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Abstract

The Field Reversed Configuration (FRC) is a novel high β magnetic confinement scheme,
which has not been as extensively investigated compared to other schemes like the toko-
mak. The Swarthmore Spheromak Experiment (SSX) forms hybrid spheromak/FRCs using
the merging spheromak technique. A soft x-ray detector and a Mach probe are valuable
diagnostics, especially for measuring the various forms of energy that are released when the
two spheromaks merge in a magnetic reconnection process. By comparing the soft x-ray
detector data to simulated emission spectra, electron temperature can be inferred. This
analysis yields Te = 30±10 eV for SSX, where the large uncertainty reflects the uncertainty
in the impurity content of SSX. There is found to be more heating, apparently due to more
reconnection, when the merging spheromaks are of counter-helicity rather than when they
are co-helicity. The Mach probe has measured azimuthal ion velocity, which is probably
caused by the J × B force.
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Chapter 1

Introduction

Simultaneously responding and contributing to the electromagnetic field, charged particles
in a plasma are dynamically entangled with the field. In tracing these entanglements,
plasma science loses the innocence of closed-form exact solutions and the simplicity of
separating action from reaction. However, what is lost in simplicity is gained in richness.
The complexity of the particle-field coupling leads to a state of matter that supports an
impressive capacity for global structure.

Even if plasma dynamics were not interesting, we could not ignore the plasma state of
matter because, although rare on earth, it constitutes the bulk of the universe. Due to the
disparity between the small amount of plasma we directly experience and the large amount
that exists in space, many basic astrophysical processes are not understood.

One of these problematic processes is coronal heating. At a temperature of 5400 K, the
surface of the sun is hot indeed. Even hotter, however, is the coronal region, just beyond the
surface. This region can reach temperatures greater than 1,000,000 K, according to emission
spectroscopy. Normal thermodynamic processes do not explain this heating–it would be like
the air above the 300 K ocean being 60,000 K. What does explain it then? One hypothesis
is that the heating is caused by magnetic reconnection, a process in which two oppositely
oriented magnetic fields come into contact, as shown in figure 1.1. The topology of the field
lines changes at this event, and the opposing field lines annihilate. The energy that was
once stored in the magnetic fields is converted into other forms of energy, one of which is
heat.

The new field of physics that has emerged to test astrophysical hypotheses like this one is
called laboratory astrophysics. Astrophysicists seek to understand plasma energetics and
dynamics in the universe, by replicating these processes in the laboratory. The driving
notion is that experiments can be well-scaled, where size notwithstanding, certain dimen-
sionless parameters can be the same in the laboratory as they are in space. With these
dimensionless parameters held constant, the necessarily smaller scale of the laboratory
ought not to shroud the fundamental physical processes. In the laboratory, the plasma
can be probed and controlled in ways that would be impossible in a solar-scale plasma.
One of these laboratory astrophysical experiments is the Swarthmore Spheromak Experi-
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ment (SSX), which was developed to replicate the magnetic reconnection processes that are
supposed to occur in the solar corona.

As laboratory astrophysics experiments seek a fundamental understanding of astronomical
processes, a different breed of plasma experiments is after something different: power.
These experiments comprise the fusion program, and their objective is essentially to build
a miniature star on earth, to make fusion a viable energy source. The challenge for fusion
scientists is confinement–it is pretty easy to make a fusion bomb, but much harder to
confine the fusion reaction into a regulated reactor. Since fusion reactions require a plasma
with a minimum temperature of about 100 million K, the reaction cannot be confined
by physical walls. The most successful approach has been Magnetically Confined Fusion,
whereby the plasma containing the reactants is confined in a magnetic bottle. This bottle,
of course, needs to be generated by an electrical current either inside or outside the plasma,
and various types of bottles have been tried. The Swarthmore Spheromak Experiment is
investigating a novel confinement scheme called Field-Reversed Configuration (FRC), in
which the confining magnetic field is sustained not externally but by the plasma itself.

Although plasma in the laboratory is much easier to observe than astrophysical plasma, to
extract information from it can still be a challenge. A plasma has many important qualities
and quantities, such as magnetic field, temperature, density, ion flow, and current flow, but
there is no single omniscient diagnostic. Since magnetic reconnection is a magnetic event
and FRC is a magnetic confinement scheme, the magnetic probe array on SSX is a chief
diagnostic. This thesis will focus on two other complementary diagnostics, namely the soft
x-ray (SXR) detector and the Mach probe, both of which I designed and built for SSX.
Those who are unfamiliar with plasma physics might prefer to read chapter 3 first.

Figure 1.1: Magnetic reconnection. The large arrows represent the direction of
flow and the directed curves are magnetic field lines. Two opposing magnetic fields
flow into each other and the fields are annihilated. The magnetic energy is released
in a reconnection outflow (left and right in this diagram) and heat. This process is
explained in detail in chapter 3.3.
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Chapter 2

Toward a Magnetically Confined
Fusion Reactor

The development of controlled nuclear fusion has a rich interaction with basic plasma sci-
ence. The ambition of achieving an inexhaustible fuel source has prompted much of the basic
plasma research in the twentieth century. Conversely, advances in the science of controlled
fusion have frequently been the products of advances in the understanding of fundamental
plasma processes.

Two light nuclei can fuse together to form a heavier nucleus and a free energetic nucleon.
This process is the core physical reaction of the fusion reactor. Since fusion is a nuclear
reaction, large amounts of energy are released, MeVs per reaction. The catch is that, since
nuclear forces are short-range, the incoming nuclei must have large kinetic energies, at least
20 keV to overcome the Coulomb repulsion between the two positively charged nuclei. This
means that in order to have a significant reaction rate, the reactants must be very hot, at
least 10 keV (100 million K). A steady state reactor requires a temperature of about 30 keV
(350 million K). At these temperatures, matter is a very hot plasma. This is the basis of
the collusion between fusion energy science and plasma science.

