(1,1:10))/10 sum(S2(1,1:10))/10]; % V1 and V2

dv1=S1-baseline(1); % DV1 and DV2
dv2=S2-baseline(2);
dphi=acos(1-.5.*((dv1/ki(1)).^2+(dv2/ki(2)).^2))*180/pi; %Dphi

Density=(dphi * 8*pi*3e8*8.854e-12 *9.109e-31)/((1.602e-19)^2*632.8e-9);

figure
plot(time,Density);

D.2 Triple Probe Routine

%clear all;
filename=’r22’;
Vd3=36.5; %Volts

area=3.6/1000^2; %Area of probe tip in cubic meters.

e=1.6E-19; %Electron charge (C)
mi=938.27E6; %Proton mass (eV/c^2)
c=3.0E8; %Speed of light (m/s)

fid=fopen(filename); %fid = file identifier #
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file_header_string=fgetl(fid); %Read header & make a matrix of it

%Count up the number of columns, place the header string in a struct array
header={};
k=1; name=’’;
for i=1:size(file_header_string,2)

ch=file_header_string(i);
if (ch~=’ ’)

name=[name ch];
else

header{k}=name;
name=’’;
k=k+1;

end
end
clear k ch file_header_string name;

[filematrix,count]=fscanf(fid,’%e’,[size(header,2),5000000]);
%reads the rest of the data (excluding headers)
filematrix=filematrix’;
fclose(fid); %We’re done with it now.

for i=1:size(header,2)
switch header{i}

case ’t-secs’, time=filematrix(:,i)’;
case ’Vd2’, Vd2=filematrix(:,i)’*100;

%Isolation transformer set to 100 times.
case ’I’, I1=filematrix(:,i)’.*(10); %Current transfomer is 10 times.

end
end

%Apply 1/10 FIR filter
Vd2=firfilter(Vd2);
I1=firfilter(I1);

%Sparse 10 times:
Vd2=Vd2([1:10:end]);
I1=I1([1:10:end]);
time=time([1:10:end]);

%tempseries=temperature(Vd2,Vd3);

%Don’t let current go negative:
I1(I1<0)=.001;
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%actual calculation
consts=exp(1/2)/(area*e);

%approximation
tempseries1=Vd2*1.44;
soundspeed1=sqrt(tempseries1/(mi/c^2));
densityseries1= I1 .* exp(1/2)./(area.*e.*soundspeed1) / 100^3;

figure
hold on;
%subplot(2,1,1);
%plot(time,tempseries,time,Vd2*1.44);
line([4e-5 4e-5],[-10 30]);
plot(time,tempseries1,’g’);
title([’Temperature (File: ’ filename ’, Voltage: ’ num2str(Vd3) ’V)’]);
xlabel(’Time (s)’);
ylabel(’{\itT_{e}} (eV)’);

figure
hold on;
%subplot(2,1,2);
%plot(time,densityseries,time,densityseries1);
line([4e-5 4e-5],[0 10e14]);
plot(time,densityseries1,’g’);
title([’Density (File: ’ filename ’, Voltage: ’ num2str(Vd3) ’V)’]);%
xlabel(’Time (s)’);
ylabel(’{\itn} (cm^{-3})’);

ginput
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