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Abstract

The Swarthmore Spheromak Experiment (SSX) studies magnetic reconnection by merging co- and counter-

helicity spheromaks. Typical plasma parameters include electron density ne ∼ 1015 cm−3, temperature

Ti + Te ∼ 30 eV, and magnetic fields |B| ∼ 0.1 T. This thesis documents the construction of a new high-

resolution ion Doppler spectroscopy (IDS) diagnostic. The SSX IDS system features a 1.33 m Czerny-Turner

spectrometer with a 316 grooves/mm echelle grating and a 32-channel photomultiplier tube array. On any

shot, we can observe any of 10 different chords through the plasma with submicrosecond time resolution and

an instrument temperature ∼ 3 eV. Current studies have focused on the evolution of the carbon III 229.687

nm line which we observe at 25th order, with dispersion 0.0085 nm/mm using 3.7× magnifying exit optics.

We have determined the time dependence of flow velocities and ion temperatures in the plasma. We have

also performed Abel inversions to determine radial profiles of the plasma emissivity. In addition, we have

observed near-Alfvènic bi-directional flows due to reconnection. These results, as well as a possible model

for the flows based on shear, are presented.
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Chapter 1

Introduction

The study of plasmas, the most abundant state of visible matter in the Universe, is exceedingly rich; under-

standing of some of their basic properties and behaviors remains elusive. One such phenomenon in plasma

physics is magnetic reconnection. This thesis will focus on experiments conducted at the Swarthmore Sphero-

mak Experiment (SSX) that investigate the reconnection process. Specifically, this thesis documents optical

upgrades to our ion Doppler spectroscopy (IDS) and reports flow and ion temperature measurements with

good time and spectral resolution from the IDS system.

Before delving into the details of the IDS system and of the plasmas it investigates, we summarize, for

the benefit of readers unfamiliar with plasma physics, some basic plasma properties and parameters. This

will be the subject of the next section.

1.1 Plasmas

Plasmas may be loosely defined as ionized gases, heated so hot that some of the gas molecules have their

outer electrons stripped off. However, this definition of a plasma as an ionized gas is not entirely satisfactory.

How ionized does a gas have to be to be considered a plasma? What about restrictions on density and

temperature? And furthermore, what is so special about a plasma? Our subsequent discussion follows Chen

[1].

Plasmas are generally considered to consist of both ionized and neutral particles; in many laboratory

plasmas in the laboratory, for instance, most of the gas particles are neutral1. There must be enough

charged particles, however, for the plasma to have enough mobile charge carriers to permit macroscopic

currents and magnetic fields. It is precisely the macroscopic electrical and magnetic properties of plasmas

that distinguish them from ordinary gases and make their behavior both much richer and much more difficult

to study.

One of the most important defining properties of plasmas is that of Debye shielding. Imagine introducing

a lone electron into a room full of ordinary air. The electric field of the electron would drop off as 1/r2, but

its electrical influence would be felt throughout the room. In contrast, there are no large-scale electrostatic
1The SSX plasmas are mostly ionized.
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fields in the bulk volume of a plasma2. Rather, positive ions would tend to drift around the lone electron,

shielding off its electrical influence. This phenomenon is known as Debye shielding. Assuming that the

ions are massive and that the energy distribution of electrons is governed by Boltzmann statistics, it may

be shown [2] from Poisson’s equation (∇2V = −ρ/ε0) that in one dimension, the electric potential V of a

charged body decreases with the distance x from the body as

V ∝ exp(−x/λD) (1.1)

where the Debye length λD is given by

λ2
D =

ε0kTe

ne2
. (1.2)

Here k is Boltzmann’s constant, Te is the plasma electron temperature, and n is the plasma electron density.

For reference, we note that in plasma physics, the temperatures are defined as the width of the Maxwellian

velocity distribution of the appropriate species (electrons or ions), and as kT are commonly expressed in

electron volts. Many books on plasmas suppress Boltzmann’s constant and mean kT when they write T .

We will not adopt this potentially confusing convention here; in all equations arising in this thesis, we will

explicitly include k, but we will freely refer to measurements of Ti or Te in eV.

For Debye shielding to be meaningful, we must have enough mobile charged particles. This leads us to

two useful criteria for a plasma: first, that there be a large (� 1) number of charged particles in the volume

of a Debye sphere, or an imaginary sphere whose radius is a Debye length. Secondly, we also require that

λD be much smaller than the length scale of the plasma.

One final requirement [1] is that the dynamics of the plasma not be dominated by collisions with neutral

particles, as they would be in an ordinary gas.

The reader may ask why, aside from their electromagnetic properties, plasmas are worth studying. One

of the best answers is their ubiquity. Plasmas are very important in nuclear fusion research, are omnipresent

in astrophysics, and have diverse practical applications on earth.

It is well known that the Earth’s supplies of fossil fuels are limited and that there may eventually be

critical shortages thereof. Moreover, pollution from burning fossil fuels may be causing serious environmental

problems like global warming. Energy from nuclear fusion would, in contrast, would be virtually limitless

and would result in less pollution than producing energy from burning fuels or from nuclear fission. To

date, however, commercially viable fusion has not yet been achieved, not due to a lack of understanding of

fusion, but due to our lack of understanding of plasma physics. Fusing hydrogen, whether on earth or in the

stars, requires a hot, dense, ionized gas – a plasma. Thus far we have not succeeded in controlling plasma

instabilities and sufficiently confining a fusion plasma to obtain a prolonged positive energy output.

Plasmas are even more important in astrophysics. Stars, the best example of successful fusion reactors,

are made of plasma, and understanding their behavior inevitably requires some understanding of plasmas.

Furthermore, a diffuse plasma is present in the interstellar medium. Many other astronomical phenomena,

2There can be inductive electric fields (due to ∂B
∂t

), however.
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Figure 1.1: Tangled loops of plasma following a solar flare. Image taken at 17.1 nm by the TRACE (Transition
Region And Coronal Explorer) satellite. Figure from http://trace.lmsal.com.

such as observed variations in the rings of Saturn, may be attributable to plasmas. Closer to earth, the plasma

in the solar wind, the stream of charged particles coming towards the earth from the sun, can dramatically

affect global communications during periods of solar activity. Another example of plasmas near earth is in

the Van Allen radiation belts, where the earth’s magnetic field confines a plasma [1]. Plasma is also found in

the ionosphere, which is the outer layer of the earth’s atmosphere; the ionosphere is important in facilitating

long-range radio communications [3]. Lightning and auroras are yet further examples of naturally occurring

plasmas.

Lastly, we should not neglect the practical uses of plasmas. Perhaps the most common use of plasmas

formed in gas discharges is in fluorescent light bulbs and other lights, such as neon signs, that rely on glowing

gases. The gas laser uses a glow discharge as the lasing medium; the common helium-neon (HeNe) laser is

perhaps the best-known example of this type [1]. Plasmas are also finding use in industrial manufacturing

processes, particularly in the etching of semiconductors.

Having a sense of why plasmas are worth studying, the reader might well ask why the study of plasmas is

so difficult, for are not the laws of classical mechanics and electrodynamics well-established and understood?

For even a cubic centimeter of a laboratory plasma which might contain ∼ 1015 charged particles, it would

be both computationally impossible and not very instructive to try to account for all the electromagnetic

forces on each particle and then apply Newton’s second law. As with the study of even ordinary gases, then,

only some type of statistical or macroscopic theory can hope to be analytically tractable. Plasma kinetic

theory deals with the former, but it can be extremely difficult to apply to the turbulent, nonequilibrium, and
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often nonlinear conditions commonly found in plasmas. In the other approach, just as one might apply fluid

mechanics to the study of an ordinary gas, one can apply a fluid theory to plasmas. This theory is called

magnetohydrodynamics (MHD) and essentially combines classical electromagnetism with fluid dynamics.

We will address MHD more fully later in this thesis, but for now it suffices to remark that as a theory, MHD

is not always satisfactory. Thus theoretical, computational, and experimental researches in plasma physics

continue.

1.2 The Problem of Magnetic Reconnection

Here, we shall qualitatively describe the problem that lies at the heart of research efforts at SSX: magnetic

reconnection. The quantitative details will be deferred to later chapters; the goal here is to give the reader

a general sense of the physical problems at hand.

We have already mentioned that plasmas can carry magnetic fields. In ideal MHD, where the plasma

is assumed to be a perfectly conducting fluid, we will show in a later Chapter that the magnetic field lines

convect with the fluid; this is the so-called frozen-in flux condition. Consider two segments of fluid carrying

oppositely directed magnetic fields B that are moving towards each other. Since magnetic field is a vector,

should the frozen-in flux condition hold, one might näıvely expect an arbitrarily large gradient of B to form

when the segments of fluid meet. Ideal MHD is only an idealization, however, and what really happens is that

the oppositely directed field lines change their topology, come together, and reconnect. In the reconnection

process, the overall amount of magnetic field decreases, and so some of the magnetic energy (B2/2µ0) is

dissipated. Where this energy goes is one of the questions the research at SSX is seeking to answer. We

know that some of the magnetic energy goes into kinetic energy (flow of the plasma) and heating the plasma.

A diagram of this process is shown in Fig. 1.2. Chapter 4 will discuss spheromaks and how we use them to

study reconnection at SSX in more detail.

Magnetic reconnection is a direct implication of the breakdown of ideal MHD. Theoretically, this can be

addressed by dropping the idealized assumption that the plasma has no resistivity, for a real plasma will

have a resistivity from collisions. The earliest and simplest model of reconnection, called the Sweet-Parker

model, assumes a resistive plasma.

There are two particularly glaring problems with the Sweet-Parker model, however. It is a two-dimensional

theory in that it assumes reconnection to only be occurring in a plane. This is problematic because experimen-

tal observations, including previous measurements in SSX [4, 5], clearly indicate that magnetic reconnection

is a 3D process. Another serious problem with the Sweet-Parker theory is that the reconnection rate it

predicts is too slow. The rate of magnetic reconnection has been measured in solar flares [6, 7], but the

rate predicted by the Sweet-Parker model is orders of magnitude slower than measured [4]. Although the

Sweet-Parker model does not include all the physics that now appears to be necessary to model reconnection,

it remains conceptually useful and so we will discuss it in some detail later.
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Incoming plasma has 
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Ideal MHD In practice...

plasma B-fieldlines
high gradient region

topology change

Figure 1.2: Conceptual picture of the magnetic reconnection process. Figure from [4].

1.3 A New Diagnostic: Ion Doppler Spectroscopy

A new diagnostic that will help answer some of the questions about reconnection that SSX is studying

has recently been installed. This is the ion Doppler spectroscopy (IDS) system. The IDS measures the ion

temperature and plasma flow velocity averaged along any of 10 chords through the plasma. While the details

are deferred to a later chapter, it suffices to say for now that the IDS measures flow by observing the Doppler

shift of an impurity spectral line, and measures ion temperature by observing the Doppler broadening of the

impurity line. The IDS should allow improved, nonperturbative measurements of flow and temperature in

SSX, which have only previously been measured using probes.

1.4 Astrophysical Observations of Reconnection

Here we briefly discuss observations of magnetic reconnection in space. Reconnection has been observed

by the satellites Polar and Cluster in the Earth’s magnetopause and magnetotail, respectively. The reader

interested in the comparison of data from these space observations to laboratory results at SSX is referred

to [8]. Here, however, we discuss in some more detail an important observation of bi-directional flow in the

solar corona due to magnetic reconnection. First, though, let us introduce the solar corona.

1.4.1 Solar Corona

Magnetic reconnection plays a role in a number of phenomena in the solar corona, which is the outermost of

the three layers of the “atmosphere” of the sun, above the photosphere, from which most of the sun’s visible

light is emitted, and the chromosphere. In the corona, the plasma density ranges from 107–1015 m−3, with

higher densities nearest the surface of the sun, and temperatures reach up to 170 eV[9]. The temperature
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in the corona is notable because the plasma temperature is only about ∼ 0.4 eV in the photosphere [9].

Magnetic reconnection is one possible mechanism for heating the corona. In particular, reconnection might

occur between current sheets as the coronal plasma evolves to minimize its energy; this possibility has been

confirmed by MHD simulations, such as those of Mikik et al [10].

Solar prominences are stable loops of cooler, dense plasma erupting above the corona that are often

accompanied by coronal mass ejections. One possible theory proposed by Priest is that coronal prominences

involve twisting tubes of magnetic flux that violently erupt [11]. Again, magnetic reconnection may be

involved here.

X-ray telescopes have allowed dramatic observations of solar flares, during which magnetic reconnection

is believed to occur. As the loop of plasma in a solar flare gets stretched out above the surface of the corona,

the field lines get stretched out, break apart, and then reconnect [9]. It was actually the study of solar flares

motivated the first theory of magnetic reconnection, that of Sweet and Parker.

One particularly relevant set of observations have been those of D. E. Innes et al [12, 13]. They made

observations of the Si IV 139.3 nm emission line with the ultraviolet spectrometer SUMER (Solar Ultraviolet

Measurements of Emitted Radiation) on the satellite SOHO (Solar and Heliospheric Observatory), located

at the Lagrange point L1. SUMER observed small but explosive events such as microflares, which had

previously been thought to be associated with reconnection. During scanning, SUMER’s slit, which was

oriented in the north-south direction of the solar disk, was rastered east and west. The instrument had a

resolution of ∼ 1 arcsec, corresponding to 715 km on the sun. Observations were made both at the center of

the solar disk and at 60◦ latitude. SUMER essentially functions like our IDS system.

An example of the measurements made by SUMER is shown in Fig. 1.3. The composite image shows

a series of spectra scanned horizontally in position and with time running vertically. Looking at any one

vertical column (spatial position), such as the third from the left, one can see plasma first being blueshifted

and then from about 120-180 seconds being both blueshifted and redshifted.

At both positions on the sun, the spectral line was observed to be simultaneously redshifted and

blueshifted. The double-peaked lineshapes persisted for well over 1 minute. Innes proposed that their

observations were due to bi-directional jets in the corona. Although they could not make simultaneous mea-

surements of reconnecting magnetic fields, such bi-directional flows would be consistent with the Alfvénic

outflows due to reconnection.

1.5 Previous Laboratory Reconnection Experiments

Here we review several prior laboratory studies of magnetic reconnection. We particularly focus on the

UCLA experiment of Stenzel and Gekelman, the TS-3 experiment at the University of Tokyo, and the MRX

experiment at Princeton. But we will defer the discussion of prior work on reconnection at SSX to Chapter

4.
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Figure 1.3: Sample of data from the SUMER spectrometer. Details are in the text; figure from [12].
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Figure 1.4: Left): Side view schematic of UCLA experiment. Right): Axial view of UCLA experiment.
Magnetic field lines shown are vacuum fields, without plasma present. Figures from [14].

Figure 1.5: Magnetic field lines in a cross-sectional plane of the UCLA plasma. Note the resemblance of the
field lines to the initial conditions of the Sweet-Parker model. Figure from [14].

1.5.1 UCLA Experiment

One of the first laboratory studies of magnetic reconnection was conducted by Stenzel and Gekelman at

UCLA in the early 1980’s [14]. They studied a cylindrically symmetric plasma 2 m long and ∼1 m in

diameter [15]. A schematic of the experiment, showing a side view and an axial view is shown in Fig. 1.4.

Typical plasma parameters included electron density ne ' 1012 cm−3, electron temperature Te ' 5 eV, ion

temperature Ti ' 0.5 eV, magnetic fields B ' 20 G, and magnetic Reynolds number Rm ' 20 [14].

Stenzel and Gekelman created an X-type reconnection geometry in their experiment and performed de-

tailed studies of the reconnection magnetic fields, temperatures, and flows. Rather than measuring everything

at once, they made their plasma reproducible and moved their probes around from shot to shot. They also

averaged together 10 shots per data point. This allowed the effective measurement of the general, average

picture from reconnection, but would have averaged out local fluctuations. Magnetic structure correspond-

ing to the Sweet-Parker model was measured; one set of field lines is shown in Fig. 1.5. In addition, using

electrostatic probes, Stenzel and Gekelman measured a Sweet-Parker like flow pattern with near-Alfvénic

outflows. Notably, Stenzel and Gekelman were able to measure every term in the generalized Ohm’s law ex-

cept for the resistivity; they were thus able to calculate the resistivity. When they compared their calculated
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FIG. 3. Experimental setup of the TS-3 merging device.

FIG. 4. Two-dimensional contours of poloidal flux surface and toroidal magnetic field on theR-Z plane~a!, radial profiles of ion toroidal velocityV ~b! and
ion temperatureTi ~c! on the midplane, during the counterhelicity merging (BX'0) of two spheromaks with equal but opposingBt . The red and blue colors
indicate the positive and negative amplitudes ofBt .

1956 Phys. Plasmas, Vol. 4, No. 5, May 1997 Ono et al.

Downloaded¬06¬Feb¬2006¬to¬130.58.219.238.¬Redistribution¬subject¬to¬AIP¬license¬or¬copyright,¬see¬http://pop.aip.org/pop/copyright.jsp

Figure 1.6: Side view schematic diagram of the TS-3 experiment. Note the central core as well as the
midplane polychromator. Figure from [18].

resistivity to the classical Spitzer resistivity from collisions, they sometimes found their plasma resistivity to

be as much as 200 times larger than the Spitzer resistivity. The anomalous resistivity that they measured

would likely have come from small-scale instabilities and fluctuations in the plasma – which their measuring

techniques, dependent on averaging, would not have been able to observe. Moreover, only the electrons in

the plasma were magnetized – the ion gyroradii were sufficiently large that the ions tended to collide with

the walls or electrodes before gyrating around a field line. The relatively low magnetic Reynolds number of

the UCLA experiment also limited the applicability of its results to many space plasmas of interest. Hence,

while the results of Stenzel and Gekelman were pioneering, more experimental studies were necessary.

1.5.2 Tokyo TS-3 Experiment

The TS-3 experiment at the University of Tokyo [16, 17, 18] came online in the early 1990’s and studied

reconnection in a very different way. It was consequently able to better study some aspects of reconnection

physics than the UCLA experiment. Primary findings included the importance of the third dimension in

reconnection, the importance of global plasma parameters as well as local parameters, significant ion heating,

and the acceleration of fast individual ions due to reconnection.

TS-3 was a cylindrical device that coaxially merged toroidal plasmas such as spheromaks. Typical plasma

parameters were ne ∼ 3× 1014 cm−3, Te ∼ 10 eV, B ∼ 0.5− 1.0 kG, and Lundquist number S ∼ 300 [16].

Their plasmas were solidly in the MHD regime, with both the electrons and ions magnetized. A schematic

diagram of the experiment is shown in Fig. 1.6. Their spheromak merging experiments (they were also able to

merge tokamaks or reversed field pinches) were very similar to the experiments done at SSX. It is important
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The reconnecting-field componentsBi andBX form the fol-
lowing theoretical merging angleu of field-lines around the
X-point:

u52 tan21~Bi /BX!52 tan21@Br /~Bt1Bext!#.
14 ~1!