2.1 Confinement

The requisite 10 keV engenders the very difficult containment problem: in what bottle
should this very hot plasma be stored? A solid container is not practical, because the
contact between the container and the plasma would cool the plasma and damage the
container. There are three practical approaches.
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1. Gravitational Confinement Fusion

A strong gravitational well is the most effective confinement scheme, as all matter is pulled
to its center. This is the method of the sun and stars. However, since the gravitational
force is so weak, in order to trap fast particles the gravitational well must be generated by
an extraordinary quantity of mass. In other words, only stars can use this method.

2. Inertial Confinement Fusion (ICF)

A small container called a “hohlraum” can be imploded by a laser, heating and compressing
a fuel pellet within. If the hohlraum is imploded very symmetrically, fusion reactions can
occur in the plasma before the constituent materials explode. If such a device were large
scale and used a fission explosion instead of lasers for the implosion, it would be a hydrogen
bomb. The major challenge for ICF is the implosion symmetry must be so great that over
two-hundred very large lasers must be used, and even the theoretical Q (defined to be the
ratio of output power to consumed power) is not much over 1.

3. Magnet Confinement Fusion (MCF)

MCF is the most developed of the three types of containment, and the only type that we
will deal with in this thesis. The essence of MCF is to exploit the fact that a plasma is
composed of charged particles and can hence be held in a “magnetic bottle,” if the “bottle”
design is clever enough not to have many leaks. By a mathematical theorem, there is no
purely electrostatic container for a plasma that is stable.

Magnetically confined plasmas have several important parameters. There are separate ion
and electron temperatures, Ti and Te respectively, as the two species often do not equi-
librate. In this thesis, we will not be careful to distinguish the two temperatures. The
confinement time τ measures how long the magnetic “bottle” will stay intact before turbu-
lence or other transport transport processes rip it apart. The kinetic pressure is the product
of the density n and T, and the magnetic energy density B2

2μ0
can be thought of as a confining

pressure. The ratio of kinetic pressure to magnetic pressure is called β. Though β must
be less than 1 for a confined plasma, a high β helps a plasma reach higher temperatures,
since often the magnetic field is limited by the strength of the physical materials. The triple
product nTτ is a good measure of how much fusion power is produced.

2.2 Fusion Reactions

There are several different fusion reactions that could be used in a fusion reactor, most
having the deuterium and tritium isotopes of hydrogen as reactants. The ones of interest
are [2]:
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p + p −→ D + e+ + neutrino + 1.4 MeV (2.1)

D + T −→ He4 (3.5 MeV) + n (14.1 MeV) (2.2)

D + D −→ T (1.0 MeV) + p (3.0 MeV) (2.3)

D + D −→ He3 (0.8 MeV) + n (2.5 MeV) (2.4)

D + He3 −→ He4(3.7MeV) + p (14.7 MeV) (2.5)

Additionally, a combination of reactions 2.2 and 2.3 is a good candidate for a reactor.
In order for a fusion reaction to generate a significant amount of energy, it must have a
large reaction rate, defined to be 〈σv〉, where σ is the cross-section of the reaction and <>
indicates an average over velocities. It is important to remember that the temperature of
a plasma indicates not the speed of all the particles in the plasma, but the distribution
of velocities, which in thermal equilibrium will be a Gaussian. Thus the reaction rate is
nonzero (although possibly negligible) for all temperatures, but it is a strong function of
temperature. This is what allows us to speak of a “minimum” temperature needed for a
fusion reaction.

The various fusion reactions are suitable for different devices. Reaction 2.1 is the primary
fusion reaction on the sun, but its cross-section is far too small to be suitable for any
devices on earth. Reaction 2.2 is what the first engineered fusion devices have used, since
it has the largest cross-section by far. It has the disadvantage of requiring tritium as a
reactant. Since tritium is radioactive, an extra class of concerns are necessary to consider
when designing a D-T reactor. Reaction 2.3 has a smaller cross-section than 2.2, but it
does not require tritium as a reactant. The tritium that is a product of this reaction can
then be burned in a D-T reaction. Reaction 2.4 has a smaller cross-section still, but has
the advantage that it involves no radioactive element as either a reactant or a product.
Reaction 2.5 is an alternate non-radioactive fusion reaction, with a larger cross-section than
2.3 or 2.4. Reaction 2.5 is especially suited for confinement schemes with high β, such as
Field-Reversed Configuration. Although He3 is not found on the earth, it could be obtained
from the lunar surface, which contains a few parts per billion He3 due to the solar wind.

2.3 Torus Topology

The basic idea behind magnetic confinement is very easy if we grossly simplify the physics.
Magnetic field lines are approximately guiding-center trajectories for particles in a plasma.
This fact is plausible from the Lorentz force law (equation 3.3) which, if the fields are
constant, directly predicts that particles will orbit magnetic field lines. In this picture, the
particles’ freedom of motion has been confined in two out of three dimensions, although it
can still move freely along the magnetic field line about which it is circling. Closing the
field line, as shown in figure 2.1, confines the particle in the last dimension. As discussed
below, some important physics are left out here. Nevertheles, this shows why the torus,
a.k.a. the dougnut, is the natural shape for a fusion reactor.

5



Figure 2.1: Left: an ion is confined to a magnetic field line. The radius of the
helices in which it is travelling is the Larmor radius rL. Right: To confine the
particle in the remaining dimension, the confining field line is chosen to be closed.

A dougnut is a compact surface of genus 1, since it has 1 hole. One might wonder if it
is possible to confine particles within a compact surface of genus 0, that is, to within a
dougnut-hole. After all, a furnace can reach higher temperatures with a smaller surface
area to volume ratio, and surfaces of genus 0 tend to have the smallest surface area. It is
a basic topological fact that this confinement scheme is not possible. In order to confine a
particle to a torus, we would need to cover the surface of the torus with a magnetic field
that is everywhere tangent to the torus. If we think of the magnetic field as an abstract
vector field, this is equivalent to covering a dougnut with sprinkles of various lengths such
that the sprinkles join tip-to-tail. Furthermore, since magnetic fields are always continuous,
the tangent field covering the torus has to be continuous. However, a mathematical theorem
says that any continuous vector field tangent to a compact surface of genus 0 has at least
two degenerate points, which is to say two points where the sprinkle size is zero. At these
points, there would be no confining magnetic field, and particles would escape. Hence a
surface topologically equivalent (diffeomorphic) to a sphere could never magnetically confine
a plasma.