Figures 2~a!-~c! show the measured axial profiles ofu around
the X-points for the counterhelicity merging, the cohelicity
merging and that with varied external toroidal field.

II. EXPERIMENTAL SETUP

The experimental setup of the TS-3~Tokyo University
Spherical Torus! merging device12,14 is shown in Fig. 3. Its
cylindrical vacuum vessel with diameter of 0.8 m and length
of 0.9 m is equipped with two internal poloidal field~PF!
coils and two sets of eight pairs of electrodes. They are used
to produce two plasma toroids with both poloidal and toroi-
dal magnetic fields. Reversed currentsI acc of the PF coils are
also used to accelerate and push together the two toroids. To
apply the external toroidal fieldBext to them, a central torus
coil with diameter of 12 cm is located along the center geo-
metric axis. Right after their formation, the two plasma tor-
oids have major and minor radii of 18 and 12 cm and ion and
electron temperaturesTi andTe of 10–30 eV and electron
densitiesne of 0.5–131020 m23. Center and edge two-
dimensional (638) arrays of magnetic probes are located on
the R-Z plane to measure poloidal and toroidal magnetic
fieldsBz , Br andBt . Each probe is covered with a thin glass
tube whose outer diameter is as small as 5 mm. Based on the
measured 2-D magnetic field profile, the 2-D contours of
poloidal fluxC and toroidal current densityj t , evolutions of

magnetic helicityK and magnetic energyW within the sepa-
ratrix, are calculated on each single discharge, by use of the
following equations:

C~r ,z!5E
rmin

r

2pr 8Bzdr8, ~2!

j t~r ,z!5
1

m0
S ]Br

]z
2

]Bz

]r D , ~3!

K5E
V
A•Bdv52E

V

I pC

2pr 2
dv54pE

S

BtC

m0
drdz, ~4!

W5E
V

B2

2m0
dv5E

V

Bz
21Br

21Bt
2

2m0
dv, ~5!

whereA is the vector potential,I p52prBt /m0 is the poloi-
dal plasma current andV andS are the plasma volume and
the cross section within the separatrix on theR-Z plane. In
most of the experiment, the spatial resolutions of the probe
measurement are as fine as 1.5 cm in theZ- ~current-sheet
width! direction and 4 cm in theR- ~sheet length! direction
around the current sheet. Both spatial and digitizing resolu-
tions are essential to the accuracy of current sheet~current
density and width! measurements. Based on their experimen-
tal optimization, the digitizing resolution is increased from 8
bit to 12 bit and the spatial resolution is optimized by com-
paring the probe intervals of 0.9, 1.5 and 3 cm in the
Z-direction. Radial profiles of ion temperatureTi and veloc-
ity V are measured on the midplane by use of Doppler broad-
ening and the shift ofHb andCII lines.

16 An electrostatic
probe is inserted axially atR514 cm to measure the axial

FIG. 1. Three-dimensional structures of reconnection regions with the third magnetic field componentBX parallel to the ‘‘X-point ’’ line: ~a! counterhelicity
merging of two spheromaks withBX'0, ~b! cohelicity merging of two spheromaks withBX'Bi0, ~c! cohelicity mergings of two RFPs, spheromaks and
tokamaks with variedBX .
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Figure 1.7: Reconnection geometries for counter- and co-helicity merging at TS-3. While reconnection looks
similar in local 2D planes, the fields are globally different for counter-helicity merging, co-helicity merging,
and co-helicity merging with external field. Note in the latter 2 cases the variable angle of the reconnecting
fields and the substantial out-of-plane field components, BX . Figure from [18].

to note, however, that TS-3 had a central column solenoid to help stabilize their toroids. Ono et al. were

able to independently control the helicity of the two toroids they were merging. Thus, they could perform

counter-helicity as well as co-helicity merging experiments. In both cases, there were similar 2D “slices”

where the reconnecting poloidal fields formed a Sweet-Parker like reconnection region. But in co-helicity

merging, they could vary the angle of the reconnecting fields by applying an external toroidal field, such that

the fields had a substantial out-of-plane component, as large as 70% of the total field strength [18]. Thus,

TS-3 was able to study the 3D effects in reconnection. A picture of the differing reconnection geometries is

shown in Fig. 1.7.

Diagnostics on TS-3 included a 2D magnetic probe array in an r-z plane as well as a polychromator at

the midplane that observed Hβ and CII spectral lines. This allowed the measurement of radial profiles of

ion temperature and velocity. It was found that the reconnection rate strongly depended on the strength of

the out-of-plane field component; the stronger this component, the slower the reconnection rate. They also

found that the reconnection rate depended on the speed with which the toroids were accelerated towards each

other [18]. Other significant findings of the TS-3 experiment included marked ion heating and acceleration.

Through measuring the Doppler width of the spectral lines observed by the polychromator, ion heating of

up to 200 eV was measured. Through observing Doppler shifts, near-Alfvénic ion speeds were measured,

indicating that the kinetic energy of ions was a significant outlet for the magnetic energy dissipated by

reconnection.

More recently, the researchers at Tokyo have constructed an upgrade to their experiment, TS-4. Thus

12



2.3. Diagnostics 43

vacuum vessel

flux core

37.5 cmR

Z

IDSP

θ

flux core

Figure 2.16: Setup of the IDSP in MRX. The probe can be moved in the R direction
and rotated. A poloidal flux plot is superimposed onto the schematic to illustrate
the position and size of the probe compared to the reconnection region.

is placed at R = 37.5 cm compared to R = 52.5 cm. Based on this study, it is

concluded that the IDSP does not destroy the global reconnection dynamics and

that systematic studies of ion heating using this probe are still meaningful, as long

as the small effects of the probe are taken into account.

Spectrometer and imaging

The IDSP fiber optic ferrules are coupled, only one at a time due to hardware in-

compatibility, to the entrance slit of a 1.0 m spectrometer24 (2400 line/mm grating,

0.05 Å resolution, f/8.7, wavelength range of 185–650 nm). The light output from

the spectrometer is imaged with an intensified CCD camera25 (512× 512 pixels, 16

bit per pixel), and the images are saved26 on a PC and subsequently transferred to

the PPPL UNIX cluster for analysis. The CCD intensifier is triggered and gated

using a digital delay/pulse generator.27 Gate widths are typically 10–20 µs and

temporal scans are done on a multi-shot basis by advancing the trigger timing from

24McPherson model 2061
25Princeton Instruments ICCD-MAX
26using Princeton Instruments WinSpec 32 frame-grabbing software
27Stanford Research Systems DG-535

Figure 1.8: Schematic diagram of MRX. The MRX is rotationally symmetric about the dashed line at the
bottom, which is the central axis. The location of the flux cores in an r− z plane is shown in grey. Note the
position of the Ion Dynamics Spectroscopy Probe (IDSP). Figure from [26].

far TS-4 has conducted studies of sheared flow in FRC’s formed through spheromak merging [19].

1.5.3 Princeton MRX Experiment

The Magnetic Reconnection Experiment (MRX) came online at the Princeton Plasma Physics Laboratory

in 1995 and was the next important laboratory device for studying reconnection [20]. The configuration of

MRX was similar to TS-3. We first describe the setup and reconnection geometry of MRX, before briefly

discussing the physics it has revealed. In particular, MRX has tested the Sweet-Parker model and found

that their measured reconnection rates agree with a modified Sweet-Parker model incorporating more effects,

such as enhanced resistivity [21, 22]. Also, MRX has conducted detailed studies of ion heating and flow with

an Ion Dynamics Spectroscopy Probe [23, 24].

Like TS-3, MRX forms and merges a pair of toroidal plasmas. Typical plasma parameters include

ne ∼ 0.5 − 1 × 1014 cm−3, Te ∼ 5 − 20 eV, B ∼ 0.5 − 1 kG, and Lundquist number S ∼ 500 [25]. The

plasmas are formed in a cylindrical vacuum chamber with the reconnecting fields formed by a pair of coaxial

“flux cores”, as shown in Fig. 1.8. The flux cores contain coils which generate toroidal and poloidal magnetic

fields. The fields generated by the flux cores can be thought of as dividable between “private flux” pertaining

to each individual toroid as well as “public flux” belonging to both. By first increasing the toroidal fields

and then decreasing the poloidal fields, MRX is capable of generating “push-pull” reconnection in which the

private flux of the two toroids is pushed together into the public region and then pulled back towards the

individual toroids [26]. The reconnection sequence is shown in Fig. 1.9. It is the pull reconnection phase,

in which a Sweet-Parker-like geometry is formed, that has been most extensively studied. The MRX group

is capable of performing null-helicity, co-helicity, and counter-helicity merging and thus can vary the angle

of the reconnecting fields, much like TS-3. Early experiments confirmed the findings of TS-3 concerning the

dependence of the reconnection rate on the angle of the merging fields [20].
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(a)

(b)

(c)

private private

public

Figure 2.4: Shown schematically are cross-sectional views of the flux-cores with
symmetry axis and poloidal flux contours at three different times. (a) Initial
quadrupole field corresponding to time of peak PF current. “Public” and “pri-
vate” flux regions are defined. (b) Formation stage of plasma during ramp-up of
TF coil current and “push” reconnection. (c) TF current “crowbarred” and PF
current ramps down, forming the “pull” reconnection layer. Note: distance between
flux cores is fixed; the three drawings are not to scale.

Figure 1.9: “Push-pull” reconnection sequence at MRX. Cross-sectional r − z views are shown; they are
rotationally symmetric about the central axes (dashed lines). “Private” magnetic flux exists near each flux
core (in grey), and “public” flux exists between them, shown in (a). Increasing toroidal fields result in the
private fluxes merging in the “push” phase, (b). Then, decreasing poloidal fields result in the fluxes being
stretched back towards the flux cores in the “pull” phase, (c). Note the formation of a Sweet-Parker like 2D
reconnection geometry in pull reconnection. The drawings are not identically scaled. Figure from [26].
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One of the early goals of MRX was to experimentally test the validity of the Sweet-Parker reconnection

model. This work is fully described by Ji [21]. During pull reconnection, they were able to measure whether

or not the reconnection rate indeed scaled as 1/
√

S, as predicted by the Sweet-Parker model. Here S is the

Lundquist number, a dimensionless parameter which in some sense measures how much a plasma deviates

from ideal MHD; we will explain this in the next chapter.

The reconnection rates measured at MRX clearly disagreed with the Sweet-Parker prediction. Conse-

quently, the group examined where the assumptions of the Sweet-Parker model broke down. By measuring

the strength of the terms in the generalized Ohm’s law, they found, as did Stenzel and Gekelman, an en-

hanced resistivity much larger than the expected classical value. The MRX group also investigated the

Sweet-Parker model’s assumption of an incompressible plasma, and found the assumption invalid. Finally,

it was determined that the model’s assumption of constant plasma pressure outside the reconnection layer

also failed to hold. The MRX group did find good agreement between their measurements and a generalized

Sweet-Parker model incorporating these other effects. In particular, they calculated an effective Lundquist

number Seff and found that the measured reconnection rates indeed scaled as 1/
√

Seff.

The other important finding of MRX bearing on the present work is their study of ion flow and heating.

This was accomplished using a novel Ion Dynamics Spectroscopy Probe (IDSP) developed at the University

of Wisconsin [27]. In their experiments with the IDSP, MRX made their plasmas from helium, rather than

hydrogen, which allowed them to observe the 468.6 nm He II spectral line. The probe, which allowed the

local observation of plasma light, was installed on one side of the machine, directly between the flux cores.

The radial location of the IDSP could be varied, but was close to the radius of the flux cores. The placement

of the IDSP is shown in Fig. 1.8. This therefore allowed the local observation of plasma light from the

location of pull reconnection. However, the detector for the IDSP was a gated charge-coupled device (CCD)

camera – which could not continually monitor the spectral line throughout a single shot. Consequently,

temporal studies with the IDSP relied on changing the CCD timing to observe light at different times on

multiple shots, which hinged on the reproducibility of the MRX plasma.

Several key results were observed in the IDSP experiments, the first of which was the direct correlation of

ion heating with magnetic reconnection. When pull reconnection was not induced, Ti was found to remain

approximately constant at about 5 eV, but Ti increased up to about 15 eV when reconnection occurred. When

reconnection happened, good temporal correlation was also found between increasing Ti and increasing total

dissipated magnetic energy density [24]. Furthermore, radial scans of the IDSP found the ion temperature

to increase the most at the reconnection layer. These measurements provided clear evidence that ion heating

was being caused by magnetic reconnection.

But what was the mechanism responsible for ion heating? Using the IDSP and Mach probes, the MRX

group measured both downstream ion flow in the reconnection plane as well as out-of-plane flow. Unlike

TS-3 and SSX, however, MRX did not observe near-Alfvénic outflows. They then computed the kinetic

energy density of the flows (ρv2/2, where ρ is mass density and v is speed) and found this to be an order
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of magnitude below the change in thermal energy density (3nk∆Ti/2, where n is the particle density).

Consequently, they concluded that classical viscous dissipation of the ion flows was probably not responsible

for the bulk of the heating. Thus, much of the heating was likely caused by nonclassical mechanisms. Recall

that the MRX group clearly detected enhanced plasma resistivities beyond the classical Spitzer resistivity. It

is likely that the nonclassical heating and nonclassical resistivity are connected, and are perhaps caused by

plasma turbulence or instabilities [24]. Recent investigations at MRX have measured the Hall effect, which

could be another important mechanism not accounted for by ideal or resistive MHD [28].

1.6 Reconnection and Fusion: Sawtooth Crashes

Sawtooth oscillations occur in toroidal plasmas, such as tokamaks, which seem to offer the most promise for

achieving magnetic confinement fusion. They are so called because they involve rapid, edge-like “crashes”

in temperature following a slow temperature rise. The sawtooth instability can disrupt a tokamak plasma.

Magnetic reconnection is thought to play a role in sawtooth crashes. To fully describe the theory of sawtooth

disruptions would require a discussion of tokamak physics beyond the scope of this thesis; the interested

reader is referred to the discussion in [29].

1.7 Laboratory Spectroscopy Experiments

Ion Doppler spectroscopy is a well-established diagnostic technique that has been used in many previous

plasma physics experiments. Its use has been sufficiently widespread that we cannot hope to give an exhaus-

tive listing of all its uses, but here we briefly describe some of the previous experiments IDS has been used

on. In so doing we will also survey some of the capabilities and technologies that have been used with IDS.

IDS has been useful in tokamaks and other fusion plasmas. One example is the ASDEX Upgrade divertor

tokamak in Garching, Germany, which observed the C III 229.687 nm line through up to 74 lines of sight

through the tokamak [30]. The ASDEX IDS system used an echelle grating spectrometer, as did SSX,

but used a CCD detector. In Japan, the Large Helical Device (LHD) stellarator, which is toroidal but

non-axisymmetric, has used IDS in a somewhat different way. LHD observed x-ray emissions from heavy

elements like Ti, Cr, and Fe and made spectroscopic determinations of ion temperature using quartz crystals

as the diffractive element [31]. The Doppler broadening of x-ray emissions has also been observed at other

tokamaks, such as Alcator C-Mod at MIT [32].

Another toroidal device that also shows promise for fusion, but has not been as extensively studied as the

tokamak, is the reversed field pinch (RFP). IDS has been used extensively at the Madison Symmetric Torus

(MST) at the University of Wisconsin-Madison. At MST, the 227.9 nm line of C V has been observed using

a duo-spectrometer [33]. This instrument observes the same chord through the plasma from two opposite

directions, such that a given flow would appear blueshifted in one direction and redshifted in the other. MST

has also developed the ingenious IDS probe that was used both there and at MRX [27]; the IDS probe has
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the advantage of being able to make local measurements. While on the subject of MST, we mention that

significant efforts there have been made to experimentally study the mechanism of sawtooth oscillations.

IDS has also been used before on spheromak plasmas, such as the Sustained Spheromak Physics Ex-

periment (SSPX) at Lawrence Livermore National Lab [34]. The SSPX IDS instrument used a 16-element

PMT array as a detector, not unlike SSX. Other plasma experiments have used IDS as well. We mention

the Maryland Centrifugal Experiment (MCX), which is testing the idea of using the centrifugal forces from

rotating a plasma for confinement. At MCX, impurity carbon and nitrogen lines have been observed [35].

Finally, the ZaP z-pinch at the University of Washington has used IDS to measure flow profiles in studying

the stabilization of various MHD instabilities with flow [36, 37]
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Chapter 2

Plasma Theory: Reconnection

The primary theoretical model we will use to deal with the problem of magnetic reconnection will be the

fluid description of plasma: magnetohydrodynamics. Thus we begin by listing and briefly describing the

equations of MHD. The reader is referred to [1], [2], or [3] for more thorough but still accessible discussions

of MHD and its implications.

2.1 Magnetohydrodnamics

How is one to theoretically study a plasma? One might at first think that given a set of electric or magnetic

fields, it would not be too difficult to integrate the equations of motion for a charged particle. While the

study of single-particle motions (which in the interest of brevity we do not discuss here) does yield important

insights, the problem is complicated by the fact that the moving particles in a plasma affect the fields therein.

Indeed, trying to fully track the motion of individual particles in a plasma under the fields they produce

would quickly result in an analytically intractable set of coupled differential equations. There are two main

ways to surmount this obstacle.

The first way, and one of the most useful, is to consider the plasma as a fluid. Then, the results

of fluid dynamics can be applied. But since plasmas are electrically conducting and support magnetic

fields, it is also necessary to include the equations of classical electromagnetism. The result is known as

magnetohydrodynamics. MHD tends to be most applicable to highly collisional plasmas, particularly at

higher densities. However, MHD also can be applied to collisionless plasmas, as we will discuss in Sec. 2.6

At lower densities, where collisions between plasma particles are less common, the MHD approach is not

so valid. It is still possible to analyze such plasmas using plasma kinetic theory, which relies on statistical

mechanics. Again, we will not discuss this approach to plasma theory in detail here. We will also focus on

single-fluid MHD, which treats the electrons and ions as a single fluid species, rather than two-fluid models.

Let us then begin by stating the equations for single-fluid MHD. Our discussion here will follow Chen,

Goldston, and Gurnett [1], [2], [3]. First of all, neglecting the effects of the creation or destruction of charged

particles in the plasma (e.g. through ionization or recombination events), the plasma density should obey a
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continuity equation. Let n be the plasma density and u be the fluid velocity1. Then,

∂n

∂t
+∇ · nu = 0 (2.1)

Next, we can also write Newton’s second law for the plasma. Let m be the mass of a species in the

plasma and let q be its charge. Then, considering only the forces due to pressure gradients, electric fields,

and the Lorentz force, we may write the momentum equation for a single species, say the electrons, which

have mass me, density ne, and velocity ve. This is given by

mene

[
∂ve

∂t
+ (ve · ∇)ve

]
= −ene(E + ve ×B)−∇pe (2.2)

On the left hand side, we have what is called a convective derivative. This is necessary because Newton’s

second law applies for u at the position of a set of particles in the fluid, as they move. It is more convenient

to consider a fixed spatial point in the fluid, and the convective derivative is thus needed to account for

particle motions2. Also, we have only considered the gradient of a scalar pressure p here. In full generality,

accounting for shearing as well, we would replace ∇p with the divergence of a pressure tensor
←→
P .

Now, we can write an analogous equation to (2.2) for the ions in the plasma:

mini

[
∂vi

∂t
+ (vi · ∇)vi

]
= eni(E + vi ×B)−∇pi (2.3)

where the subscript i denotes parameters of the ions. Then, adding the two single-species equations (2.2)

and (2.3 gives the MHD single-fluid equation of motion:

ρe

[
∂u
∂t

+ (u · ∇)u
]

= J×B−∇p (2.4)

Here, ρ is the mass density of the plasma, we have turned env into a current density J, and the electric field

terms in both equations cancel.

We will also need a thermodynamic equation of state for the plasma, which will give us more information

about the pressure p. It turns out that it is convenient to assume an equation of state

pn−γ = C (2.5)

where C is a constant and γ, familiar from thermodynamics, is the ratio of the specific heat at constant

pressure to the specific heat at constant volume. From thermodynamics, for an adiabatic system with three

degrees of freedom, γ = 5/3. For an isothermal system, γ = 1. Which value of γ to use depends in part on

the time scale of the physical problem under consideration.

Thus far we have not really considered any electromagnetic effects, save for the Lorentz force in Newton’s

second law. Let us now begin to do so. One might initially think that one should just treat plasmas as

electric and magnetic media characterized by some permeability ε and permittivity µ. In plasmas, it turns
1In this section we will use u to distinguish the fluid velocity from the velocity v of individual species. But in general we

will use v for the fluid velocity, where the context is clear.
2In a favorite analogy of M. Brown, consider the change in air pressure in some city in the US. The air pressure can change

both due to something happening in the city and due to a low-pressure system moving towards it.
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out, the relationship between the magnetization M and the magnetic field B turns out to be nonlinear (see

Chen [1] for the details). For this and other reasons, it turns out to be most useful to work with Maxwell’s

equations in vacuum. For charge density ρq and current density J, Maxwell’s equations read

∇ ·E =
ρq

ε0
(2.6)

∇×E = −∂B
∂t

(2.7)

∇ ·B = 0 (2.8)

∇×B = µ0

(
J + ε0

∂E
∂t

)
(2.9)

with the above equations being Gauss’s law, Faraday’s law, no magnetic monopoles, and Ampère’s law. It

turns out that not all of these will be relevant. The charge density ρq will not appear in any of the other

necessary equations, so Gauss’s law can be dropped. We will also show that ∇ ·B = 0 is an initial condition

rather than an equation of its own. Particularly, consider taking the divergence of both sides of Faraday’s

law:

∇ · ∇ ×E = ∇ · −∂B
∂t

(2.10)

But, the divergence of a curl is always 0. Reversing the order of the temporal and spatial derivatives, we

can then write,
∂

∂t
(∇ ·B) = 0 (2.11)

which states that the divergence of B is constant in time. So, if ∇ ·B is zero at any one time, it stays zero

forever. It is in this sense that ∇ ·B = 0 should be viewed as an initial condition.

Finally, the displacement current term (∂E
∂t ) in Ampère’s law can be neglected, as we will show once we

have introduced some other necessary equations.

One more equation is needed. We have so far 14 unknowns: the vectors E, B, J, u, with three components

each, and the scalar density n and pressure p. We have 3 vector equations, each of which can be counted

threefold: momentum, or Newton’s second law (2.4), Faraday’s law, and Ampère’s law without displacement

current. The thermodynamic equation of state (2.5) and the continuity equation (2.1) are scalar, for a total

of 11 equations. We can get another equation by introducing Ohm’s law3. Empirically, some sort of force

is needed to cause stationary charges to move to form a current density. The force is given by electrostatic

force and the Lorentz force, and the proportionality is given by the resistivity η. This gives

ηJ = E + u×B (2.12)

The reader is probably familiar with Ohm’s law for a resistive circuit element, V = IR, to which the above

reduces (see Griffiths [38]). If the plasma resistivity is small enough to be negligible, (2.12) reduces to

E + u×B = 0 (2.13)
3Ohm’s law not being a fundamental physical relationship in the way that Maxwell’s equations are, we should probably say

“Ohm’s ‘law’” as does Landreman [4]. But this usage seems clumsy, and so we will continue to write “Ohm’s law.”
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which is called the ideal Ohm’s law. MHD using this equation is known as ideal MHD. As this is a vector

equation, this completes our set of MHD equations.

Having introduced the ideal Ohm’s law, we can now show that the displacement current term in Ampère’s

law is negligible. We include this argument, which is tangential to our main development, because it is a

nice example of the approximate calculations that are frequently useful in plasma physics. We will show

that the ratio of the displacement current term to the curl of B is small. This we can do by approximating

∇ × B, a spatial derivative, with B/L, where L is a characteristic length in the plasma. Likewise, we can

approximate ∂E
∂t by E/τ , where τ is a characteristic MHD time scale in the plasma (such as the Alfvén time,

for instance, which will be explained shortly). Then, using the fact that the speed of light c = 1/
√

ε0µ0,

| ∂
∂tµ0ε0E|
|∇ ×B|

=
E

c2τ
· L

B
(2.14)

Now, it is possible to show (see, for instance, Chen [1]) that the single particle guiding center drift due to

crossed electric and magnetic fields is given by v = E×B/B2. Thus, we may take v = E/B (which also is

a consequence of the ideal Ohm’s law), and so we have

|µ0ε0E|
|∇ ×B|

=
v

c
· L

cτ
=

(v

c

)2

(2.15)

since L/τ can be taken to be comparable to the speed v. For a nonrelativistic plasma, (v/c)2 will surely be

small, so the entire displacement current term will be negligible.

The astute reader might feel somewhat uncomfortable with the approximations we have made in devel-

oping ideal MHD, particularly in neglecting the plasma resistivity η. The discomfort is justified. As we have

mentioned, magnetic reconnection cannot happen in ideal MHD, as we show in the next section. It turns

out that there is a generalized Ohm’s law including other effects including plasma resistivity, the Hall effect,

pressure gradients, and electron inertia. We will not include the lengthy derivation of the generalized Ohm’s

law, but we state it here for reference in all its glory:

E + u×B = ηJ +
1
ne

J×B− 1
ne
∇ ·
←→
P +

me

ne2

∂J
∂t

(2.16)

2.2 Alfvén Speed

We digress to define an important plasma parameter that will often arise in the rest of this thesis. This

is the Alfvén speed, denoted vA. The Alfvén speed is most often encountered as the phase velocity of a

particular type of MHD wave. It is convenient, however, to think of the Alfvén speed as a sort of speed limit

in a magnetized plasma. It is the speed a plasma would attain if it converted all of its magnetic energy into

kinetic energy. If a plasma has magnetic fields B, then it has magnetic energy density B2/2µ0. Suppose all

of this energy were converted into kinetic energy, 1
2ρv2

A, where ρ is a mass density. Then, by equating these

energy densities, we find that

vA =
B
√

ρµ0
(2.17)

We also define the Alfvén time τA ≡ vA/L, where L is some characteristic length scale in the plasma.
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Figure 2.1: Figure for proof of the frozen-in flux theorem of ideal MHD.

2.3 The Frozen-in Flux Theorem

An important result of ideal MHD is the frozen-in flux theorem, also known as Alfvén’s theorem. This result

is violated during magnetic reconnection and reveals the failure of ideal MHD to adequately describe plasma

phenomena.

Following Griffiths’ [38] approach, we will argue that the following version of Alfvén’s theorem holds: In

an ideal MHD plasma, the magnetic flux through a closed loop moving with the plasma is constant in time.

Consider then an imaginary loop P in the plasma. Let S be the surface bounded by P. In a short time

interval dt, P moves due to the plasma velocity. Let P ′ and S ′ be the loop and enclosed surface after time

interval dt. This setup is shown in Fig. 2.1. Then, the change in magnetic flux through the enclosed surface

dΦ over this time interval is given by

dΦ =
∫
S′

B(t + dt) · da−
∫
S
B(t) · da (2.18)

Now, let R be the “ribbon” joining S and S ′. Since B is divergenceless, by Gauss’s theorem, the surface

integral of B through any closed surface is zero. So, since the total flux through the closed surface made up

of S, S ′, and R is zero, when we account for the change in sign in da for S, because of the sense in which

flux is computed, we find at time t + dt that

−
∫
S
B(t + dt) · da +

∫
R

B(t + dt) · da +
∫
S′

B(t + dt) · da = 0 (2.19)

Substituting into (2.18) to eliminate the integral over S ′, we have

dΦ =
∫
S
B(t + dt) · da−

∫
R

B(t + dt) · da−
∫
S
B(t) · da

=
∫
S

[B(t + dt)−B(t)] · da−
∫
R

B(t + dt) · da

= dt

∫
S

(
∂B
∂t

)
· da−

∫
R

B(t + dt) · da
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We can transform the last integral on the right, the one over R. This is done by rewriting da. In particular,

since a point on P in the plasma moves a distance vdt in time dt, by the parallelogram rule we can express

the area element on R as

da = vdt× dl = (v × dl)dt (2.20)

where dl is a length element on the loop P. Then, substituting for da and using a vector identity,∫
R

B(t + dt) · da = dt

∫
P

B(t + dt)× v · dl (2.21)

= −
∫
S
∇× v ×B · da (2.22)

where in the second step we have used Stokes’s theorem. We can now substitute this back into our equation

for dΦ, reversing the sign to account for the appropriate convention in computing the flux through S.

Dividing through by dt then gives

dΦ
dt

=
∫
S

(
∂B
∂t
−∇× v ×B

)
· da (2.23)

Now we will invoke the ideal Ohm’s law. From Faraday’s law,

∇×E = −∂B
∂t

(2.24)

But, since E = −v ×B, from the ideal Ohm’s law, Faraday’s law becomes

∇× v ×B =
∂B
∂t

(2.25)

This equality makes the integrand in (2.23) vanish. It follows that the flux through S is constant in time:

dΦ
dt

= 0 (2.26)

proving Alfvén’s theorem.

2.4 Resistive MHD and the Induction Equation

Given that ideal MHD, where the right hand side of the generalized Ohm’s law (2.16) is taken to be zero,

makes strong assumptions and is not always valid, the conceptually and mathematically simplest modification

to the theory is to add the resistive term to Ohm’s law:

E + v ×B = ηJ (2.27)

MHD using the form of Ohm’s law above is called resistive MHD.

Recall that from the frozen-in flux theorem of ideal MHD, we found that magnetic fields changed in time

only because the fluid moved and the field convected with the fluid. We will show that this is not so in

resistive MHD, and that the resistivity causes a diffusion of the magnetic field.
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It turns out to be fruitful to begin by taking the curl of the resistive Ohm’s law (2.27). Assuming the

resistivity to be constant through the plasma, we find that

∇× (E + v ×B) = η∇× J. (2.28)

But, from Ampère’s law, we know that µ0J = ∇ × B, and from Faraday’s law, we have ∇ × E = −∂B
∂t .

Substituting these into the above then yields

−∂B
∂t

+∇× (v ×B) =
η

µ0
∇× (∇×B). (2.29)

Recalling the identity for a vector field C

∇× (∇×C) = ∇(∇ ·C)−∇2C (2.30)

and noting that ∇ ·B = 0, we find after a little rearranging that

∂B
∂t

= ∇× (v ×B) +
η

µ0
∇2B. (2.31)

This result is often called the induction equation. The first term on the right hand side has to do with

magnetic field convection, for it arose under ideal MHD when we derived the frozen-in flux theorem. That

is, in ideal MHD, the field is frozen into the fluid, so B only changes in time because of the plasma being

convected from place to place. The second term describes diffusion, for if we ignore the convective term,

∂B
∂t

=
η

µ0
∇2B (2.32)

mathematically has the form of a diffusion equation. It follows, then, that in resistive MHD, magnetic fields

can not only convect but also diffuse, with the diffusion being governed by the resistivity η.

Naturally, one might want to characterize, for a given plasma, whether convection or diffusion is the

dominant process affecting the magnetic field. We can do this by taking the ratio, in an approximate sense,

of the convection and diffusion terms in the induction equation (2.31). In so doing, it will be convenient to

approximate the vector operator ∇, which is a spatial derivative, with 1/L, where L is the length scale of

the plasma, just as we did when we justified neglecting the displacement current term in Ampère’s law. We

then find
convection
diffusion

≈ (1/L)vB
ηB

µ0L2

. (2.33)

This dimensionless quantity is called the magnetic Reynolds number, denoted RM :

RM ≡
µ0Lv

η
. (2.34)

When the fluid velocity v in the above is taken to be the Alfvén velocity, the result is termed the Lundquist

number, S:

S ≡ µ0LvA

η
. (2.35)

24



The Lundquist number is, in some sense, a measure of how well the field lines are frozen to the plasma, for

a perfectly conducting plasma would have S = ∞. At SSX, S ≈ 1000, but in the solar corona and other

astrophysical contexts, S can be as high as 1014.

Throughout this section, we have been discussing the resistivity of a plasma without mention of its

underlying physical cause. Just as the resistivity in an ordinary solid conductor may (in classical physics) be

explained as coming from collisions between conduction electrons and the fixed ions of the solid, in classical

theory, the resistivity of a plasma comes from Coulomb collisions between the charged particles in the plasma.

This classical plasma resistivity is called the Spitzer resistivity, after Lyman Spitzer, who was the first to

derive it [39]. For current densities perpendicular to a magnetic field, the Spitzer resistivity turns out to be

η⊥ = 1.03× 10−2 Z ln Λ
(kTe)3/2

Ω cm (2.36)

where kTe is in eV, Z is the charge of the ions, and where ln Λ is the Coulomb logarithm. The Coulomb

logarithm is a quantity having to do with the maximum meaningful impact parameter for a Coulomb collision;

it depends weakly on density and temperature. In Appendix A we perform a calculation in which the Coulomb

logarithm arises, and in that context the physical significance of ln Λ will become more clear. The interested

reader is referred to Goldston for more details on both the Coulomb logarithm and on plasma resistivity [2].

In plasmas where collisions are rare, however, the Spitzer resistivity would not seem to be valid. Classical

resistivity causes currents, and hence magnetic fields, to dissipate. It turns out that there are many other

phenomena that also dissipate magnetic fields and thus effectively function as nonclassical or anomalous

resistivities. Microscale turbulence is one example. Other possibilities include an “inertial resistivity” in

which a perpendicular magnetic field causes particles to drift out of a current sheet and thus decrease the

total momentum in the current sheet [26]. Other possible causes of anomalous resistivity include various

types of wave-particle interactions. Anomalous plasma resistivities have been definitively measured in the

laboratory. For instance, recall that at MRX, Ji et al. measured an effective resistivity that was up to 10

times the Spitzer resistivity [21, 22].

2.5 Plasma β

In the previous section we met the dimensionless parameters RM and S, the magnetic Reynolds and

Lundquist numbers. Dimensionless quantities are useful in plasma physics because they allow the compari-

son of different plasmas, such as experiments with different length scales. Another such useful dimensionless

parameter is β, which is defined as the ratio of plasma pressure to magnetic pressure:

β ≡ 2µ0p

B2
(2.37)

Here, the magnetic energy density B2/2µ0 has units of energy per unit volume, which is dimensionally

equivalent to pressure.
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The plasma β is particularly useful in the context of fusion. Many of the currently proposed schemes

for fusion require magnetic confinement of a hot plasma.4 One necessary, but not sufficient, condition for

achieving magnetic confinement fusion is to balance the kinetic pressure p of the plasma with the magnetic

pressure B2/2µ0. Thus, in order to magnetically confine a plasma at some pressure p, the smaller the

required magnetic fields, the larger the β. Since generating magnetic fields requires energy (i.e. the energy

needed to drive the external current coils of a tokamak), plasmas with higher β are attractive for fusion. We

note that tokamaks typically have β ≈ 0.05, while spheromaks tend to have β between 0.01 and 0.2 [4, 40].

Another way to think about β is that low-β plasmas are dominated by magnetic forces, whereas they are

less important in high-β plasmas.

2.6 MHD in Collisionless Plasmas

In deriving MHD, we assumed that the plasma behaved like a fluid. In most fluids, collisions (such as the

Coulomb collisions between charged particles) dominate the interactions. Many plasmas, particularly in

astrophysical contexts like the earth’s magnetotail, have such low densities that interparticle collisions are

rare. It turns out, however, that MHD works quite well for describing the large-scale properties of such

plasmas. Here, we briefly argue why, following Priest and Forbes, to which the interested reader is referred

for a much fuller discussion [41].

A fluid theory would clearly be invalid if the particles in the fluid were able to travel distances comparable

to the scale length of the plasma without interactions (which is not the case in a fluid). We will now give a

plausibility argument for the applicability of MHD in collisionless but magnetized plasmas by arguing that

large-scale motions of particles in a plasma is impeded. First of all, we know from the study of single-particle

motions that the charged particles in a plasma tend to gyrate around the magnetic field lines. Thus, motion

perpendicular to B is relatively impeded. In addition, interactions with plasma waves tends to hinder the

motion of particles along the field lines [41].

Moreover, many of the MHD equations, such as Maxwell’s equations, the continuity equation, and the

momentum equations, come from physical laws or conservation principles that hold regardless of the col-

lisionality of the plasma. Ultimately, however, the ability of MHD to make good predictions even about

collisionless plasmas is the best justification for its applicability.

2.7 Sweet-Parker Reconnection

The basic theory of reconnection was developed by Sweet and Parker [42]. Although the Sweet-Parker model

predicts an overly slow reconnection rate, it is a useful paradigm for reconnection in that it is simple. Our

discussion of the Sweet-Parker model will follow Priest [41].

4We do not here discuss a totally different approach, inertial confinement fusion, which in recent years has had significant
advances.

26



2L

2l

vin, Bin

vout, Bout

x

y

Figure 2.2: Geometrical setup for the 2D Sweet-Parker reconnection model. The z-axis points out of the
page. Reconnection is assumed to occur in a rectangular region of width 2L and thickness 2`, which is shaded
in the figure. The thick unshaded arrows represent the velocity of the flowing plasma. The thin black lines
represent magnetic fields.

The Sweet-Parker model makes the simplifying assumption of a two-dimensional reconnection geometry.