This is why the magnetic topology of confinement schemes are of genus 1. Note that this
argument outrules schemes with genus 0 magnetic topology, but leaves open the possibility
of a genus 1 magnetic structure framed in a physical container of genus 0. We will see that
this possibility is very real.

2.4 The Tokamak

Unfortunately, the simple picture of closed magnetic field lines forming a torus, about which
ions and electrons circle, leaves out some important physics. When a magnetic field line is
bent, other forces arise, which act on the particle’s guiding centers, namely curvature drifts
and ∇B drifts. A successful confinement scheme must find a way to neutralize these other
forces and stabilize the confinement.
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The tokamak is the most developed among these schemes. The tokamak concept stabilizes
the confinement by having the magnetic topology be comprised of both toroidal and poloidal
fields. Toroidal refers to directions traced out by circles on a dougnut enclosing the dougnut-
hole, whose axis is the axis of the torus. Poloidal fields, on the other hand, pass through
the dougnut-hole. The sum of these two fields are magnetic field lines that circle in both
directions, that toroidally orbit the dougnut-hole but also “twist.” The helical motion of
the particles causes the curvature drifts to be neutralized.

An axisymmetric geometry implies that toroidal fields are generated by poloidal currents
and vice-versa. In a tokamak, electric currents in poloidal coils outside the plasma produce
the toroidal field, typically 5-10 T [2]. The poloidal fields are harder to produce because
the current that generates them must be inside the plasma. A current (typically 15-25 MA
[2]) can be induced in the plasma by a steadily increasing current in an external solenoidal
coil, effectively making the plasma the secondary in a transformer current. The external
solenoid is located in the hole of the dougnut.

Since plasma is slightly resistive, the induced toroidal current also heats the plasma. This
is called ohmic heating. However, since in plasma, ρ ∝ T− 3

2 , ohmic heating is negligible
above 2-3 keV. Above this, auxiliary heating methods are necessary, if a plasma is to reach
the 10-30 keV required for fusion. These methods include the injection of energetic ions,
rf-waves, and heating by fusion itself, if the reaction rate is large enough.

A persistent problem in the development of controlled fusion and the tokamak in particular
has been turbulence. No confinement scheme can be perfect, as Coulomb collisions will
always lead to diffusivity. Fortunately, the effects of diffusive transport are relatively benign.
For many years, magnetic confinement experiments suffered from the so-called “anomalous
transport” problem, in which observed transport exceeded theoretically predicted transport
by one or two orders of magnitude. This discrepancy turned out to be due to turbulence,
large scale instabilities in the plasma. A key task for fusion science researchers is to find
ways to tame these instabilities.

The Russian physicists Tamm and Sakharov invented the tokamak concept in 1950. Toka-
mak is a Russian acronym for “toroidalnaya kamera i magnitnaya katushka,” or “toroidal
chamber and magnetic coil.” After the successful Russian T-3 experiment in the 1960’s,
the tokamak was embraced by the US, Europe, and Japan, and the tokamak was scaled
up and optimized. Tokamak progress has been steady ever since. The two largest toka-
maks, TFTR at Princeton and the Joint European Torus in the UK, have approached the
break-even condition Q = 1. ITER, latin for ’the way’, will be an international effort at a
tokamak that is hot enough to reach ’ignition,’ the point at which the fusion reactions in
a plasma can heat the plasma instead of auxiliary methods. Construction for ITER begins
in 2004. A commercially viable reactor prototype is forecasted to be built by 2030.

Nevertheless, in the early ’90’s the fusion science community decided that confinement con-
figurations besides the tokamak should be explored. Since it appeared that a commercially
viable reactor was still many years down the road, there was still time for basic plasma
research to make contributions. Furthermore, whereas the β parameter for a tokamak is
stuck at 5-10 %, β for some of the alternate schemes approaches 100%, making them a
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practical choice for ’advanced’ fusion reactions (i.e. reactions not the D-T reaction).

2.5 The Spheromak

To stabilize the tokamak with a poloidal magnetic field that is sustained from a current
inside the device is to exploit one of the most useful properties of plasma: that the same
charges which respond to the electromagnetic field also create a field of their own. A logical
extension of this idea is to try to form a confining magnetic bottle that is sustained entirely
from currents in the plasma, a sort of equilibrium between plasma charges and field. Of
course, the tokamak could never be one of these equilibrium configurations, since its basic
toroidal field is generated by external poloidal coils. In fact, even the toroidal current in a
tokamak requires a hefty external current drive through the center of the device.

However, such equilibrium configurations do exist. Among these, one of the most famous
is the spheromak. Like the tokamak, the spheromak’s magnetic structure is a torus. Also
like the tokamak, the spheromak is a low-β configuration (β ≈ 10%). Unlike the tokamak,
however, a spheromak relaxes to equilibrium within a simple container, not a toroidal one.
Hence a spheromak is a member of the compact toroidal equilibrium family. It is shown
below in figure 2.2.

Figure 2.2: A cross-section of the spheromak. The field lines in the page of the
page are poloidal, and the field lines which cut through the page are toroidal.

A spheromak can be described by ideal magnetohydrodynamics (MHD). Discussed in Chap-
ter 3.1, ideal MHD is a simple set of fluid equations describing plasma. The spheromak is
a series of solutions to the Grad-Shafranov equation, which is an differential equation that
describes axisymmetric plasma equilibria in the MHD limit.
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As discussed in (Chapter 3.2), in the ideal MHD limit, magnetic flux is “frozen” into the
plasma fluid. This means that in a spheromak, poloidal and toroidal magnetic fields sustain
each other. Toroidal (resp. poloidal) magnetic fields are frozen into toroidal (poloidal)
currents, which generate poloidal (toroidal) fields.