Plasma carrying oppositely directed magnetic fields in the x direction is flowing together. The magnetic field

lines are assumed to be basically straight, but have just enough curvature such that the field lines meet in

a well-defined reconnection layer of width 2L and thickness 2`, where L � `. As shown in the figure, the

plasma flows into the side of the reconnection layer that has length 2L in the y direction, with speed vin. The

outflow, in the x direction, then occurs through the sides of the layer that have length 2` with speed vout.

This geometry is shown in Fig. 2.2. The Sweet-Parker model considers steady-state reconnection (although

the mechanisms by which reconnection begins remain an open question), so all time derivatives will be zero.

We will also assume an incompressible plasma.

The basic goal in the Sweet-Parker model will be to derive a dimensionless reconnection rate that gives

some indication of how quickly reconnection is occurring. What parameters might be worth considering to

do this? One possibility that comes to mind is the plasma inflow speed vin, for this determines how quickly

magnetic field is carried into the reconnection layer. The inflow speed, however, may vary greatly from

plasma to plasma, and so is not the best way to compare reconnection occurring in different contexts. The

Alfvén speed vA, however, also varies from plasma to plasma. So, by dividing vin by vA, we may obtain a

dimensionless parameter that may be better compared between plasmas. Thus, we define the dimensionless
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reconnection rate

M ≡ vin

vA
(2.38)

With this in mind, let us determine the reconnection rate M . We begin by considering the resistive

Ohm’s law (2.27). Outside the reconnection layer, the magnetic field lines are approximately straight, so

∇×B = 0. By Ampère’s law, this implies that J = 0. It then follows, for the z component of Ohm’s law,

that

Ez = vinBin (2.39)

where Bin is the magnetic field in the inflow plasma. Inside the reconnection layer, the magnetic field is zero,

and one would also expect v to stagnate to zero. So, Ohm’s law reduces to

Ez = ηJz (2.40)

We can use Ampère’s law to determine the current density Jz in the reconnection layer. Consider an

Ampèrian loop running around the boundary of the reconnection layer. Assuming the magnetic fields to be

primarily in the x direction, the segments of the line integral along the short sides of the reconnection layer

contribute nothing. Then, equating the line integral of B to the enclosed current density,

Bin · 4L = µ0Jz · 2L · 2` (2.41)

It follows that

Jz = Bin/µ0` (2.42)

We can now eliminate Ez and Jz. If we assume a steady state situation, then ∂B
∂t = 0 and thus ∇×E = 0.

This requires the electric field outside the reconnection layer, given by (2.39), to equal the electric field inside

the reconnection layer, given by (2.40). Thus vinBin = ηJz. Using (2.42) to eliminate Jz and solving for vin,

we find

vin =
η

µ0`
(2.43)

We would like to eliminate ` from our result for vin, however. By continuity and assuming an incom-

pressible plasma, the amount of plasma flowing into the reconnection layer must equal the amount of plasma

flowing out. It follows that

vinL = vout` (2.44)

where vout is the outflow speed. Solving (2.43) for ` and substituting into the above gives

v2
in =

η

µ0L
vout (2.45)

To determine the outflow speed, we will need the MHD equation of motion, (2.4). In the steady state,

this becomes

ρ(v · ∇)v = −∇p + J×B (2.46)
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Assuming pressure gradients to be negligible, the right side of the above approximately reduces to JBout

in the outflow region. On the left side, approximate the derivative by 1/L. Then, using (2.42), we find

approximately that

ρ
v2

out

L
=

BinBout

µ0`
(2.47)

Since ∇×E = 0, the electric field must be everywhere uniform. Outside the reconnection layer, where J is

zero, the electric field in the inflowing plasma is given by (2.39) in the inflowing plasma and

E = voutBout (2.48)

in the outflowing plasma. Both of these electric fields must be equal, so

vinBin = voutBout (2.49)

Consequently, invoking continuity (2.44), this becomes

Bin` = BoutL (2.50)

It then follows from (2.47) and (2.50) that the outflow speed

v2
out =

B2
in

µ0ρ
= v2

A (2.51)

is exactly equal to the Alfvén speed for the inflowing plasma.

We could have just assumed that the reconnection process effectively converts all of the incoming plasma’s

magnetic energy density into kinetic energy, and thus would also find vout = vA. This, like (2.50), must also

be viewed as approximate as this neglects effects such as heating due to reconnection.

Either way, (2.45) then becomes

v2
in =

η

µ0L
vA (2.52)

and the dimensionless Sweet-Parker reconnection rate, MSP , is given by

MSP =
vin

vA
=

√
η

µ0LvA
(2.53)

But, recalling the definition of the Lundquist number S (2.35), and taking the width L of the reconnection

layer to be the characteristic plasma length, we see that

MSP =
1√
S

(2.54)

This is the fundamental prediction of the Sweet-Parker model.

2.8 Petschek and Other Reconnection Theories

Even when Sweet and Parker proposed their reconnection model, they realized that the normalized reconnec-

tion rate it predicted, MSP = 1/
√

S, was far too slow. The first model to predict a faster reconnection rate
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was developed by Petschek in 1964. Like the Sweet-Parker model, the Petschek model considers a reconnec-

tion region of width 2L. However, the magnetic fields only merge in a diffusion region of width 2L′, where

L′ � L, unlike the Sweet-Parker model in which the diffusion region extends along the full width of the

reconnection region. In the rest of the reconnection region, plasma is accelerated by four magnetoacoustic

shock waves, which are analogous to sonic booms. These shocks are another means of converting magnetic

energy into kinetic energy and heat. Petschek reconnection predicts the following reconnection rate [43]:

MPetschek =
1√
S

√
L

L′
(2.55)

where as before S is the Lundquist number. The Sweet-Parker reconnection rate is thus enhanced by
√

L/L′

in this model, where L′ has not yet been physically determined. It may be shown that the fastest possible

Petschek reconnection rate is

MPetschek,max =
π

8 ln S
(2.56)

which yields a much closer reconnection rate to observations [7].

While the shocks that are critical to Petschek’s model have been seen in numerical simulations [41],

they have never been physically observed. Consequently, the Petschek model has not been fully accepted.

Still, other theorists, such as Vasyliunas, have modified Petschek’s theory by adopting different boundary

conditions to derive other models for fast reconnection.

Yet other possibilities for 2D reconnection include moving beyond resistive MHD. It turns out that the

J × B Hall term can play a significant reconnection. Hall effects may be shown to lead to a separation of

ion and electron layers. Furthermore, there is an out-of-plane quadrupole magnetic field. These have both

been measured at SSX.

We mention also that reconnection has been extensively studied computationally. Any detailed discussion

of computational studies of reconnection would be beyond the scope of this thesis, but the recent work of

Birn et al. comparing different simulations (resistive MHD, Hall MHD, hybrid MHD, and particle) of the

same reconnection setup perhaps gives some sense of the present state of the field [44].

2.9 Physics of the Spheromak

We are interested in equilibrium solutions to the MHD equations. It turns out that the spheromak is one

possible equilibrium. To have an equilibrium without bulk flows, it follows from by setting v = 0 in (2.4)

that we require

∇p = J×B (2.57)

Alas, this partial differential equation, called the Grad-Shafranov equation, is essentially analytically in-

tractable, although numerical studies of spheromaks as Grad-Shafranov equilibria are possible [45]. But

recall our discussion of β. In a spheromak, β is small, so it is a reasonable approximation to neglect the

pressure gradient ∇p. Then, the Grad-Shafranov equation reduces to J×B = 0. But, from Ampère’s law,
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we then have

(∇×B)×B = 0 (2.58)

Assuming that both J and B are nonzero, it must follow that ∇×B and B are parallel. Equivalently, the

equilibrium magnetic field must be a multiple of ∇×B, giving us the “eigenvalue” equation

∇×B = λB (2.59)

Here, λ is a scalar field, but is not necessarily a constant. This is the condition for what is known as a

force-free equilibrium. It is possible to show that the spheromak is a solution of this equation.

An important quantity in this theory is the magnetic helicity K, which is a measure of how topologically

twisted together the magnetic flux tubes in a plasma are. The helicity is given by

K =
∫

V

A ·B d3r (2.60)

where A is the magnetic vector potential and the integral is over the volume of plasma of interest.5

The magnetic helicity is useful because under most circumstances, it is a robust quantity that is approx-

imately “conserved” in the sense that it decays no faster than the magnetic energy density. Fortuitously,

it turns out that the solutions of (2.59) that minimize the magnetic energy for a given, fixed K are the

solutions where λ is a constant [46]. It is then possible to solve (2.59) directly; the reader is referred to [45]

or [40] for the details. This is how the analytical force-free equilibrium for the spheromak may be found.

5It may be shown that, so long as no field lines penetrate the surface of the plasma, K is independent of the choice of gauge
for A[40].
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Chapter 3

The IDS System

In this chapter, we describe the details of the ion Doppler spectroscopy (IDS) system as well as the calibration

measurements that have been performed with it. Recall that the Doppler shift of the spectral line provides

a measure of the flow velocity of the plasma, while the Doppler broadening of the line indicates the ion

temperature. We first discuss what we expect to measure with the IDS system, and the consequent design

requirements. After this we describe the physics of the IDS in detail. We then describe the components of

the IDS system, a schematic diagram of which we show in Fig. 3.1. Lastly, we describe the calibration of

the IDS.

3.1 Estimation of Design Requirements for the IDS System

What do we need the IDS system to be capable of doing? Briefly, we want the IDS to be able to measure

rapid flows in either direction along the line of sight, have the spectral resolution to accurately measure ion

temperatures, and have enough time resolution to be able to observe fast changes in an ever-changing recon-

nection plasma. Let us try to quantitatively estimate what these design goals must be and the performance

requirements it will take to satisfy them.

First of all, we must know what spectral lines exist in the plasma. Previous studies by V. Lukin with

a VUV monochromator have indicated the presence of significant emission from carbon impurities in the

plasma. In particular, the C III 229.687 nm line seemed to be a good candidate.

Now let us address the requirement that the IDS be sensitive to measuring a sufficiently wide range of

flow speeds. Recall that the Alfvén speed vA is a physical speed limit imposed by energy conservation. But

plasma could be flowing either towards or away from the line of sight with speed vA. Thus, we should require

the total range of speeds to which the IDS is sensitive to be be 2vA. As we will soon show, it turns out that

the Doppler shift ∆λ of a line of wavelength λ due to source motion at speed v is

∆λ

λ
=

v

c
(3.1)

Since the Alfvén speed in SSX is approximately vA ∼ 100 km/s, we will require that ∆λ/λ ∼ 3× 10−4. For

λ = 229.687 nm, this requires that the IDS have a bandwidth of ∆λ ∼ 0.07 nm.
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FIG. 1: The layout of the SSX IDS instrument. The collection optics can view any one of 10

view chords at the midplane of the cylindrical SSX device. Input optics couple the collected light

into the echelle spectrometer, and output optics image the spectrometer focal plane with 3.7×
magnification onto the multi-anode photomultiplier tube.
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Figure 3.1: Schematic diagram of the IDS system at the SSX. Any of 10 chords through the plasma can be
observed.

We will also show that the ion temperature Ti is given by

∆λFWHM

λ0
= 2

(
2kTi ln 2

mc2

)1/2

(3.2)

For the purposes of making an estimate, we can drop various small numerical factors and assert that we

must surely have
∆λ

λ
<

√
kTi

mc2
(3.3)

For kTi ∼ 20 eV and mc2 ∼ 12 GeV for carbon ions, we require from the above that the minimum wavelength

resolution be ∆λ/λ ∼ 4×10−5. For the C III 229.687 nm line, this requires that the IDS have the resolution

to detect broadening as narrow as 0.009 nm.

Finally, let us consider the time resolution the instrument must have. The maximum speed of moving

plasma would be the Alfvén speed vA ∼ 100 km/s, and a characteristic length scale in SSX is about L = 0.2

m. We can define an Alfvén time τA ≡ vA/L; for SSX, τA ∼ 2 µs. To not miss any large-scale plasma

dynamics, then, the IDS must be able to observe the plasma at least every 2 µs, and preferably faster.

3.2 Physics of IDS

Here we briefly review the physics of the Doppler effect and then discuss the physics behind the IDS. Bear

in mind that the IDS system observes well-defined spectral lines from impurity ions in the plasma.

The Doppler effect for sound waves is an effect familiar to anyone who has ever heard the pitch of a car

horn change as the car drives by. This effect occurs because an observer at rest perceives the wavelength

of the sound waves emitted by a moving source to be different than they are in the frame of the source.

Essentially the same physics applies when one considers the Doppler effect in for moving sources of light.

It is necessary, however, to use special relativity. In the case of a source moving relative to an observer, it

is necessary to account for the effect of there being a difference between the proper time measured by the
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moving source and the coordinate time measured in the observer’s frame, which is commonly known as time

dilation.

Let us quantitatively consider a light source moving directly towards or away from an observer with speed

v, where positive v denote motion towards the observer, and let β ≡ v/c. Then, it may be shown [47] that

the frequency ν in the observer’s frame differs from the frequency in the source’s frame ν0:

ν =
√

1 + β√
1− β

ν0 (3.4)

If, however, the speed of the source is nonrelativistic, then β � 1 and Equation (3.4) may be simplified.

Applying the binomial expansion and keeping terms only to first order in β,

∆ν ≡ ν − ν0 =
v

c
ν0 (3.5)

Experimentally, we will be more interested in wavelength than frequency. Using the chain rule, and assuming

∆ν to be small, we find that
∆λ

λ
= −∆ν

ν
(3.6)

Thus we find that for plasma uniformly moving towards or away from the observer, a given spectral line will

have its wavelength shifted with

∆λ = −v

c
λ0 (3.7)

Thus far we have only considered the effect of a Doppler shift, implicitly assuming that all the emitting

ions in the plasma have the same velocity. This is equivalent to assuming that the plasma has zero ion

temperature, which is unphysical. Thus we must consider the effect of temperature, whereupon there will be

a distribution of ion velocities. As the temperature increases, there is an increasing spread in the distribution

of particle velocities. This leads to light emitted by individual ions having slightly different Doppler shifts,

which results in the spectral line being Doppler broadened.

It may be shown that a plasma with some equilibrium ion temperature T is governed by the Maxwellian

velocity distribution, f(v). In this distribution, f(v) d3v gives the mean number of particles per unit volume

with velocity between v and v + dv. The Maxwellian distribution of particle velocities v for particles of

mass m is given by [48]

f(v) d3v = n
( m

2πkT

)3/2

exp
[
−mv2

2kT

]
d3v (3.8)

where n is the number of particles per unit volume in the system.

In IDS, however, we observe Doppler shifts along a fixed line of sight. So, what we really need is

not a distribution of 3-dimensional particle velocities v but the distribution of one component of velocity,

the component along the line of sight. Calling this component v, we compute the distribution f(v) by

integrating (3.8) over 2 of the 3 velocity components. Then, in one dimension, the Maxwellian distribution

of one component of velocity is given by

f(v) dv = n
( m

2πkT

)1/2

exp
[
−mv2

2kT

]
dv (3.9)
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Here m is the mass of the radiating impurity ion.

Now, we know from (3.5) that light of frequency ν will be emitted by particles moving with velocity

c[1 − ν/ν0]. Then, the intensity distribution of frequencies I(ν), which is the measured lineshape, may be

given by substituting the above into (3.9), whereupon we find that

I(ν) = I0 exp
[
−m(ν0 − ν)2c2

2kTν2
0

]
(3.10)

where I0 is the peak intensity. This lineshape is a Gaussian whose width depends on T . Then, the full width

at half maximum of this Gaussian, ∆νFWHM, is given by

∆νFWHM

ν0
= 2

(
2kT ln 2

mc2

)1/2

(3.11)

Of course, we may express the above in terms of wavelength, which will be of greater practical utility. Then,

∆λFWHM

λ0
= 2

(
2kT ln 2

mc2

)1/2

(3.12)

Measuring the line width will thus allow us to determine the ion temperature T , and measuring the line

shift will allow us to determine the net flow velocity. Having familiarized ourselves with the basic physics

involved, we now consider the optical elements involved in the IDS.

3.3 The Spectrometer

Our Ion Doppler Spectrometer is a 1.33 m McPherson Model 209 monochromator with a blazed echelle

grating with 316 grooves/mm, operated at 25th order. The blaze angle is θb = 63.43◦. The spectrometer is

in a Czerny-Turner configuration, which uses spherical focusing and collimating mirrors, and has f/9.4.

We proceed to analyze the diffraction problem. The geometry of the problem is shown in Fig. 3.2.

With the echelle grating, we must distinguish between the normal to the grating and the normal to the

blaze. In the subsequent analysis, we note that the incident and diffracted rays are on the same side of

the grating normal, which is different from the situation usually shown in books on optics. We first derive

the fundamental grating equation. Let the groove separation be d, and denote by θi and θd the angles of

incidence and diffraction, measured relative to the grating normal. Consider the two rays marked 1 and 2.

There are two path length differences for ray 1. First, ray 1 must travel a distance d sin θi further than ray 2

to reach the grating. Then, to reach a point on a line perpendicular to the diffracted rays, ray 1 must travel

d sin θd. Thus, the total path length difference between rays 1 and 2 is d(sin θi + sin θd). Now, the nth order

bright fringe will be observed when the total path length difference is an integer multiple of the wavelength

of light being observed. Thus, for our geometry, the fundamental grating equation for the nth order bright

is given by

nλ = d(sin θi + sin θd). (3.13)
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Figure 3.2: Geometric setup for diffraction problem. For the echelle grating used at SSX, both the incident
and diffracted rays (shown in red) are on the same side of the grating normal. Here, the dashed black lines
are normal to the grating, which has groove spacing d. For the sake of clarity, the blazes of the echelle
grating are not shown. (left) Setup for calculation of first path length difference for Ray 1. The blue dashed
line is perpendicular to the incident rays. The path length difference, shown by the green line, is d sin θi.
We also show the angle bisector (solid black line) of the incident and diffracted rays, which makes angle θc

with the grating normal. (right) Setup for calculation of the second path length difference for Ray 1. The
blue dashed line here is perpendicular to the diffracted rays. The path length difference, again shown by the
green line, is given by d sin θd.
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Consider an auxiliary line bisecting the angle formed by the incident and diffracted rays. Let θc be the

angle from the grating normal to this bisector. Then, defining 2γ ≡ θd − θi, we have

θi = θc − γ (3.14a)

θd = θc + γ (3.14b)

Substituting these into 3.13 gives, after some algebra,

nλ = 2d sin θi cos γ. (3.15)

This equation shows that there is a linear relationship between sin θi and nλ. Thus, if we can adjust sin θi,

we can adjust the wavelength to which the spectrometer is tuned. This is the operating principle of the sine

bar of the spectrometer, which rotates the grating, changing sin θi. The sine bar allows the adjustment of

the grating angle through the use of a manual dial or with a stepper motor controller. We have found that

using the stepper motor gives us more precise control over the grating angle.

3.4 Dispersion of Spectrometer

As described in the previous section, we may specify the wavelength at which the spectrometer is to observe

by choice of sin θi. In practice, however, the light observed by the spectrometer will not always be monochro-

matic. Thus we wish to know what will happen when light of slightly a slightly different wavelength, say

λ + dλ, is incident on the spectrometer.

Let us consider what happens for light that is not of the wavelength for which the spectrometer is set.

In this case, we cannot use (3.15) but must use (3.13). From there we see that for the condition that the

total path length difference be an integer multiple of the wavelength to hold, sin θd must change.

From the design of the spectrometer, light of the wavelength for which the spectrometer is set reflects

from the grating and is incident on the focusing mirror parallel to its optic axis. From geometric optics, such

paraxial rays will then be focused to a point. But, rays that are incident on the mirror at a small angle θ

from the optic axis will be focused not to a point on the optic axis but to a point a height x from the optic

axis. Specifically, we have

x = θf (3.16)

where f is the focal length of the mirror. This is the operating principle of the spectrometer: light of a

different wavelength than what the instrument is set to will have a different θd and will show up at a different

location governed by (3.16). We now define a quantity known as the dispersion, D ≡ dλ
dx , which tells how

much spread in wavelength there is for a given displacement at the focal point of the focusing mirror. Using

the chain rule, (3.13), and (3.16), we find

D =
d cos θd

nf
=

d cos(θc + γ)
nf

(3.17)

where θc may be determined for a given wavelength setting from 3.13.
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Now, it is possible to see why the IDS spectrometer is designed to operate at 25th order, for the dispersion

improves for large n. It is to observe spectra at such high orders that the IDS spectrometer uses an echelle

grating. The reflective grooves of the echelle grating are not flat, but are at a rather large blaze angle θb

to the plane of the grating. Consequently, one can crudely think of the blazes as reflecting light to higher

orders. More correctly, the blazes have a finite width and so diffraction from a single blaze must be taken into

account through computing a blaze function, whose effects combine with the fundamental grating equation

(3.13) to give the spectrometer output. A more thorough discussion of echelle gratings may be found in [49].

For SSX’s spectrometer, we know that γ = 4.98◦ and that 1/d = 316 G/mm. Our mirrors have focal

length 1.33 m. Given that we will be set to observe a 229.687 nm line at 25th order, we find then that at

that wavelength,

D = 0.032 nm/mm (3.18)

at the output of the spectrometer.

3.5 Collection and Input Optics

Our collection optics consist of an aperture, an interference filter, a lens, and an optical fiber. Light is

collected from a quartz vacuum window at the midplane of SSX. The collection optics are mounted on a

pivoting arm that allows the selection of 10 different chords through the plasma, ranging from chords that

are nearly radial to nearly tangential. The chords have equal angular spacing, but their spacing in terms of

height from the diameter is not uniform.

The first optical element is an aperture stop. In conjunction with the lens and the small diameter of the

fiber optic, it limits the angle of the cone of light collected by the spectrometer. The aperture has diameter

15 mm and is located at the focal point of the lens. Then, an interference filter then cuts out extraneous

light not near the wavelength under observation. This is particularly necessary to ensure unambiguous

interpretation of the spectra, because the grating equation (3.13) can have multiple solutions. That is, the

spectrometer’s image could contain lines from wavelengths far away from the desired wavelength, but at a

different spectral order. The filter used for studying the C III 229.687 nm line has a center wavelength of

229.4 nm, FWHM of 10 nm, and peak transmission of 19%.

After passing through the filter, the light then passes through a plano-convex spherical lens, with focal

length 74.2 mm and diameter 25.4 mm. This lens focuses the incident light rays, which may be thought of

as parallel to the optical axis, into the entrance of the optical fiber. The fiber is located 2.8 mm past the

rear focal point of the lens. The optical fiber itself is 1 m long with core diameter 0.6 mm and numerical

aperture 0.22. The fiber has about 80% transmission in the UV.

We note here that the lenses used in the collection optics, as well as all the other lenses in the IDS optical

system and the fiber optic, are made of UV-grade fused silica (UVGFS), which has good transmittance over

the UV range. The UVGFS lenses have an index of refraction of 1.52 at 229.687 nm. For every UVGFS lens

in the IDS system, we also possess a geometrically identical BK7 glass lens. When used for He-Ne laser light
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Figure 3.3: Photograph of the exit optics and PMT detector in the light-tight box with the top removed.

in the visible range (∼ 632 nm), the BK7 lenses have the same index of refraction as the UVGFS lenses,

and therefore should function the same optically. These lenses were purchased to allow us to perform initial

alignment of the IDS optics with visible light from a He-Ne laser, as well as to enable studies of impurity

lines in the visible in the future.

Finally, at the spectrometer end of the fiber optic, a 24.2 nm focal length spherical bi-convex lens magnifies

the image that comes out of the fiber 2× before the light enters the spectrometer entrance slit.

3.6 Exit Optics

The output optics serve to magnify the output of the spectrometer 3.7×, which is necessary since our detector

has wide pixels. consist of two plano-convex spherical lenses. The focal plane of the spectrometer serves as

the object plane for the two-lens system. The first lens is a 49.6 mm focal length lens whose flat surface is

located 24.8 mm from the spectrometer focal plane. The second lens is a 99.0 mm focal length lens located

122.6 mm from the spectrometer focal plane. The detector is located 380 mm from the spectrometer focal

plane; this distance optimizes the loss of spectral resolution due to poor imaging.

A photograph of the IDS exit optics is shown in Fig. 3.3.
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3.7 The Detector, Electronics, and Data Acquisition

After passing through the exit optics, the spectral light is incident on our detector, which for SSX is a

photomultiplier tube (PMT) array. The PMT array has large (∼ 1 mm) pixels, which certainly poses

challenges for use in an instrument with high spectral resolution. Other detector technologies that have

often been used in plasma spectroscopy, such as gated charge-coupled device (CCD) arrays, offer greatly

superior spatial resolution. The primary advantage of the PMT array over other technologies, and one of

the primary reasons we chose to use it in SSX, is its rapid time response, which has given us submicrosecond

time resolution necessary for observing changes in our plasma on the order of the Alfvén time.

For the reader unfamiliar with photomultiplier tubes, we give a brief overview of how they work. Incident

photons strike a photocathode, made of a material exhibiting the photoelectric effect. The photocathode is

limited by some quantum efficiency and does not output one photoelectron for every sufficiently energetic

incident photon. After a photoelectron is ejected from the photocathode, it passes through what is called a

dynode chain. The electrons are accelerated by some applied voltage from dynode to dynode. As electrons

strike a dynode, they cause the dynode to emit a greater number of electrons. Thus, by having a series

of dynodes, a measurable pulse of current is generated whenever an incident photon causes the emission of

a photoelectron. The accelerating voltage between the dynodes is related to the gain of the PMT. PMT’s

generally exhibit linear behavior so long as the current in the dynode chain is not too large. Readers

interested in learning more about the physics of PMT’s are referred to the RCA Photomultiplier Handbook

[50].

The PMT array used for the IDS experiments is a Hamamatsu H7260A-03 multi-anode PMT array with

32 channels spread in a continuous line. The pixels are 0.8 mm wide and 7 mm high, and the distance

between the centers of neighboring pixels is 1 mm. Each pixel is its own PMT with its own dynode chain.

Consequently, the response of the 32 channels is non-uniform and varies by up to 17%. Our data analysis

codes correct for these non-uniformities based on measurements from the manufacturer. There is also a ∼3%

cross-talk between neighboring channels. The quantum efficiency at 229.687 nm is about 5%, although the

peak quantum efficiency of the tube, at 420 nm, is about 20%. The current pulse resulting from a single

photoelectron entering the dynode chain has a 0.6 ns rise time and is 2 ns wide, giving us the fast time

response we need.

The PMT array itself is mounted on a two-axis translation stage. This allows the tube to be moved

along the optical axis for focusing, and in the dispersive direction to allow for proper optical alignment.

The PMT array, translation stage, and exit optics are all enclosed in a light-tight box that we designed and

constructed.

We used our LeCroy 100 MHz digital oscilloscopes to acquire the data. While the oscilloscopes had

excellent time response and digitization characteristics, they could only acquire up to 12 channels at a time.

We usually acquired the 12 channels closest to the center of the PMT array and terminated the rest with

100 Ω resistors; this was more than adequate to observe the desired spectral line fully even with its shifts
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and broadening.

3.8 IDS Calibration

Calibration experiments were necessary for several reasons. First, the dispersion of the IDS had to be

determined; this would allow the actual (as opposed to computed) magnification of the IDS optics to be

determined precisely. Secondly, some sort of absolute wavelength calibration was necessary, to know where

on the detector a spectral line with zero Doppler shift would appear. Thirdly, it was necessary to determine

the instrument function of the optical system.

Preliminary calibration measurements were performed by manually rotating the grating using the sine

bar. However, it was found that the motion of the mechanical dial was not always unambiguous, and so it was

necessary to use the stepper motor controller to best control the grating rotation. Initially, when the stepper

motor controller was not used, we used the oscilloscope to count the electrical pulses from PMT channels.

This method is well described by Ó Murchadha, to which we refer the reader for the details [51]. Instead,

when the stepper motor controller was used, we amplified the PMT output signal with a current preamplifier

and collected the signal using a USB interface. The current preamplifier was used with a sensitivity ranging

from 0.5 nA/V to 1 µA/V, but was typically operated around 10 nA/V.

We first describe the experiment to determine the dispersion. We used a boron hollow cathode lamp,

which has spectral lines at 249.677 nm and 249.773 nm. The line spacing is sufficiently small for both

lines to fit across the PMT at 23rd order. The separation of the lines at the PMT was found to be 10.38

±0.05 nm. We found the dispersion to be 9.25±0.05× 10−3 nm/mm at this wavelength and spectral order.

Since we can find the dispersion at the spectrometer focal plane using (3.18), we can take the ratio of the

measured dispersion at the detector to the computed dispersion at the spectrometer focal plane to find the

magnification of the IDS exit optics. Since the dispersion at the spectrometer focal plane for this setting

is found to be 0.0343 nm/mm, we find that the magnification of the exit optics is 3.70. This value agreed

with the value computed from ray trace simulations done by C.D. Cothran. Thus, we are confident in

our calculated dispersions. For the C III 229.687 nm line, after magnification, the dispersion is 8.5×10−3

nm/mm.

We now describe the absolute wavelength calibration of the IDS system. We used four spectral lamps in

these studies: boron, cadmium, antimony, and mercury, and observed 11 different lines. Some of the lines

were observed at multiple orders, for a total of 18 values of the dimensionless nλ/d. A list of these values

is given in Table 3.1. The grating was rotated by the stepper motor while the single channel of the PMT

closest to the optic axis was observed. We recorded the wavelength counter reading corresponding to the

peak response for each spectral line. The expected counter reading for each line was computed, and we plot

the differences in counter reading in Fig. 3.4. We find the residual of the plot to be less than ±2 × 10−5,

which gives us an uncertainty of ±6 km/s in our flow velocity measurements.

Finally, we describe our measurement of the instrument function. We rotated the grating to sweep the
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FIG. 3: The fractional error ∆λ/λ of the mechanical wavelength counter measured at the spec-

trometer settings indicated in Fig. 2(a) for the calibration spectral lines; the quantity nλ/d, where

d is the groove spacing, depends only on the grating angle. The linear correlation is easily cor-

rected, yielding a residual absolute wavelength calibration error of less than ±6 km/s. Error bars

(not shown) are about the same size as the plotting symbols.
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Figure 3.4: Fractional error ∆λ/λ for the mechanical wavelength counter plotted against nλ/d, which is
independent of the grating angle. The plot shows a linear trend as nλ/d increases, which is straightforward
to correct. The diamond points are boron lines, the triangles are cadmium lines, the squares are mercury,
and the ×’s are strontium. We note that for the C III 229.687 nm line at 25th order, nλ/d = 1.81453.

Source Wavelength (nm) Order nλ/d

B 249.667 22 1.73568
B 249.667 23 1.81458
B 249.773 22 1.73642
B 249.773 23 1.81535
Cd 228.8022 24 1.73524
Cd 228.8022 25 1.80754
Hg 253.6521 21 1.68324
Hg 253.6521 22 1.76339
Sb 226.251 24 1.71589
Sb 230.646 24 1.74922
Sb 231.147 23 1.67998
Sb 231.147 24 1.75302
Sb 231.147 25 1.82606
Sb 244.551 23 1.77740
Sb 247.832 23 1.80124
Sb 252.852 21 1.67793
Sb 252.852 22 1.75783
Sb 259.805 22 1.80616

Table 3.1:
Spectral lines and orders observed during calibration measurements. The groove spacing d is 1/316 mm.

42



FIG. 4: The instrument function for three different channels, located on the optical axis (x = 0)

and at x = ±7 mm. Each instrument function has been centered about the location of its peak;

evidently, all three have the same shape.

19

Figure 3.5: Instrument function of IDS system observed at 231.147 nm on the optical axis and at pixels ±
7 mm across the detector. Note that the three instrument functions are identical.

231.147 nm Sb line at 25th order across the PMT for the channel on the optical axis as well as channels 7 mm

from the central channel on either side. The three instrument functions are shown centered over each other

in Fig. 3.5. All three are clearly identical. Since the spectrometer’s entrance slit is rectangular, one would

expect the instrument function to be triangular. This is not quite the case. Still, computing the FWHM

of the instrument function gives ∆xFWHM = 1.06 mm. This allows us to compute a parameter called the

resolving power, R:

R ≡ λ/∆λFWHM (3.19)

Converting this to wavelength using the predicted dispersion, we find the resolving power to be R = 2.5×104.

We can also determine the instrument temperature of the IDS from the resolving power; the IDS cannot

resolve any smaller temperature. Substituting R for the left side of (3.12) allows us to solve for kTinst:

kTinst =
1

8 ln 2
R2mc2 (3.20)

From the measured instrument functions, we find kTinst = 2.9 eV. The instrument temperature for the C III

line should be comparable to this.
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Chapter 4

IDS Experiments in SSX

We begin this chapter by describing the SSX device in its current operational state. Along the way, we

will briefly discuss the spheromak formation sequence in SSX. Then, for completeness, we will discuss the

previous work done at SSX and what that has taught us about spheromaks and reconnection. This discussion

is particularly important because it will guide our interpretation of the IDS results. Finally we will describe

the actual experiments with single spheromaks, counter-helicity merging, and co-helicity merging for which

IDS data has thus far been collected.

4.1 The SSX Device

A photograph of the SSX laboratory is shown in Fig. 4.1.

We first describe the SSX vacuum chamber. The vacuum chamber is cylindrical and is approximately

1 m long and 0.3 m in radius. The chamber is maintained at approximately 2 × 10−7 torr base vacuum

pressure. Various vacuum ports at either end of the chamber and at the midplane allow the installation of

diagnostics; it is through one such port that the IDS collects light. Inside the chamber, there are a pair

of cylindrical copper containers called flux conservers of radius 0.2 m and total length 0.61 m. The flux

conservers are coaxial and are installed at opposite ends of the vacuum chamber, with a 2 cm gap between

the two flux conservers at the midplane to access the plasma for diagnosis. The flux conservers act as

conducting boundaries that contain the plasma and provide the necessary boundary conditions for stable

equilibria. A schematic diagram of the SSX experiment is shown in Fig. 4.2.

At either end of the vacuum chamber is a coaxial plasma gun; these form the spheromaks. The formation

process is briefly reviewed in the next section. The energy that breaks down the hydrogen in the guns is

provided by the large green capacitor banks shown in Fig. 4.1. SSX has 4 such banks, which each have a

capacitance of 0.5 mF and may be charged up to 10 kV, for a maximum possible energy 1
2CV 2 of 25 kJ per

bank. In practice, however, only two of the four banks are in use at any time, and the banks are typically

charged to about 5 kV. As we will discuss, the guns also require a “stuffing” magnetic field. These fields are

created by the stuffing coils around each gun. The stuffing coils themselves are powered by a separate set of

capacitors.
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Figure 4.1: Photograph of the SSX laboratory. The vacuum chamber is shown at the center of the pho-
tograph. The metal yoke around the vacuum chamber is for a He-Ne laser quadrature interferometer for
density measurements. One of the pairs of main capacitor banks (painted green) is at the right. The copper
mesh screen room, housing data acquisition and control electronics, is visible in the background, as is the
second pair of main capacitor banks.

c)

Figure 4.2: Schematic diagram of the SSX device. A side view is shown; the device is rotationally symmetric
about the central horizontal axis of the figure. The coils for the guns are at the east and west ends of the
device. The pair of coils near the midplane are the reconnection control coils (RCC’s). Note the midplane
gap in the flux conservers for diagnostic access. The figure shows a distributed array of magnetic probes
inserted into the chamber, which were of critical importance in prior work. However, in the IDS experiments
described here, there were no magnetic probes installed.
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Furthermore, in its current configuration, SSX has a pair of reconnection control coils (RCC’s) installed

at the midplane. The RCC’s carry a toroidal current, as shown in Fig. 4.2, and produce an poloidal magnetic

field of up to 700 G at the central axis. The RCC’s were installed to help stabilize the FRC’s formed in

counter helicity merging. The RCC coils are powered by yet another set of capacitors. The voltage on these

capacitors is easily adjusted, allowing the control of the RCC field.

In addition to the IDS system, the primary diagnostics currently in use at SSX are a He-Ne quadrature

interferometer and a soft x-ray detector. The details of the design and operation of these instruments are

described by Gray [52] and Falk [53], respectively. The interferometer provides line-integrated measurements

of plasma density, and the soft x-ray detector provides a rough measure of electron temperatures. Other

diagnostics that have previously been used at SSX but are not presently in use include both distributed and

high-resolution magnetic probe arrays, a Langmuir triple probe to measure local densities, a Mach probe to

measure local flow, and a retarding grid energy analyzer for measuring energetic ions.

Recently, SSX has installed a new glow discharge cleaning (GDC) system to scour the vacuum chamber

of impurities, resulting in lower densities and higher ion temperatures. Since the author was not involved

in the design or construction of the GDC system, we do not discuss it in detail here. Essentially, the GDC

system fills the SSX chamber with a DC helium glow discharge plasma. A DC voltage is applied across the

electrodes of the plasma guns. Helium is introduced and is partially ionized; the ions are accelerated by the

gun voltage. The GDC is used to clean the SSX before a day of experimental runs. In typical operation,

the GDC uses 100 microtorr of helium with +300 V on the inner electrode and drawing ∼ 0.1 A of current

to scrub the vacuum chamber walls, for approximately 1 hour. After this, the polarity of the electrodes is

reversed to scrub the guns themselves; in this regime, 800 microtorr of helium is used, and the maintenance

of a -800 V bias draws 0.05 A of current. This is done for approximately 30 minutes.