2.5.1 A Force-Free State

Let us explore the sort of equilibrium that describes a spheromak. Azimuthally-symmetric
plasma equilibria that can be analyzed in the MHD framework are in general called Grad-
Shafranov equilibria. However, the low-β spheromak satisfies an even stronger equilibrium
condition.

A key notion to understanding the spheromak is helicity, defined to be

K =
∫

A · Bd3r. (2.6)

Roughly speaking, the helicity of a spheromak describes how the toroidal and poloidal mag-
netic fluxes are linked–if you keep the poloidal flux the same and reverse the toroidal flux,
the sign of K reverses. The reason helicity is an important concept is that it is a conserved
quantity in both microscopic instabilities and magnetic reconnection [4]. The equilibrium
condition can be derived by minimizing the total magnetic energy W =

∫
d3rB2/2μ0 sub-

ject to the constraint that helicity is conserved. Note that it is acceptable to minimize W
instead of the total energy W + nkT , because the spheromak is a low β configuration, so
nkT � W . The Lagrange multiplier solution to this variational problem is [4]

δW − λδK = 0 (2.7)

=⇒
∫

B · δBd3r − λ

∫
(A · δB + B · δA) = 0 (2.8)

=⇒
∫

B · ∇ × δAd3r − λ

∫
(A · ∇ × δA + B · δA) = 0, (2.9)

using δB = ∇× δA. Now we can use integration by parts on equation (2.9). If we assume
that B ·ds = 0 on the surface of the spheromak (magnetic flux does not poke out), then we
have ∫

(δA · ∇ × B)d3r − λ

∫
B · δAd3r = 0, (2.10)

or ∫
(∇× B − λB)δAd3r = 0. (2.11)

The integrand must vanish since δA is arbitrary. Thus we have the condition

∇× B = λB. (2.12)
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Magnetic field structures that obey this equation are called Taylor states. An important
property of Taylor equilibria is manifest if we use Ampere’s Law to rewrite the equilibrium
condition (equation 2.12) as

μ0J = λB. (2.13)

What this equation implies is that J × B = 0, which is the definition of a force-free equi-
librium configuration. Looking at equation (3.6), we see why the term force-free is used:
if the configuration is steady-state and there is no pressure, then the force-equation for a
conducting fluid reduces to J × B = 0. The parameter λ has units length−1 and functions
as an eigenvalue.

2.5.2 Spheromak Formation

(a) (b) (c) (d)
10 kV

Coil
Gas Stuffing

Plasma

Plasma

Gun

Poloidal Field

Toroidal Field
Field

Field

Current

Puff

Figure 2.3: Spheromak formation

In SSX, two spheromaks are formed simultaneously, on either side of the device. A common
way of forming spheromaks, which is the way they are generated in SSX, is with a magne-
tized coaxial gun. This process is illustrated in figure (2.3). In figure (2.3a), a coil outside
the gun generates a magnetic field in the chamber called the stuffing field. The cylindrical
object in the chamber is the center electrode, which consists of a conductive copper shell
surrounding a highly permeable material.

After the stuffing field has soaked through the flux conserver, a puff of pure hydrogen gas
is allowed to fill the gun chamber. In figure (2.3b), the capacitor banks fire, and the gun
receives a large negative potential. The hydrogen gas is ionized, a a large inward-pointing
E field arises, driving an inward-pointing J. Furthermore, as a large current flows leftwards
through the gun, this current also generates an azimuthal B field in the gun chamber. Using
equation (3.6), we see that J × B is a force. Since in this situation, J is radial and B is
azimuthal, J×B is axial, and the plasma is pushed out of the gun, distending the stuffing
field (figure (2.3c). The poloidal magnetic field is inherited from the stuffing field. Finally,
in figure (2.3d), the spheromak breaks away from the coaxial gun. The handedness of the
spheromak refers to the handedness of the toroidal field with respect to the poloidal field.
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2.6 Field Reversed Configuration

Like the spheromak, the Field Reversed Configuration (FRC) [10] is a compact toroidal
equilibrium state. The topological difference between a spheromak and an FRC is that
whereas a spheromak has a strong toroidal magnetic field, an ideal FRC has no such toroidal
field–the magnetic field of an ideal FRC is entirely poloidal.

The Field Reversed Configuration is a potentially advantageous containment scheme. Be-
cause field-reversed configuration has a near unity β, it is suitable for achieving the high
temperatures necessary for advanced fusion reactions, like the D−He3 (equation 2.5) reac-
tion.

However, the FRC is only a suitable confinement scheme if it is stable in the MHD regime
(see chapter 3.1 about MHD). Diffusion makes any confinement scheme imperfect, but MHD
instabilities can be prohibitively deleterious, threatening the global magnetic structure. Of
course, in plasma physics, stability cannot be thought of in black-and-white terms, like a
ball either on a hill or in a valley, as the terrain has far too many dimensions. Hence the
stability question is one of degree.

One way to observe FRC stability is to observe FRC modes. Like the spheromak, the FRC
is a Grad-Shafranov equilibrium state, and there are a series of FRC modes which solve
the differential equilibrium equation. The m = 0 mode is the basic FRC mode, which is
potentially stable. The m = 1 mode is called the tilt mode, and an unstable m = 0 FRC
can “roll over” into this tilt mode if it is unstable. Whether the plasma configuration in
SSX-FRC is an m = 0 FRC or a m = 1 tilted FRC can be observed using the magnetic
probes.

Field Reversed Configuration has an outstanding discrepancy between theory and exper-
iment. MHD and kinetic simulations predict that FRCs should be very unstable to the
tilt mode (see diagram in final draft) [13]. However, actual experimental FRCs are anoma-
lously resistant to this instability [11] [12]. There must be a stabilizing mechanism in an
experimental FRC that was not included in these simulations.