Typical plasma parameters at SSX before the use of the GDC include electron density ne ∼ 1015 cm−3,

temperature Ti + Te ∼ 30 eV, magnetic fields |B| ∼ 0.1 T, and Lundquist number S ∼ 1000. Preliminary

studies indicate that with the use of the GDC system, ne ∼ 10−14 cm−3, and Ti ∼ 40 eV.

4.2 Spheromak Formation

Here we briefly discuss how we form spheromaks in SSX using coaxial plasma guns. A diagram of the process

is shown in Fig. 4.3. The guns consist of coaxial, cylindrical inner and outer electrodes. The outer electrode

is grounded, while the inner electrode is at some adjustable voltage, which is usually approximately -5 kV

peak before RLC decay, when the main capacitor banks discharge. The main capacitor banks are controlled

independently. A coaxial, toroidal stuffing coil is external to the gun.

The timing and sequence of the formation process is as follows. We will define t = 0 as the time at which

the main banks discharge. If the RCC coils are being used, their capacitors are discharged first, at some

adjustable timing from t = −100 ms to t = −25 ms. Then, at t = −25 ms, the capacitors for the stuffing

coils discharge, and the resulting toroidal stuffing current forms a dipole-like stuffing field. Typical stuffing
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Figure 4.3: The spheromak formation process. (a) Gas is puffed into the space between the inner and outer
electrodes, while the current in the stuffing coils forms a dipole-like stuffing field. (b) The main capacitor
banks discharge. The gas ionizes, and carries a radial current between the inner and outer electrodes. The
axial current along the inner electrode also creates a toroidal gun field. (c) The J × B force between the
radial plasma current and the gun field accelerates the plasma out of the gun. (d) The plasma drags along
the stuffing field, which reconnects to form the poloidal field of the spheromak.

fluxes in the gun are around 1 mWb. These two coils are energized well before the shot because it takes a

comparatively long time for the magnetic flux to soak either into the gun or the chamber. Then, at about

t = −700 µs, gas valves introduce hydrogen gas into the space between the inner and outer electrodes. This

timing is limited by the sound speed of the gas, which takes some time to travel through the lines from the

fast gas valves to the guns. Finally, at t = 0, the main capacitor banks discharge. Usually, it takes about 20

µs for the formed spheromaks to get out of the guns, and the plasma usually decays by about t=100 µs

When the main capacitor banks discharge, resulting in a high voltage between the inner and outer

electrodes, the hydrogen gas between the electrodes ionizes and becomes an electrically conducting plasma.

Then, there is a radial plasma current flowing from the outer electrode to the inner electrode. However,

the current flowing down the inner electrode creates its own magnetic field, which forms approximately

concentric circles around the electrode; this becomes the toroidal field of the spheromak. The J ×B force

resulting from the interaction of the plasma current and the toroidal magnetic field produced by the current

in the inner electrode then accelerates the plasma out of the gun. As the plasma reaches the outside of the

gun, however, the plasma runs into the field produced by the stuffing coil. The plasma basically drags the

stuffing flux along (essentially due to the frozen-in flux constraint). Then, once there is enough magnetic

pressure to stretch out and break off the stuffing field, the stuffing flux reconnects to form the poloidal field

of the spheromak.

The polarity of the inner and outer electrodes of the guns cannot easily be changed, so the guns always

produce similar toroidal fields. But, the direction of the current in the stuffing coils, the field from which

generates the poloidal field of the spheromak, can be changed. This allows changing the direction of the

stuffing flux changes the orientation of the poloidal field with respect to the toroidal field. The helicity of

the spheromaks can thus be changed, and in particular it is possible to create both “left-handed” and “right-

handed” spheromaks. Fig. 4.4 shows a left-handed spheromak. This allows SSX to study both co-helicity

and counter-helicity merging, in which the merged spheromaks have the same and opposite handedness,
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Figure 4.4: (a) and (b) Two views of the structure of a left-handed spheromak. A right-handed spheromak
would have either the toroidal or the poloidal fields in the opposite direction. SSX reverses the direction of
the poloidal field to produce right-handed spheromaks.

respectively.

Our discussion of the physics of spheromak formation in a coaxial gun has been highly qualitative.

Readers interested in a more detailed theoretical treatment are referred to the discussions in Geddes [54]

and Turner [55].

4.3 SSX: Prior Work

The SSX was constructed and first came online around 1995. Initially, SSX studied the dynamics and

stability of single spheromaks [54]. The single spheromaks were fired into flux conservers of different sizes

and diagnosed with magnetic probes, as shown in Fig. 4.5 (a) and (b). It was found that the equilibrium

spheromaks were well described as force-free states according to (2.59): ∇×B = λB.

These studies were soon followed by initial reconnection measurements. In these studies, individual flux

conservers still surrounded each gun. Gaps in the walls of the flux conservers allowed the spheromaks to

partially merge, as shown in Fig. 4.5 (c). In this arrangement, the poloidal and toroidal fields could locally

reconnect. Kornack et al. studied energetic ions emerging from the midplane reconnection region with a

retarding grid energy analyzer (RGEA). They found that a drop in the magnetic energy density correlated

with a rise in the flux of outflowing ions moving near the Alfvén speed [56]. The reconnecting magnetic fields

were also observed with a 2D probe array [57].

The next important subsequent development at SSX was the construction of a high resolution 3D magnetic
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cylindrically symmetric gunl th53.83/r gun where 3.83 is the
first zero of the Bessel functionJ1. Note thatl th depends
only on gun geometry in this model. For SSX, 3.83/r gun

546 m21 wherer gun50.083 m.
A simple formation theory can be constructed by assum-

ing a thin radial current sheet that is free to move axially and
a purely radial stuffing flux~see Figure 3!. Force balance on
the current sheet requires that the magnetic tension of the
stuffing flux equals the netJ3B force. Since the gun current
produces an azimuthal fieldBu5m0I gun/2pr we can write
the magnetic pressure on the back of the sheet as:

PB5
Bu

2

2m0
5

m0I gun
2

8p2r 2
.

If we integrate this pressure over the annular face of the
current sheet we find for the netJ3B force:

F5
m0I gun

2

4p
ln~r gun /r inner!.

Now if the stuffing flux is distended an amountdz by the
magnetic pressurePB , then the work done by this force
equals the increase in magnetic energy:Fdz5DWmag

5(Bstu f f
2 /2m0)(pr inner

2 )dz. Noting thatFgun5Bstu f fpr inner
2

and solving forl we find:

l th5
m0I gun

Fgun
5

1

r inner
A 2

ln~r gun /r inner!
. ~1!

Interestingly, this expression also yieldsl th546 m21 for
our parameters (r gun50.083 m andr inner50.031 m).

B. Equilibrium

Immediately following formation, the spheromak relaxes
to a minimum energy state subject to the constraints of con-
stant magnetic helicity and zero magnetic flux (C50) at the
conducting wall.19–21 The steady state spheromak equilib-
rium is characterized by:

¹P5J3B. ~2!

FIG. 1. Two views of a spheromak with the magnetic fields and coordinate
axes indicated. The cross section at right is taken in the poloidal (r 2z
plane!. The flux conserver is shown in the cross section view only.

FIG. 2. A schematic of the SSX gun showing~a! small and~b! large flux conservers and the magnetic probes for formation and equilibrium measurements.
~c! shows both guns with two large flux conservers to allow reconnection studies.

FIG. 3. Spheromak formation geometry.

1028 Phys. Plasmas, Vol. 5, No. 4, April 1998 Geddes, Kornack, and Brown

Downloaded 17 Feb 2006 to 130.58.92.162. Redistribution subject to AIP license or copyright, see http://pop.aip.org/pop/copyright.jspFigure 4.5: Previous configurations of the SSX chamber. (a) Small flux conserver (dark line) for single
spheromak formation and equilibrium studies reported in [54]. (b) Large flux conserver for single spheromak
studies. (c) Flux conservers with gaps to allow for partial spheromak merging in early reconnection studies.

probe and associated multiplexing data acquisition system by Landreman et al. [58] The probe measured 3

vector components of B at 200 closely spaced locations in the reconnection region and allowed unprecedented

detailed studies of the local magnetic structure of reconnection during counter-helicity spheromak merging.

In particular, the observed reconnection events were clearly not two-dimensional and had a significant com-

ponent perpendicular to the plane of reconnection. Reconnection was also found to occur more rapidly for

counter-helicity versus co-helicity flux tubes. Results from these measurements are reported in detail in [59]

and [5].

SSX then turned to the study of full spheromak merging and the formation of field-reversed configurations

(FRC’s). The FRC is an axisymmetric, cylindrical, simply connected plasma with only a poloidal field. At

this time, the flux conservers currently in use, which allow the spheromaks to merge fully, were installed. The

midplane reconnection control coils were also installed. The magnetic structure of the full merging process

was studied with a distributed probe array, with a plane of probes at the midplane and at both ends of the

vacuum chamber. This allowed the detailed study of the global structure of reconnection. In addition, the

high resolution probe array had a much greater perturbing effect on the plasma in this configuration. The

distributed probe array allowed the magnetic fields to be Fourier analyzed. Counter-helicity merging was

found to produce an FRC-like object that had little toroidal field in the center but retained a spheromak-like

toroidal field at the ends. The FRC tended to remain stable for several Alfvén times before an increase

in the m = 1 toroidal mode indicated that the FRC succumbed to the tilt instability. This was consistent

with simulations. It was also found that co-helicity merging produced a single, long spheromak that rapidly

tilted, in agreement with theory. Details of these studies may be found in [60].

4.4 Co-Helicity Shots

IDS data was taken on a number of chords for co-helicity merging prior to the use of GDC. With these shots

and all others, the ion temperature and flow velocity were measured. Co-helicity shots were deemed to be
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unsuitable for analysis with the Abel inversion discussed in the next chapter, however, as previous magnetic

measurements indicated the presence of a strong tilt instability. The plasma would quickly fail to satisfy the

Abel inversion’s requirement of axisymmetry.

4.5 Counter-Helicity and Single Spheromak Shots

Counter-helicity shots were performed in some of the earliest measurements with the IDS. Light collected

from all the chords was observed. After the installation of the GDC system, detailed scans through all the

chords were made for the purpose of Abel inversion. In these scans, approximately 10 shots were taken at

each chord.
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Chapter 5

Results and Analysis

5.1 The Spectra

Recall that raw data from the PMT is digitized by our 100 MHz LeCroy oscilloscopes. We show a sample of

the raw IDS data from four pixels below in Fig. 5.1. The data is from a counter-helicity shot and the light

is collected along Chord # 3, which nearly passes through the center of the chamber. No GDC was used in

the data presented in this section, or in any section until Sec. 5.5.

After it is saved, the data is processed by an IDL routine that reads in the data for each pixel, smoothes

it into microsecond bins, and then displays the resulting spectra. The code also applies a correction for

the non-uniform response of the pixels in the PMT array, with the correction data being provided by the

manufacturer.

We display a sample spectrum in Fig. 5.2. Here, the lineshape is clearly Gaussian with a Doppler shift,

as is visible from the overlaid Gaussian fit. The signal shown is the voltage reading from the oscilloscope,

which is proportional to the photon count incident on each pixel, with the data binned into 1 µs bins. This

effectively bins 10 data points together. Error bars would arise from the standard deviation of the binned

data points; we do not plot them here since they are small. The flux of photons is sufficiently intense

during all times of interest that rather than detecting individual electrical pulses due to incident photons, we

measure an essentially continuous photocurrent. The horizontal axis is labeled in units of velocity, where we

have used the dispersion of the system to measure the wavelength shift and (3.7) to convert it to a velocity.

5.2 Double-Peaked Spectra

At SSX, we have on numerous occasions observed double-peaked line structures during counter-helicity

merging. We have not observed these structures during co-helicity merging or during single spheromak

shots. An example of such a structure is shown in Fig. 5.3. Such a line structure clearly involves light with

two different Doppler shifts, from plasma flowing both towards the observer and away from the observer. The

flows we observe are nearly Alfvénic, up to about 0.6 vA. We also note that these bi-directional structures

are transient, usually not lasting for more than a few microseconds. During that time, they also evolve
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Figure 5.1: Raw signals from the four channels of the IDS closest to the optical axis during a counter-helicity
shot, offset. During the shot, a chord that is almost a diameter was observed. On the horizontal axis, t = 0
corresponds to the time at which the banks fire. On the vertical axis, the separation between channels
corresponds to 400 µA of photocurrent. We show only 4 channels here for clarity; up to to 12 channels are
observed at any given time in practice.

Figure 5.2: Spectrum from an IDS counter-helicity shot at t = 45 µs after the banks fire. This spectrum
is taken from the same run as the raw data shown in Fig. 5.1. The points of the spectrum are shown as
horizontal bars; we have overlaid a Gaussian fit to the data as a continuous line.
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Figure 5.3: Typical double-peaked line structure arising during a counter-helicity shot.

rapidly. This is best illustrated through a time series of lineshapes, an example of which is shown in Fig. 5.4.

We emphasize that the data shown are from a single counter-helicity shot.

5.3 Measuring Flow and Temperature

We can proceed to perform two other basic analyses. From computing the centroid (first moment) of the

spectral line and calculating its shift, the flow velocity of the plasma can be determined. We show a plot of

the flow velocity for the same counter-helicity shot in Fig. 5.5. In plots like this, data before about 30 µs

and after about 80 µs should generally be neglected. Outside this time range, the amount of light collected

from the plasma, which either has not fully reached the midplane or is decaying, is small. For such weak

signals, minor fluctuations can give rise to large apparent shifts in the first moment.

We can also compute the second moment (standard deviation) of the data. Then, using (3.12), we can

deduce the plasma ion temperature. A plot of Ti for the same counter-helicity shot is shown below in Fig. 5.6.

As long as the lineshape remains roughly Gaussian, we can be confident in these temperature measurements.

It is clearly observed, however, that sometimes the lineshape is not Gaussian. An example is shown in

Fig. 5.7. Determining the plasma temperature by computing the second moment of this “flat-top” spectrum

is likely to be erroneous. Such a line profile could arise if the flow along the chord was nonuniform. In

particular, it is not difficult to imagine this profile resulting from the superposition of two Gaussian lines

corresponding to light with different Doppler shifts. Clearly, simply computing the second moment of a

double-peaked spectrum would also lead to an erroneous temperature measurement. The main ramification
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Figure 5.4: Time series of the evolution of the C III 229.687 nm line over a single counter-helicity shot. A
double-peaked line structure suggestive of bi-directional plasma flow forms after 38 µs and decays at 41 µs.
The structure evolves rapidly at the microsecond time scale. Such structures are frequently observed during
counter-helicity merging.
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Figure 5.5: Flow profile from a counter-helicity shot.

Figure 5.6: Temperature profile from a counter-helicity shot.
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Figure 5.7: “Flat-top” spectrum from a counter-helicity shot. Computing the plasma temperature from the
width of the line in this frame is probably erroneous.

of this is that our IDS temperature measurements should not always be interpreted literally.

5.4 Averaged Measurements and Fourier Analysis

We performed averaging of the flow and temperature profiles for several shots to determine if there was any

global structure that could be determined. We display plots of averaged flow and temperature for a series of

counter-helicity shots on Chord #3, which is nearly a diameter, below in Fig. 5.8 and Fig. 5.9, respectively.

To see if any general oscillations could be detected, we also performed Fourier decompositions of the aver-

aged flow and ion temperature time histories. We display the results in Fig. 5.10 and Fig. 5.11, respectively.

5.5 The Abel Inversion

We have noted that in our IDS system we measure the relevant quantities (emissivity, flow velocities, and ion

temperatures) integrated along a chord through the plasma. One would, however, like to have some more

precise knowledge of how these quantities vary through the plasma. This is not an uncommon problem in

plasma physics, and indeed in other areas of physics such as optics. If one is willing to make some strong

assumptions, it turns out that there is a way to determine radial profiles of plasma quantities. This method

is known as Abel inversion. Our discussion of the Abel inversion draws largely from Hutchinson [61].
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Figure 5.8: Time history of the average flow for 6 counter-helicity shots. The error is shown by the dashed
lines, which represent the standard deviation of the flows.

Figure 5.9: Time history of the average ion temperature for 6 counter-helicity shots. The error is shown by
the dashed lines, which represent the standard deviation of the temperatures.

57



Figure 5.10: Fourier decomposition of the time history of the average flow for 6 counter-helicity shots.

Figure 5.11: Fourier decomposition of the time history of the average ion temperature for 6 counter-helicity
shots.
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The two strongest assumptions of the Abel inversion are as follows. First, the plasma must be axisym-

metric, such that any plasma quantity ε is only a function of the radial coordinate r. Secondly, ε(r) must

vanish at the outer edge of the plasma.

Consider, then, a cylindrically symmetric plasma with radius R. We illustrate the relevant geometry in

the figure. Suppose that we are interested in determining the radial profile of some plasma scalar quantity

ε(r), but only have knowledge of chord-integrated measurements through a slice of the cylinder. Let I(y)

denote the measurements, where y is the height of the chord above the diameter. Also, let x describe the

distance along the chord.

A chord-integrated measurement along a chord at height y is given by

I(y) =
∫ √R2−y2

−
√

R2−y2
ε(r) dx. (5.1)

Changing the variable of integration from x to r and using the condition of axisymmetry allows us to express

the chord measurements as

I(y) = 2
∫ R

y

ε(r)r dr√
r2 − y2

. (5.2)

The preceding equation (5.2) is known as Abel’s integral equation and may be solved for ε(r). Although the

proof is beyond the scope of this thesis1, it can be shown that this equation has the solution

ε(r) = − 1
π

∫ R

r

dI

dy

dy√
y2 − r2

(5.3)

so long as ε(R) = 0. The result of (5.3) cannot be blindly applied, however, particularly in real experimental

situations where one only has a finite number of measurements of I(y). In particular, the derivative dI
dy will

tend to amplify any noise in the data.

5.6 Performing the Abel Inversion in SSX

Finding a fruitful algorithm to perform Abel inversion on actual plasma data, which is often noisy, is not

as simple as the results of the last section might suggest. Many published algorithms for performing Abel

inversions involve fitting I(y) to various mathematical functions or expanding I(y) in terms of a set of

orthogonal functions, and then numerically applying (5.3) or a variant thereof. Such techniques include

fitting with cubic polynomials [62], cubic splines [63], and expansion in terms of Hermite polynomials [64].

Given that Abel inversion might not be easy to perform with SSX data, due to the inversion method’s

assumption of axisymmetry, we felt that it would be best to try a simple algorithm first before committing

to something that would be significantly more computationally intensive. We thus applied the geometric

method for determining the Abel inversion of plasma emissivity described by Cho and Na [65].

Here we briefly describe the algorithm of Cho and Na as applied to cylindrical plasmas. In this algorithm,

we assume the light comes from n evenly spaced chords through the plasma, with the chords separated by
1Or perhaps we should say that for readers who have way too much time on their hands, the proof is left as an exercise.
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Application of Abel inversion in real-time calculations for radiation sources
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Figure 1. A cross section of a circularly symmetric plasma and
coordination system for Abel inversion.
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Figure 2. Illustration of Abel inversion by geometrical relationship.

This technique provides a reliable reconstruction when the
Fourier–Hankel method fails, but it should be satisfied with
the cylindrical symmetry.

2. Theory

The Abel inversion equation can be formulated as follows:
when the plasma has a circular or elliptical symmetry, one
of the factors to determine its local emissivity is the distance
from the symmetry axis. Figure 1 shows a disk of cylindrically
symmetric plasma. For simplification the plasma can be
treated as optically thin, so that there is no absorption in
the plasma, and then the measured intensity of radiation is
expressed as follows:

I (y)�y�z =
+x0∑
−x0

ε(r)�x�y�z (1)

where I (y) denotes the intensity of radiation in the y direction,
ε(r) is the emissivity at the radius r , z denotes the symmetric
axis and the observing direction is parallel with x. When R
denotes the radius of the plasma the rewriting of equation (1)
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Figure 3. Process for finding the area matrix S.
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Figure 5.12: Geometrical setup for the Abel inversion algorithm of Cho and Na. They assume that one
observes light from n evenly spaced chords through the plasma and thus measures the chord-integrated
intensity I along n chords. They then divide the plasma into n annular rings and slice the annular rings for
each chord. The resulting pieces of the plasma have area Sij . A chord measurement Ij thus involves light
coming from all the pieces along that chord. Figure from [65].

a distance d. We then divide our plasma into n concentric, annular rings of thickness d. Then, consider one

quadrant of the cylinder and further divide the rings with horizontal, parallel slices at every chord height.

Thus, the quadrant of the plasma is geometrically divided into pieces of area Sij , where i denotes the ith

radial ring and j the chord height. In the subsequent discussion we will use Sij both to mean the area of the

element and as a label to refer to the element with that area. This geometric division is shown in Fig. 5.12.

We label the chord-averaged measurements I1 . . . In. Then, all the plasma light influencing the measure-

ment Ij comes from area elements Sjj , Sj+1,j , . . . , Sjn – that is, all the area elements along the chord. Let

εm denote the value of the emissivity at the mth radial annular ring. Then it may be shown that

I1 =
2
d

(S11ε1 + S12ε2 + . . . + S1nεn)

I2 =
2
d

(S22ε2 + S23ε3 + . . . + S2nεn) (5.4)

In =
2
d
Snnεn

The preceding equations (5.4) essentially discretize (5.1). But, they may also be expressed as matrices:
I1

I2

...
In

 =
2
d


S11 S12 . . . S1n

0 S22 . . . S2n

...
...

. . .
...

0 0 . . . Snn




ε1

ε2

...
εn

 (5.5)

Then the vector of emissivities is given by

−→ε =
d

2
[S]−1−→I (5.6)

It remains to geometrically compute the areas Sij . It is straightforward to show that

Sij =

{
(Pi,j − Pi+1,j)− (Pi,j−1 − Pi+1,j−1) i ≤ j

0 i > j
(5.7)
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where

Pij =

{
1
2 (jd)2θij − 1

2 ((i− 1)d)2 tan(θij) i ≤ j

0 i > j
(5.8)

and

θij =

{
cos−1((i− 1)/j) i ≤ j

0 i > j
(5.9)

This algorithm was implemented using an IDL code. The code abelinvertmatrix.pro computes the area

matrix [S]. Then, the main code code masterabel2.pro reads in the data, calls abelinvertmatrix.pro,

and performs the linear algebra needed to determine the inverted emissivity. These two codes are shown in

Appendix D.

In practice, we begin with a set of Abel scan shots. For each of the 10 or so shots with the spectrometer

observing a given chord, we compute the emissivity at every microsecond. We then perform an average

over all of the shots on that chord to determine a smoothed chord emissivity for every microsecond. The

emissivities are then further binned in time before they are read by masterabel2.pro. We have considered

bins of 1, 2, 5, and 10 µs.

5.7 Results of the Abel Inversion

We present results from our Abel inversion of the plasma emissivity from single spheromak and counter-

helicity shots. We show the results for the 5 µs time binning.

Fig. 5.13 shows a plot of the Abel inverted emissivity ε(r) for a single spheromak shot at t = 35 µs.

Fig. 5.14 shows the Abel inverted emissivity for a counter-helicity shot at t = 45 µs. The dashed lines shown

are the errors.

We computed the errors in these figures as follows. When we averaged together all the runs that collected

IDS data from a single chord, we computed the standard deviation at each time interval. This random error

was much larger than any other source of error that could be realistically included in the analysis. We

thus had an error vector corresponding to the chord-averaged emissivities, −→σI . Since each element in the

output radial emissivity vector is a weighted sum of elements of the chord emissivity vector, we can apply

the standard error propagation formula. Specifically, the error in the radial emissivity −→σε is given by

−→σε =

√
d2

4
[S2]−1

−→
σ2

I (5.10)

Here, the square root represents taking the square root of every element in the vector resulting from the

matrix multiplication under the square root,
−→
I2 is the vector in which every element of −→σI is squared, and

likewise [S2]−1 is the matrix in which every element of [S]−1 is squared. Note that due to the diagonal nature

of the matrix [S], computing radial emissivities near r = 0 involve summing over more terms. Consequently,

the error in the terms near r = 0 is comparatively larger. One problem to note in this analysis is that the

emissivity is not constrained to be positive. Thus negative emissivities arise, as is the case in 5.14. This is

of course unphysical.
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Figure 5.13: Abel inverted emissivity for a single spheromak shot.

Figure 5.14: Abel inverted emissivity for a counter-helicity shot.
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Chapter 6

Discussion and Conclusions

6.1 Interpretation of Spectra

We must keep several things in mind when interpreting the IDS spectra. First, it is open to question whether

or not the carbon impurity ions are effectively in equilibrium with the majority hydrogen ions. We thus show

in Appendix A that the collision time in the SSX plasma between C III ions and the majority hydrogen ions

in the plasma is approximately 0.2 µs. So, when we observe dynamics on the microsecond time scale, it is a

fairly safe assumption that the emitting carbon ions are in equilibrium with the majority ions1.

Also, if we are to measure temperature by Doppler broadening, we must be sure to account for other

broadening effects. We show in Appendix B that natural broadening, pressure broadening, and Zeeman

broadening are negligible. Since the instrument function is approximately Gaussian, we may merely subtract

off the instrument temperature from the measured standard deviations of the spectral lines, rather than going

through a formal deconvolution. We also show in Appendix C that atmospheric fluctuations in the laboratory

should not affect our results. However, in looking at these spectra, it is important to remember that they

are from light collected not from a localized volume of plasma, but rather from light coming from a chord

in the plasma. In particular, it would seem unphysical to assume that when the IDS observes a Doppler

shifted line, all the plasma along the chord is flowing at the same speed. This should be kept in mind when

interpreting our data, and highlights the need for some sort of inversion technique.

6.2 Flow

The role of flow in reconnection is clearly important, as evidenced by the Sweet-Parker model. At SSX,

however, flow may be important after most of the reconnection has occurred as well. Here we describe one

possible model for the generation of sheared flow during counter-helicity merging shots at late times.

The following argument, suggested by M.J. Schaffer, concerns sheared flow in an FRC. Previous magnetic

measurements have shown that toroidal fields remain near the ends of the FRC’s made by spheromak merging
1In another favorite analogy of M. Brown, the impurity ions may be thought of as being carried along with the plasma even

though they are much more massive than the majority ions, much as both heavy cars and lightweight debris are swept away
by the destructive waters of a tsunami.

63



Bpol

Btor J

J x B

Figure 6.1: Diagram for argument that sheared flows may exist in SSX during counter-helicity merging shots.
Magnetic field lines and vectors are shown in black. Currents are shown in red, and the resulting J × B
forces are shown in green.

at SSX. The physical situation is shown in Fig. 6.1. Looking at the remaining toroidal field, it is clear that

there must be a radial current density as shown by the red arrows due to Ampère’s law. This current,

however, will interact with the poloidal magnetic field of the FRC, producing a J×B force. The directions

of the J × B vectors are shown in green; these are forces that will act on the plasma. Note that the

J × B force will tend to exert a torque plasma near the central axis and plasma far from the central axis

in opposite directions. These torques must be counteracted for a plasma in mechanical equilibrium; viscous

drag resulting from sheared flow could do it. A three-dimensional diagram of the same physics is shown in

6.2.

What is particularly heartening is that preliminary simulations of SSX performed at PPPL have shown

that sheared magnetic field lines corresponding to magnetic field being dragged along with a plasma with

this flow profile are possible. On the other hand, IDS observations along nearly tangential chords have not

indicated persistent strong toroidal flows. This does cast some doubt on the hypothesis. Still, SSX will

continue to study this possibility in more detail in the future.

6.3 Bi-Directional Flows

We believe that the double-peaked spectra described in Sec. 5.2 are due to bi-directional flows resulting from

magnetic reconnection. Recall that such flows were observed by Innes et al. on the sun. If our double-peaked
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Figure 6.2: Another view of the possible sheared flow in the FRC’s made at SSX.

spectra are indeed due to reconnection outflows, they would be the first measurements of such outflows in

the laboratory.

It seems clear that the observed double-peaked lineshapes are due to bi-directional plasma flows; no other

effects could be reasonably supposed to be responsible for them. But are these flows due to reconnection?

During these runs, no magnetic diagnostics were installed at SSX. Without direct magnetic evidence, the

onset of these flows cannot be correlated with reconnection with absolute certainty.

It appears unlikely, however, that these flows could be caused by anything other than reconnection. First

of all, these double-peaked structures are not observed during single spheromak and co-helicity shots. In

these shots, significant reconnection of the poloidal fields does not occur; this provides perhaps the strongest

indirect evidence that the observed bi-directional flows are correlated with reconnection. Moreover, the

timing of these events, which typically occur around 40 ± 10 µs after the banks fire, matches the timing of

reconnection as measured when SSX operated with full merging with the distributed probe array.

These events, as well as their relationship to reconnection, clearly warrant further study. Incontrovertibly

correlating these flows with reconnection observed using magnetic probes at the midplane may be difficult.

In particular, fully inserting the complete set of distributed probes at the midplane would interfere with the

line of sight of the IDS. The argument that the bi-directional flows at about the same time as reconnection

could also be suspect if the plasma dynamics in these studies, without magnetic probes in the SSX, differ

from those previously observed. This cannot be ruled out since the magnetic probes surely exert at least some

perturbation on the plasma through, for instance, the formation of a sheath. But while further investigation

is necessary, there does not at present seem to be any strong competing hypothesis for the cause of these
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observed bi-directional flows other than magnetic reconnection.

6.4 Fourier Analysis

The results of the Fourier analysis are preliminary but at least seem plausible. It is of interest to note that

the three peaks in Fig.5.10 are located at 0.42, 0.98, and 1.68 × 105 Hz. The values are not exact, but the

frequencies are approximately related by a factor of 2. Moreover, recall that the Alfvén speed in SSX is

approximately 105 m/s. Since the length scale at SSX is about 1 m, 1/τA is on the same order of magnitude

as the frequencies shown in Fig.5.10.

The cause of the periodic behavior, if it indeed exists, is not immediately clear. If most of the light

is emitted where reconnection is occurring, then perhaps the periodicity in flow could be caused by some

global oscillation in the plasma that causes the reconnection region to move in and out of the line of sight. A

plasma rotating around the machine near the Alfvén speed could give rise to behavior with about the right

frequency, but this seems less physically plausible.

We also note that the peak in Fig. 5.11 near 1.8 × 105 Hz is close to the last significant flow Fourier

peak. The behavior here is not very clear. Further studies, particularly with magnetic probes in the plasma,

may yield further insight, and this method of analysis might perhaps be more definitively tied to something

physical.

6.5 Abel Inversion

The plasma emissivity depends on temperature and density and as such is a quantity worth examining.

Abel inversions at SSX have also been performed with a different algorithm which models the output radial

emissivities as cubic splines and adjusts their parameters to fit the data. Qualitatively, the inversion results

from the method described here are generally consistent with the cubic spline method, although the cubic

spline results are much smoother. One problem with the method described in this thesis, which essentially

discretizes the Abel integral, is that the value of the emissivity at r = 0 is not constrained in any way, as

mathematically required in the solution of the Abel integral equation.

While this analysis has been useful, extending it to other plasma parameters would not be easy. Even

this has been difficult; particularly for counter-helicity merging, the shot-to-shot variability is sufficiently

large that the error bars are often larger than the size of the measurement. The other parameters we would

be most interested in inverting would be flow and temperature. Inverting the flow would require a robust

knowledge of where the light was coming from – that is, the inverted emissivity. Moreover, flow is inherently

a vector quantity; it would be necessary to somehow separate the contributions of different components of

the vector flow from different elements of the plasma to the composite lineshape. Inverting the temperature

would require knowledge of the inverted flow as well, and would be most difficult to invert. In particular,

sheared flows along the line of sight could give rise to spectral broadening, so any inversion of temperature
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would have to separate this effect from Doppler broadening. The temperature measurements are themselves

sometimes difficult to interpret, particularly for counter-helicity shots with “flat-top” and double-peaked

spectra that cannot be well-described by a single Gaussian. Finally, one must recall that the entire Abel

inversion relies on an assumption of axisymmetry, the validity of which in SSX is questionable at best,

particularly late in time for counter-helicity shots.

There are spectroscopic plasma diagnostics that get around the difficulties mentioned here by making

local measurements. One example is the IDS probe used at Madison and on MRX. Such a probe, however,

would likely exert a significant perturbation on the plasma because of its size. Other spectroscopic diag-

nostic techniques that make local measurements exist as well. CHERS, or charge exchange recombination

spectroscopy, involves injecting a neutral beam of atoms into the plasma. The atoms in the neutral beam

interact with the charges in the plasma and radiate. By having an IDS line of sight perpendicular to the

atomic beam, one can be certain that the observed radiation is coming from the region in which the atomic

beam and the line of sight cross. A similar technique called laser induced fluorescence (LIF) uses a laser

to excite transitions in the plasma. An IDS line of sight perpendicular to the laser beam would also be

capable of making a localized spectroscopic measurement. Both of these techniques are discussed in some

more detail by Hutchinson [61]. Unfortunately, both CHERS and LIF require a significant investment in

costly equipment, and thus would not be practical to implement on SSX in the near future.

6.6 Future Work

Much remains to be done with the IDS instrument experimentally. Thus far, only the C III 229.687 line has

been observed in the plasma, although we have all the equipment necessary to study other UV and visible

lines. Other impurities such as oxygen and nitrogen are known to exist in the IDS plasma. One interesting

study would be to compare flows and temperatures measured by observing light from different atoms. In

the future, it might also be more suitable to dope the SSX plasma with a carbon-containing gas, such as

methane, which would provide better control over the amount of impurity in the plasma.

Of primary importance, however, will be the re-installation of magnetic probes and their use alongside the

spectroscopic measurements. This will perhaps allow the correlation of events such as the bi-directional flows

with magnetic reconnection. Currently, fine magnetic probes to better resolve small-scale magnetic structure

are under development. Secondly, more extensive studies of the plasmas formed after glow discharge cleaning

will be necessary. Preliminary results indicate that the GDC allows the SSX to access lower plasma densities

and higher ion temperatures. It is not yet known, however, how the GDC affects electron temperature. In

general, the details of reconnection in the plasma after GDC remain to be studied.

The Abel inversion discussed in this thesis clearly has only limited utility for determining radial profiles of

flow and ion temperature. Other numerical techniques for interpreting the IDS data should be investigated.

Finally, it will be of great interest to compare the experimental results of SSX with custom simulations.

Collaborations to simulate SSX are already in place with PPPL and the University of Wisconsin, Madison
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through the recently-formed CMSO (Center for Magnetic Self-Organization). In particular, it may be very

interesting to combine simulation results and a spectral emission model to calculate what an IDS system

would theoretically observe, and compare this with what the IDS actually does see.

6.7 Concluding Summary

We have constructed and calibrated a new high-resolution ion Doppler spectroscopy system at SSX. Using

this system, we have measured chord-averaged flows and ion temperatures. We have also made pioneering

measurements of bi-directional flows due to magnetic reconnection in a laboratory plasma. An Abel inversion

of the plasma emissivity has been performed. Now that a significant amount of experience has been gained

with the IDS system at SSX, it is hoped that this will remain a fruitful diagnostic in the future.
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Appendix A

IDS Confidence Check: Calculation of
Collision Frequency

We have been interested in measuring the temperature of the SSX hydrogen plasma by ion Doppler spec-

troscopy using carbon ions. The astute reader might have noted that what really is being measured is the

temperature of the carbon ions, and might be wondering whether the impurity ion temperature Ti,imp mea-

sured through Doppler broadening is a good measure of the majority ion temperature Ti,maj that is what

we are trying to diagnose. This is a legitimate concern which we address in this Appendix.

The question at hand is essentially this: are the carbon ions in thermal equilibrium with the majority

hydrogen ions? We will argue that they are by computing a collision frequency for impurity ion–majority

ion collisions, and showing that the collisions occur faster than any relevant timescale in the plasma. First,

however, we must derive an expression for the collision frequency.

A.1 Derivation of Collision Frequency

The derivation here closely follows that of Hutchinson [61], in particular as outlined in his Problem 6.12.

We will calculate the rate dW/dt at which the impurity ions gain energy from collisions with majority ions.

Then we will take (dW/dt)/kTi,maj as the effective collision frequency1.

We first consider the dynamics of a single collision between a massive impurity ion of mass mi and charge

eZi, and a majority ion of mass mm and charge eZm. The interaction between the majority and impurity

ion is dominated by the Coulomb force. The interaction potential is just

U = − 1
4πε0

ZiZme2

r
= −κ

r
(A.1)

where we define κ ≡ ZiZme2

4πε0
. We consider the majority ion to be scattering off a much more massive impurity

ion. This problem, the Rutherford scattering problem, is treated in most texts on classical mechanics, such

as Thornton [47]. If we assume that the impurity ion is immobile, then from classical mechanics, it is possible

to show by invoking conservation of energy and angular momentum that the momentum p transferred in the
1Since kTi,maj has units of energy, our proposed effective collision frequency has the correct units of time−1.

69



collision is

p =
2κ

vb
(A.2)

where v is the speed of the incident majority ion and b is the impact parameter for the collision. The energy

W transferred in a single collision is just p2/2mi, so

dWindiv =
2κ2

miv2b2
(A.3)

Now, we must find the total energy transferred in unit time when there are many incident majority ions. In

particular, we need to integrate (A.3) over b and v.