Recent calculations [14] [15] from a hybrid model (fluid electrons, particle ions) have found
that this stabilizing mechanism might be equal and opposite toroidal magnetic fields or
ion velocities that emanated spontaneously in a simulated FRC. One of the purposes of
SSX-FRC is to see what sort of stabilizing effect the addition of a toroidal field has on an
FRC.

2.6.1 Merging Spheromak Technique for FRC Formation in SSX

The merging spheromak technique for FRC formation was invented at the the TS-3 device
at the University of Tokyo [6]. Two spheromaks are formed on either end of the device, with
opposing helicities, so that the two spheromaks have both opposing toroidal and poloidal
magnetic fields. A schematic of is shown is shown in figure 2.4. Traveling towards each other
at the Alfvèn speed, they intersect at the midplane, at which point magnetic reconnection
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occurs. They found that the opposing toroidal magnetic flux is essentially annihilated
entirely if the two initial spheromaks are equal in magnitude. However, the poloidal flux is
only partially annihilated. The reconnected poloidal flux that is not annihilated forms an
FRC. This is called the merging technique for FRC formation.

At SSX-FRC, we actually do not find that the opposing toroidal flux annihilates [44]. An
FRC with residual toroidal flux is called a hybrid FRC [9] state.

Figure 2.4: Left: A side view of an FRC structure in SSX. Actually, this is a hybrid
FRC. If it were a pure FRC, there would be no toroidal (azimuthal) field. Right:
An end view of SSX. The slanted dashed line is the initial line of sight of the SXR
detector, though in the data presented in this thesis, it is looking straight through
the midplane.

The usual technique for FRC formation is the field-reversed theta-pinch method, in which a
strong azimuthal current is turned on and then sharply reversed. As the axial magnetic field
reverses, the magnetic field lines connect to form an FRC. A weakness of the theta-pinch
method is that it produces small amounts of magnetic flux, not more than tens of mWb
[16]. It also typically produces plasmas with small s, where s is approximately the number
of ion gyroradii in the minor radius of the device. A reactor-grade plasma will need to have
Webers of magnetic flux [16] and large s. The merging spheromak technique allows the
large s region to be explored.

Since the two spheromaks start out with opposite helicity, and helicity is conserved, the
resulting FRC has helicity 0. On the other hand, if we set the device so that the helicities
of the two spheromaks are the same, then instead of partially annihilating each other, the
two spheromaks relax into one larger spheromak [8].

2.7 Swarthmore Spheromak eXperiment: the Device

The Swarthmore Spheromak Experiment is an eight year old device, originally built to
study the magnetic reconnection of two spheromaks. In the past year, it has been modified
to observe FRC stability using the merging spheromak technique. The new experiment is
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called SSX-FRC (though we still call it SSX for short).

The SSX vacuum tank is a stainless steel right cylinder 0.60 m in diameter, with ports for
diagnosis on three axial planes, designated east, midplane, and west. The vacuum pump
is an oil-free cryogenic system, which maintains a pressure of about 2 × 10−7 torr. It has
two identical spheromak sources, which generate spheromaks by the method discussed in
chapter 2.5.2. The two guns are powered by two high voltage (10 kV) pulsed power supplies.
Within the steel vacuum tank is a 0.4 m copper flux conserver, which is the vessel in which
the plasma is contained.

A typical SSX-FRC plasma has 3-4 mWb poloidal flux, 1 kG edge field, 1 ×1015 cm−3

density, 30 eV temperature, and s > 10 [8].

+z

+�

ˆ

ˆ

Figure 2.5: A photo of the SSX vacuum chamber with its many diagnostics. A
cylindrical coordinate system puts the z-axis along the axis of the cylindrical cham-
ber and theta as the toroidal coordinate.

In addition to the soft X-ray detector and the Mach probe, diagnostics on SSX include a
He-Ne (633 nm) interferometer, which measures line averaged density; a bolometer, which
measures total radiated power; a vacuum ultraviolet spectrometer; and the several magnetic
probe arrays (600 coils). The vacuum ultraviolet spectrometer differs from the SXR detector
in that its spectrum is softer and its bandwidth, while adjustable, is much narrower. A
screen room protects the data collection electronics from electromagnetic noise.

A novel piece of hardware that SSX-FRC has is a Reconnection Control Coil (RCC), which
is a toroidal coil in the vacuum chamber. This coil provides an axial magnetic field of up
to 700 G (on axis). Its purpose is to inhibit magnetic reconnection. By increasing the RCC
field, one can control the reconnection and investigate the stability of a non-ideal FRC with
a residual toroidal field.
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Chapter 3

Some Basic Results from Plasma
Physics

Plasma is frequent called the fourth state of matter, after solid, liquid, and gas. Though the
latter three are more familiar on earth, plasma constitutes an estimated 99 % of matter in the
universe. The qualitative properties of solids, liquids, and gases are familiar to everyone.
Plasma, too, has qualitative characteristics, beyond that it is an ionized gas, which is a
microscopic trait and, furthermore, a quantitative trait, since all gases are ionized to some
small degree. A good qualitative description of plasma is “a quasineutral gas of charged
and neutral particles which exhibits collective behavior” [1].

The quasineutrality of plasma occurs not despite the fact that plasma is composed of charged
particles, but because of it. What quasineutrality refers to is Debye shielding. If you wanted
to insert an electric field into an unionized gas, all you would have to do is insert a charge
into the gas, and Coulomb’s law would imply an electric field that permeates it. However,
if you were to insert a charge, say of value +q, into a plasma, electrons would flock about
the charge, and their field would shield out the charge’s field in the limit of being far from
the charge. Actually, the distance greater than which the charge is shielded is not that far.
Poisson’s equation and the electron distribution function imply that this distance, called
the Debye length, is

λD =

√
ε0KTe

ne2
(3.1)

The sphere of radius λD about the charge is known as the Debye sheath. Within the sheath,
the field of the inserted charge can be felt, and outside of it, the field is shielded. Thus
quasineutrality means that local charge or electric field will be shielded. A plasma is called
quasineutral if its characteristic dimension is much greater than the Debye length:

�L 
 λD. (3.2)

Plasma’s other principle quality is its ability to exhibit collective behavior. Whereas parti-
cles of an unionized gas interact only collisionally, which is not conducive for global struc-
ture, charged particles can interact in a plasma with the long range electric and magnetic
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forces. The Debye mechanism shields plasma from a local static perturbation of charge or
potential, but dynamic effects and global structure are not defeated. This is what makes
plasma physics a rich field.

3.1 The MHD approximation

The basic equation of motion for particles in a plasma is simply the Lorentz force law

F = q(E + v × B), (3.3)

along with Maxwell’s equations, which specify the evolution of the E and B fields from
the charged particles’ positions and velocities. The density of SSX, a fairly typical plasma,
is about 1015cm−3. This means that to solve the equations of motion for even a cubic
centimeter of plasma one has to solve 1015 second-order coupled differential equations, an
unpleasant task at the very least! Moreover the solution to this giant system of equations
does not automatically lead to understanding of the qualitative behavior of the plasma.

The resolution of this problem is to contract the mathematical representation of the plasma
into the simpler model of a conducting fluid. Actually, there will be two conducting fluids,
one for the electrons and one for the ions. However, it is possible to further contract this
two-fluid model into a one-fluid model called MHD. In a fluid model, the state of the system
is described not by the position and velocities of individual particles, but rather by only a
few variables, namely density ρ, pressure p, and flow velocity V, which can be functions of
space.

In a non-conducting fluid, fluid elements experience a force solely because of pressure gra-
dients. Newton’s law gives the force equation:

ρ
dV
dt

= −∇p (3.4)

The derivative in this case is the convective derivative
d
dt

=
∂

∂t
+ V · ∇ (3.5)

The first term of the convective derivative is the explicit time dependence and the second
term accounts for the effect of flow. A good analogy for the convective derivative is if
you are swimming in a lake and measuring the temperature of water as you swim with
velocity V. The total variation in temperature that you experience can come from either
the temperature of the water changing at each point (the ∂

∂t term) or from the fact that
your movement through a temperature-varying lake causes you to feel hotter or colder, even
if the lake’s temperature is time-independent (the V · ∇ term).

A conducting fluid model is described by these variables plus the current density J variable.
In the conducting fluid approximation, the force on a fluid element can either be from
pressure gradients or from the Lorentz force:

ρ
dV
dt

= −∇p + J × B (3.6)
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This is the first MHD equation. The second is the continuity equation, which says that
mass is locally conserved. In other words, the change in density at a point must be because
there is a flow of mass either into or out of that point:

∂ρ

∂t
= −∇ · (ρV) (3.7)

The third MHD equation is that the pressure of the equation of state for the plasma:

pρ−γ = constant, (3.8)

where γ is the ratio of heat capacities. γ = 1 in an isothermal system and n+2
n in an

adiabatic system, where n is the number of degrees of freedom. In an adiabatic hydrogen
plasma, γ = 5/3.

The fourth MHD equation is the force-balance equation. It expresses the coupling of the
plasma to the electromagnetic field. In addition to the electromagnetic force on particles
and the pressure-gradient force, the effects of particle collisions must be included in this
force-balance equation. Since collisions are between two particles, the collisional coupling is
proportional to e2 and n2. Since electron-electron collisions and ion-ion collisions conserve
momentum, only electron-ion collisions contribute to resistivity. Hence the resistive force is
also proportional to the relative velocity of electrons and ions:

Fresistive = ηe2n2(vi − ve) (3.9)

If we say that the only forces in our charged fluid are FLorentz and Fresistive then our approx-
imation is called the resistive MHD approximation. Defining V = vi − ve and J = enV,
we can write this coupling as

E + V × B = ηJ (3.10)

Equation (3.10) is often called the resistive Ohm’s law. If we go even further and assume
that the fluid is perfectly conducting, i.e. η = 0, we get the ideal Ohm’s law :

E + V × B = 0 (3.11)

What is surprising about this equation is that the flow velocity in the directions perpen-
dicular to the magnetic field is fixed by the electric and magnetic fields. Equation 3.11 is
mathematically equivalent to

V⊥ =
E × B

B2
. (3.12)

Finally, to complete the set of MHD differential equations it is necessary to include Maxwell’s
equations, which are given in Chapter 3.2.
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3.1.1 Alfvèn Waves

Studying waves in plasma is like going to the zoo. There are as many species of waves
as animals, including but not limited to plasma oscillations, acoustic waves, light waves,
cyclotron waves, and hydromagnetic waves. Some waves aggressively propagate instabilities,
some are small and quick, and some need to be coaxed with very specific habitats.

Alfvèn waves the elephant of plasma waves. They are low frequency oscillations, in which
the entire plasma oscillates, field and fluid as one. Specifically, they are the hydromagnetic
waves that travel along magnetic field lines. They propagate at the characteristic Alfvèn
speed:

vA =
B√
μ0ρ

. (3.13)

Alfvèn waves are especially important in the MHD framework and interesting for plasmas
which, like SSX, have strong magnetic fields.

3.2 Frozen-in Flux

The ideal MHD equation has a beautiful consequence that is a great aide to the visualization
of plasma. This consequence is the frozen-in flux constraint, which says essentially that
magnetic flux is frozen into a plasma fluid. The frozen-in flux constraint is easy to derive.
We follow [42]. Maxwell’s laws in SI units are

∇ · E =
ρ

ε0
(3.14)

∇ · B = 0 (3.15)

∇× B = μ0J (3.16)

∇× E = −∂B
∂t

(3.17)

We neglect the displacement current correction in Ampere’s law, because the time scale of
diffusion in plasma is much longer than the time scale of light to propagate in the plasma.