To do the integration over b, we will consider an annulus of space with a given impact parameter. The

differential area of this annulus is 2πb db. In unit time dt the effective volume occupied by scattering particles

is v dt. Finally, assuming a Maxwellian speed distribution, the density of ions with speed v is given by f(v) dv,

where

f(v) dv = 4πni

(
mm

2πkTi

)3/2

v2 exp
[
−mmv2

2kTi

]
dv (A.4)

Here we are taking ni and Ti to be the majority ion density and temperature in the plasma. Then, the total

energy gained in unit time is

dW = dWindiv 2πb db v dt f(v) dv (A.5)

Dividing through by dt and integrating over all impact parameters and speeds, we find

dW

dt
=

(4π)2κ2ni

mi

(
mm

2πkTi

)3/2 ∫ ∞

b0

db

∫ ∞

0

v exp
[
−mmv2

2kTi

]
dv (A.6)

Let us first look at the integral over b. We have taken the lower limit to be b0, the closest distance a

majority ion with speed v can approach the impurity ion. Even so, this integral unfortunately diverges. But

should we really be integrating up to b =∞? Indeed not, Debye shielding will prevent the impurity ion from

feeling the electrostatic influence of very distant majority ions. Thus it is customary to cut off this integral

at some maximal bmax. The result of the integral over b is then called the Coulomb logarithm, ln Λ, where

Λ ≡ bmax/b0. The Coulomb logarithm depends on the plasma density and temperature but turns out to

be relatively insensitive even to order of magnitude variations in these parameters. The interested reader is

referred to Goldston [2] for further discussion of the Coulomb logarithm.

The integral over v, fortunately, is much easier to deal with and is found in standard tables. Then,

substituting for κ, we find that

dW

dt
=

(
ZiZme2

4πε0

)2 8πni

mi

(
mm

2πkTi

)1/2

ln Λ (A.7)

Now, dividing by kTi, and rearranging to make the functional dependences as clear as possible, we find the

collision frequency to be

ν =
(

e2

4πε0

)2 8
√

π√
2

Z2
i Z2

m

√
mm

mi

ni

(kTi)3/2
ln Λ (A.8)
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Figure A.1: Collision frequency as a function of density and ion temperature at SSX. The horizontal axis is
plasma density in units of m−3, and the axis running into the page is the ion temperature in eV.

A.2 The Collision Frequency at SSX

We have used A.8 to compute the collision frequency at SSX. From [2], the Coulomb logarithm in our plasma

should be approximately ln Λ ∼ 10. We were able to better estimate the Coulomb logarithm from a formula

given on p. 35 of the NRL Plasma Formulary for mixed ion-ion collisions [66]. That equation was

ln Λ = 23− ln

[
ZZ ′(µ + µ′)
µkT ′ + µ′kT

(
nZ2

kT
+

n′Z ′2

kT ′

)1/2
]

(A.9)

Here the primed and unprimed variables refer to the two species of colliding ions, and µ is the mass of the

ions in units of the proton mass. In performing our calculations, we made a conservative estimate of the

collision frequency by overcalculating the Coulomb logarithm. In particular, we assumed that the densities

of the impurity and majority ions were equal, when this was certainly not the case. This still should not

have affected the Coulomb logarithm by more than a factor of order unity.

For ni = 1015 cm−3 and Ti = 30 eV, we found ν = 3.85×106 s−1. This means the collisions are occurring

several times faster than the 1 µs timescale we are observing at, and also faster than the Alfvén time in the

plasma, τ = vA/L ∼ 2 µs.

Finally, we plot the collision frequency as a function of density and temperature in Fig. A.1. As seen from

the plot, the frequency does drop sharply with increased temperature and decreased density. Thus there

may be some cause for concern as the GDC decreases the plasma density and increases the temperature.
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Appendix B

Broadening in the IDS System

In this thesis we have been discussing an optical diagnostic that measures ion temperature from the width of

an impurity spectral line. Recall the derivation in Chapter 3 of the Doppler broadening due to temperature. Is

Doppler broadening the primary cause of broadening in the C III line we are diagnosing, or are other effects of

comparable importance? Here we address this question by discussing several other broadening mechanisms

and showing that they are negligible. The reader interested in further information about mechanisms of

spectral line broadening is referred to the excellent discussion in Hutchinson [61] and to the book by Griem

[67]. Throughout this appendix, recall that the expected minimum Doppler broadening is ∆λ/λ = 4× 10−5,

as described in Section 3.1.

B.1 Natural Broadening

Atomic states tend to have finite lifetimes. As a consequence, atomic transitions occur; it is such a transition

that gives rise to the C III line we observe with the IDS. But, from the energy-time uncertainty principle

∆E∆t ≥ ~
2

(B.1)

in quantum mechanics, a state with a finite lifetime does not have a definite energy1. According to Hutchin-

son, the relevant lifetime τ for a spectral line that arises from a transition from a given upper atomic level i

is
1
τ

=
1
2

ΣjAij (B.2)

Here, the Aij are Einstein A coefficients for radiative transition from state i to a lower state j, and the

summation is over all lower states that an atom in state i can transition to. Now, since E = ~∆ω, we find

that

∆ω =
1
2τ

(B.3)

Using the fact that ∆ω/ω ≈ ∆λ/λ for small differences, and that ω = 2πc/λ, we find

∆λ =
λ2

4πcτ
(B.4)

1We note that the energy-time uncertainty principle is different from that governing non-commuting operators, time not
being an operator in quantum mechanics.
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Then, using (B.2), it follows that the spread in wavelength due to natural broadening is given by

∆λ =
λ2

8πc
ΣjAij (B.5)

A search of the NIST Atomic Spectra Database at

http://physics.nist.gov/cgi-bin/AtData/main_asd

for all the spectral lines of C III that involve a transition to the 2s(2S)2p level, including the 229.687 nm line

of interest, revealed 109 lines. Surely, not all of these lines contribute to the width of the actual line of interest,

but nonetheless this provides a conservative estimate. For these 109 lines, we found ΣAij = 9.07× 1010 s−1.

Substituting this value into (B.5) gives ∆λ/λ = 2.76× 10−6 for the C III 229.687 nm line. This is an order

of magnitude below the expected Doppler broadening and is thus negligible.

B.2 Pressure Broadening

The Stark effect occurs when an external electric field perturbs the energy levels of some atom, generally

causing the energy levels to be raised as well as spreading out formerly degenerate levels. The Stark effect

is treated in most introductory textbooks on quantum mechanics, such as Shankar [68]. In a plasma, while

there are in general no large-scale electrostatic fields, the electric fields of other charged elements in the

plasma can affect the energy levels of a radiating impurity ion. In a plasma, the Stark effect causes some

spread in energy that broadens a spectral line. This broadening is known as Stark broadening and is usually

lumped with a number of other effects which are collectively known as pressure broadening. These other

effects include resonance broadening, due to the radiator’s interactions with neutral atoms, and van der

Waals broadening, due to interactions with other atoms, but the Stark broadening dominates these effects

in most plasmas [69].

In general, the theory of Stark broadening is very complicated, and even a qualitative discussion of such

calculations is beyond the scope of this thesis. The interested reader is referred to Hutchinson [61] for a

useful summary of the theory, as well as to the books by Griem on this subject [69, 67]. It turns out that

detailed calculations of Stark broadening have been done for a few, mostly hydrogenic, atoms and ions. Some

empirical formulae for extending known Stark calculations to heavier atoms have been formulated, but are

not valid for the plasma parameters in SSX [70].

Even so, we can proceed to make an estimate of the Stark broadening. Griem [69] has calculated Stark

broadening for He II. The Stark width ∆λS is given by

∆λS =
(

ne

C(ne, T )

)2/3

(B.6)

(see Eqn. 14-8 of [69]). Here ne is the electron density and C(ne, T ) is a parameter dependent on the

density and plasma temperature which is the main result of the Stark calculations. For the He II line at

468.6 nm, for T = 80, 000 K and ne = 1017 cm−3, Table 14-8 gives C(ne, T ) = 1.65 × 1016 Å−3/2cm−3;
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these listed parameters most closely match the SSX plasma. From this, given the actual density ne ≈ 10−14

cm−3 in SSX, we find from (B.6) that ∆λS = 3.32× 10−2 Å. For a line of wavelength 229.687 nm, this gives

∆λS/λ ≈ 1× 10−5. This is smaller than the expected Doppler broadening.

Our estimate here is probably a gross overestimate, however. First of all, the calculation was for a

singly ionized helium line, and lines from multiply ionized atoms exhibit less Stark broadening [69]. Ions of

greater charge would tend to further repel oppositely charged particles, and would thus experience smaller

electric fields due to those charged particles. Moreover, the Stark coefficients C(ne, T ) generally increase

with increasing temperature, leading to a decreased broadening. This too makes physical sense; as we found

in Appendix A, increasing plasma temperatures tend to decrease the frequency of Coulomb collisions, and

thus would probably decrease the frequency and strength of perturbing interactions giving rise to Stark

broadening. From this, we can thus conclude that pressure broadening for the C III 229.687 nm line in SSX

should be negligible.

B.3 Zeeman Broadening

The Zeeman effect, like the Stark effect, spreads out energy levels in an atom, but due to a magnetic field.

Similarly, the Zeeman effect can give rise to the Zeeman broadening of a spectral line in a plasma. Griem

finds that for lines from hydrogenic ions, the minimum magnetic field Bc for which magnetic effects become

comparable to Doppler broadening is given by

Bc ≥
(

mekT

2mrEH

)1/2

Z2 ni + nf

n2
i n

2
f

e

a2
0

(B.7)

(see Eq. 411 of [67]). Here me is the electron mass, mr is the radiator mass, EH is the ground state energy

of hydrogen (13.6 eV), ni and nf are the principal quantum numbers of the initial and final levels of the

transition, and a0 is the Bohr radius. C III is not hydrogenic, but this formula should still be useful for

estimation. For kT ≈ 20 eV at SSX, and for ni = nf = 2 for the C III 229.687 nm line, we find from (B.7)

that Bc ≥ 9.9 × 104 G. Since the magnetic fields at SSX are about 1 kG, they are almost two orders of

magnitude below the critical field. Thus, Zeeman effects should be negligible as well.
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Appendix C

Atmospheric Effects on the Index of
Refraction

C.1 The Index of Refraction of Air

In any medium other than a vacuum, light propagates not at speed c but at speed c/n, where n is the

index of refraction. For this reason, if a source is generating electromagnetic radiation at frequency ν, the

wavelength of the radiation will be given by λ0/n, where λ0 is the vacuum wavelength.

Since ion flow measurements in the IDS system under construction at SSX depend on observations of

the plasma along a single line of sight, an absolute wavelength calibration is necessary. If changes in the

index of refraction due to fluctuations in the temperature, pressure, or relative humidity of the laboratory

air sufficiently affect the wavelength of the light emitted from the plasma, erroneous measurements of flow

would therefore result. Thus it behooves us to at least estimate the magnitude of these effects to determine

whether they will need to be accounted for. We note that the current dispersion D of the spectrometer is

0.032 nm/mm. Our PMT array has pixels 1 mm wide, but exit optics magnify the spectrometer output by

a factor of 4. Thus we should be concerned if atmospheric fluctuations cause the wavelength to change by

0.008 nm or more.

We do not attempt to compute n in air from first principles. Two different equations have been computed:

the Edlen equation and the Ciddor equation. Both, however, are difficult to use. A more thorough discussion

of these equations may be found at on the NIST website at

http://emtoolbox.nist.gov/Wavelength/Documentation.asp

In this discussion we use the results in the CRC Handbook, computed from the Edlen equation [71].

There, results are given for (n − 1) × 108 in dry air at 15 ◦C and 101.325 kPa, containing 0.045% CO2 by

volume. At other temperatures and pressures, the tabulated values are to be multiplied by

p[1 + p(60.1− 0.972t)× 10−10]
96095.43(1 + 0.003661t)

(C.1)

where t is in ◦C and p is in Pa. We may thus use this result to examine the effects of pressure and

temperature.
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To approximately consider the effects of relative humidity, we make use of the shop-floor formula given

in the NIST documentation. For p in kPa, t in Celsius, and relative humidity RH, the approximate index

of refraction is

n = 1 +
7.86× 10−4p

273 + t
− 1.5× 10−11RH(t2 + 160) (C.2)

Using this, we account for relative humidity.

C.2 Pressure Effects

If we define X ≡ (n− 1)× 108, we can use the Chain Rule to get

dλ

dp
=

dλ

dn

dn

dX

dX

dp
(C.3)

Assuming that the pressure in the lab is 1 atm (101.325 kPa), the temperature is 20 ◦C, and that we are

looking at 230 nm light (∼ 229.7 nm), we find that n = 1.0003027 and that

dλ

dp
= −6.8733× 10−7 nm/Pa. (C.4)

So, if we expect fluctuations on the order of 3 inches of mercury, or approximately 10 kPa, we can estimate

∆λ =
dλ

dp
∆p = 6.8733× 10−3 nm (C.5)

Such a dramatic pressure variation is unlikely, except in the event of very severe weather such as a hurricane.

We conclude from this that the effect of pressure fluctuations should be less than our resolution.

C.3 Temperature Effects

In a similar way we can account for temperature variations. At the same conditions as listed above, we find

dλ

dt
= 2.3807× 10−4 nm/◦C (C.6)

So, if we estimate lab temperature fluctuations to be about 10 ◦C, or 18 ◦F, which is a conservatively large

estimate, we find ∆λ = 0.00238 nm.

C.4 Humidity Effects

We use the shop-floor formula given by NIST as described in §1. Then,

dλ

dRH
=

λ0

n2
· 1.5× 10−11(t2 + 160) (C.7)

Making an order of magnitude estimation, the term involving λ0 is of order 102. Suppose also that t2 +160 ≈

5× 102. Then we find dλ
dRH ≈ 10−6 nm/%RH. Clearly, this is negligible.

We confirm this using the NIST index of refraction Edlen equation calculator, at the webpage previously

listed. At 300 nm, 20 ◦C, and 1 atm, an increase in the relative humidity from 0% to 100% increased the

wavelength by 0.00023 nm, which is consistent with our estimate.
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C.5 Conclusions

In conclusions, we find that the atmospheric effect which is most likely to disturb our measurements is

pressure, followed by temperature. As long as the pressure in the lab remains fairly constant, we should

have no problems. We have not, however, considered the possibility of simultaneous changes in temperature

and pressure, in which case the changes in n due to each could be additive.
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Appendix D

Codes for Abel Inversion

We exhibit the main codes used for the Abel inversion described in Ch. 5. The main code is masterabel2.pro:

; Jerome Fung
; 2/21/06

pro masterabel2, rundate, bintime, saveout = saveout

; compute number of rows
nelts = 200 ; data count starts 20 us before t = 0
bintime = float(bintime) ; just to be safe
nrows = floor(nelts/bintime)
nchords = 10.0
d = 1/nchords

; obtain file names
bintimestr = strtrim(string(floor(bintime)), 2)
impfilename = ’./output/’+rundate+’/abelinput’+bintimestr+’.dat’
stdfilename = ’./output/’+rundate+’/abelstdev’+bintimestr+’.dat’

abeldata = fltarr(nchords, nrows)
abelstds = fltarr(nchords, nrows)
abelresult = fltarr(nchords, nrows)
abelreserr = fltarr(nchords, nrows)
rundate2 = ’’

; read input from abelbinner.pro

openr, lun, impfilename, /get_lun
readf, lun, rundate2 ; get the run date (not needed now)
readf, lun, abeldata

free_lun, lun

openr, lun, stdfilename, /get_lun
readf, lun, rundate2 ; get the run date (not needed now)
readf, lun, abelstds

free_lun, lun

print, ’Data read in’
timebase = findgen(nrows)*bintime - 20
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; Calculate Abel inversion matrix
S = abelinvmatrix(nchords)
sinv = invert(s)
sinv2 = sinv^2

; *OPEN GREAT LOOP*

for maincount = 0, nrows -1 do begin
print, ’Analyzing t = ’, timebase[maincount]
abelinput = abeldata[*, maincount]
abelinstd = abelstds[*, maincount]
abelinstd2= abelinstd^2
abelresult[*, maincount] = (d/2.0)*sinv##abelinput ; doing the inversion
abelreserr[*, maincount] = sqrt((d^2/4.0)*sinv2##abelinstd2)

endfor

; *CLOSE GREAT LOOP*

; write the output
if keyword_set(saveout) then begin

outfilename = ’./output/’+rundate+’/abelresult’+bintimestr+’.dat’
outerrsname = ’./output/’+rundate+’/abelerrors’+bintimestr+’.dat’

openw, lun, outfilename, /get_lun
printf, lun, rundate
printf, lun, nrows
printf, lun, bintime
printf, lun, abelresult

free_lun, lun

openw, lun, outerrsname, /get_lun
printf, lun, rundate
printf, lun, nrows
printf, lun, bintime
printf, lun, abelreserr

free_lun, lun

endif

end

Function called by above code to calculate the matrix [S] of Equation (5.7): abelinvmatrix

function abelinvmatrix, dim

; calculates abel inversion matrix according to Cho/Na paper

d = 1 / float(dim)

; first calculate theta_ij and p_ij according to eqns. 8 and 9
; Recall that IDL convention for matrices [col, row].
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; Set up n x n matrices
theta = double(fltarr(dim, dim))
p = fltarr(dim, dim)
s = fltarr(dim, dim)

; double loop to calculate theta and p
for i = 0, dim-1 do begin

for j = 0, dim-1 do begin
if i le j then begin

theta[j,i] = acos( i / (j+1.0))
if i ne 0.0 then begin
p[j,i] = (1/2.0)*((j+1)*d)^2*theta[j,i] - $

(1/2.0)*(i*d)^2*tan(theta[j,i])
endif else begin ; account for i = 1 case
p[j,i] = (1/2.0)*((j+1)*d)^2*theta[j,i]
endelse

endif else begin
theta[j,i] = 0
p[j,i] = 0

endelse
endfor

endfor

; double loop to calculate S_ij now (eqn. 10)
for i = 0, dim-1 do begin

for j = 0, dim-1 do begin
if i le j then begin

if (i lt (dim-1)) AND (j gt 0.0) then begin
s[j,i] = (p[j,i]-p[j,i+1]) - (p[j-1,i]-p[j-1,i+1])

endif
if (j eq 0.0) then begin ; these two cases at boundaries of matrix

s[j,i] = p[j,i]-p[j,i+1]
endif
if (i eq dim-1) then begin

s[j,i] = p[j,i] - p[j-1,i]
endif

endif else begin
s[j,i] = 0

endelse
endfor

endfor

return, s

end
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