According to the resistive MHD approximation,

E + v × B = ηJ (3.18)

Let us use Maxwell’s equations to eliminate all variables from this equation except B. We
can substitute Ampere’s law into this equation to eliminate J:

E = −v × B +
η

μ0
∇× B (3.19)
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To eliminate E, we take the curl of this equation and use Faraday’s law to get

∂B
∂t

= ∇× v × B +
η

μ0
∇2B (3.20)

Equation 3.20 is called the magnetic induction equation. Before we use it to derive the
frozen-in flux condition, we must retreat back to ideal MHD, which means the diffusion
term ( η

μ0
∇2B) of the magnetic induction equation goes away and we are left with

∂B
∂t

= ∇× v × B. (3.21)

In precise terms, the frozen-in flux constraint says that, in the framework of ideal MHD,
the flux across a surface S bounded by a curve l, which moves with the plasma at the fluid
velocity V, is constant in time. In other words, we want to show that the time-derivative
of this flux is 0.

d
dt

∫
S
B · da =

∫
S

d
dt

(B · da) (interchange of limits) (3.22)

=
∫

S

∂B
∂t

· da +
∫

dS
dt

B · da (Leibniz Rule) (3.23)

=
∫

S
∇× (v × B) · da +

∫
dS
dt

B · da (substituting equation 3.21) (3.24)

=
∫

S
∇× (v × B) · da +

∫
dS

B · (v × dl) (3.25)

=
∫

S
∇× (v × B) · da +

∫
dS

(B × v) · dl (vector identity) (3.26)

=
∫

S
∇× (v × B) · da −

∫
dS

(v × B) · dl (Cross-product is anticommutative) (3.27)

=
∫

dS
(v × B) · dl −

∫
dS

(v × B) · dl (Stoke’s theorem) (3.28)

= 0 (3.29)

Thus the flux across our surface S, which is moving with the plasma, is constant in time.
If we consider the limiting case of shrinking the tube smaller and smaller, the tube will
eventually become a field line. Since we picked the flux tube to follow the plasma velocity,
the shrunk tube is also a flow line for the fluid.
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3.3 Sweet-Parker Magnetic Reconnection

The frozen-in flux constraint can be violated. An important violation is magnetic recon-
nection. In magnetic reconnection, magnetic field lines are broken and reformed, as shown
in figure 3.1. Here, a +x̂ directed B field sheet is flowing in the +ŷ direction from the −ŷ
axis, and a −x̂ direction B field is flowing in from the opposite side. If magnetic flux were
frozen into the fluid at the meeting plane, one sheet would insist the flux be +x̂ directed,
and the other would insist the flux be −x̂ directed. Magnetic flux cannot be frozen in the
reconnection plane!

How can we explain a violation of this sort? Since the frozen-in flux constraint relies on the
ideal MHD equation 3.11, we must look for large violations of this equation in order for the
frozen-in flux constraint not to be a mathematical necessity.

The Sweet-Parker model for magnetic reconnection postulates that the important violation
of the ideal MHD equation is that it neglects the resistivity of the plasma. Hence the
Sweet-Parker model draws its conclusions from the framework of resistive MHD (equation
3.10). The other principal assumption of the Sweet-Parker model is that reconnection is
an inherently 2-dimensional process. Ultimately, we would like our reconnection model to
describe the physics of two merging spheromaks. However, since the Sweet-Parker model is
essentially 2-dimensional, we can simplify the geometry, and consider instead the merging
of two oppositely magnetized sheets of plasma.

However, it is important to bear in mind that, while the most famous, the Sweet-Parker
reconnection model is one of many models. It explains magnetic reconnection, but often
reconnection occurs anomalously quickly in experiment. Reconnection models are generally
sorted into the categories collisionless or collisional, depending on the mean-free path of
the plasma to which they are applicable. The various reconnection models each include a
discarded term in the ideal Ohm’s law (equation 3.11), such as the Hall term.

Following the treatment of [3], let the two sheets of width 2L merge from the ±x̂ directions.
This is shown below in figure 3.1. There are two regions in this process: the reconnection
layer of width 2δ, and the non-reconnection layer.

Resistive MHD Condition

Let us apply the resistive MHD approximation 3.10 separately to these two regions.

Outside the region, the field lines are linear, which means that

∇× B = 0 (3.30)

.

From Ampr̀e’s law, 3.30 implies that J = 0 and the z-component of 3.10 becomes

Ez + vinBx = 0 (outside the reconnection layer). (3.31)
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Figure 3.1: The Sweet Parker Reconnection Mode. The small arrows are magnetic
field lines, and the large arrows are flow velocities. Opposing B fields flow inwards
from the ±ŷ directions. The reconnection outflow is in the x̂ directions.
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Inside the reconnection layer, we cannot neglect the current J, because the magnetic field
lines are not nearly straight. However, since the two slabs of incoming velocity vectors
oppose each other, a good approximation to make in the reconnection layer is stagnation:
that vin = 0. Hence, 3.10 becomes

Ez = ηJz (inside the reconnection layer). (3.32)

An important question to ask is whether Ez in equations 3.31 and 3.32 is the same Ez.
The answer is yes. This is because reconnection is a steady-state process: as long as there
is a steady supply of magnetic field lines flowing inward, the picture will look the same.
Faraday’s law then implies that

∇× E =
∂B
∂t

= 0. (3.33)

E is curl-free. Consequently, Ez is the same both inside and outside the reconnection layer.

Conservation of energy ⇒ Outflow Speed

If in the Sweet-Parker model there is a steady-state inflow of magnetic fields that are being
annihilated, there must be an energetic perpendicular outflow for energy balance. This is
shown in figure 3.1. This allows us to calculate the perpendicular outflow velocity:

B2
x

2μ0
=

ρv2
out

2
(3.34)

vout =
Bx√
μ0ρ

(3.35)

Comparing equation 3.35 with 3.13, we see that

vout = vA. (3.36)

The reconnection outflow velocity is the Alfvèn speed.

Continuity Condition

The continuity condition is simply the conservation of mass in an incompressible fluid. In
our simple reconnection process, this condition is

vinL = voutδ (3.37)

Ampère’s law

Now let us apply Ampère’s law
∫

B ·dl = μ0I to a rectangular loop about the reconnection
layer:

Bx(4L) = μ0Jz(2L)(2δ) (3.38)
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Bx = μ0Jzδ (3.39)

Inflow Speed

The inflow speed can be calculated from our application of the Resistive MHD condition,
the continuity condition, and Ampre’s law:

vin =
Ez

Bx
(3.31) (3.40)

=
ηJz

μ0Jzδ
(3.32 and 3.39) (3.41)

Consequently we have
vinμ0δ

η
= 1. (3.42)

The quantity on the LHS of this equation is called the magnetic Reynold’s number Rm.

Combining our expressions for inflow and outflow speed, we have the important relationship

vin

vout
=

1√
S

, (3.43)

where the Lundquist number S is defined as

S =
vAlfvènμ0L

η
. (3.44)
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Chapter 4

Design of The Soft X-Ray (SXR)
Detector

We have seen now that the reconnection event annihilates the opposing magnetic fields
on the spheromaks. The B2

2μ0
magnetic energy density does not disappear, but rather gets

converted into other forms, namely photons, heat, flow, and energetic ions. Naturally we
would like to measure all of these quantities.

What makes a soft x-ray detector such an excellent diagnostic for a reconnection event
is that it measures two of these four quantities (energetic photons and heat). Not only
does it provides a wealth of information on the flux and spectral distribution of energetic
photons but, since the distribution of photons is a function of temperature, a temperature
measurement can be gleaned from the soft x-ray detector.

”Soft x-ray” is a synonym for extreme ultraviolet light, i.e. for light in the 10 eV to 150
eV range. A perfect soft x-ray detector would output the intensity of photons striking
the detector at all energies. X-ray spectrometers do exist, but they are not practical for
an experiment on the scale of SSX, due to high cost. Our solution was to build an x-ray
detector consisting of a set of broadly sensitive photodiodes, each filtered with a different
thin metallic foils.

Our foils are made out of Al, Ti, Zr, and In. They are 100 nm thick, except for the Ti
filter, which is 50 nm thick. All foils block out low-energy (i.e. visible and below) light, and
each foil allows a different band of ultraviolet light to pass through. The result is an x-ray
detector that has rough spectral resolution. What we sacrifice with this paradigm is the
ability to resolve detailed structures in the spectrum, such as atomic transition lines. What
we retain is not only the flux across a broad spectrum of SXR energies, but also information
about the plasma temperature, of which the emission spectrum is a function. While the
line emission data are useful for the calculation of impurity fractions, such fractions can
be calculated using data from our high-resolution vacuum ultraviolet (VUV) spectrometer,
which operates at a lower energy level. We also do not sacrifice time-resolution, because
the photodiodes are extremely fast (700 ps when properly biased).
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Multi-channel x-ray diagnostics are common in plasma devices, their widespread use having
been spurred by the development of absolute Si photodiodes. The CDX-U spherical torus
at Princeton Plasma Physics Laboratory has a foil-filtered x-ray diagnostic, whose foils
are made out of Ti and Be [21]. Another x-ray detector similar to ours is the Madison
symmetric torus reversed-field-pinch, which consists of four silicon diodes covered with four
different foils [19]. The design of our SXR detector is closely based on one that was built
at Caltech [17].

A slightly different but common filter technique is the Ross filter technique, in which the
K-edges of two filters of the same material but different thickness are exploited for the
measurement of a small band [18]. An example of a K-edge is the Aluminum 72 eV K-edge,
which can be seen on figure 4.7. The Ross filter is more appropriate for looking at harder
x-rays, where elemental K-edges are more prevalent.

Capsule Magnetic Filter Ceramic Break Assembly

Ceramic

Photodiode Assembly

Figure 4.1: Assembly figure of the soft x-ray detector. A particle enters the detector
from the left, where it passes through one of four holes on the leftmost conflat, whose
purpose is to hold the magnets on the filtering conflat in place. Charged particles
are trapped by the filtering conflat, but photons pass through the filter, through
the ceramic break, and into one of the four photodiodes screwed onto the rightmost
conflat.

4.1 Photodiodes

The SXR detector uses International Radiation Detectors’ (IRD) AXUV silicon p-n junction
photodiodes. Although AXUV stands for Absolute eXtreme UltraViolet, AXUV diodes are
also sensitive to soft x-rays. Their spectral response is the unfiltered curve on figure 4.7.
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They rely on the internal photoelectric effect [22], which means they are less sensitive to
neutral particles than conventional XUV diodes. Additionally, compared to XUV photodi-
odes, AXUV photodiodes have low noise, do not require a bias voltage, are not affected by
magnetic fields, and have a large collection area to size ratio. The specific model of AXUV
diodes used in the SXR detector is AXUV-HS5, which has a collection area of 1 mm2, and
a rise time of 700 ps when fully biased at 50 V [22].

When photons of energy 1.12 eV or greater are incident on the an AXUV diode, electron-
hole pairs are created. If the photon has greater energy, the number of carriers (electrons
and holes) created is very nearly proportional to the photon energy. Put another way, if we
define the diode quantum efficiency to be the number of carriers created per photon, then
we can say that the quantum efficiency is linear. Separated by the p-n junction electric
field, the carriers flow through the external circuit. Hence the photodiode can be modeled
electrically as a current source.

Spectral calibration of IRD’s line of diodes has been performed at the National Synchrotron
Light Source at Brookhaven National Laboratory in the 1 eV to 10 keV interval[27]. The
responsivity is plotted in figure 4.7.

Figure 4.2: Left: A schematic of the AXUV series photodiode, taken from the In-
ternational Radiation Detectors brochure. Right: Quantum efficiency of the AXUV
photodiodes, again taken from the IRD literature. Above 10 eV, the quantum
efficiency is highly linear, approximately Ephoton

3.63 .

4.2 Connecting the Photodiodes

Each photodiode has a screw-on foil filter, which are discussed below in 4.4. The photodi-
odes themselves screw onto a Ceramaseal vacuum feed-thru, mounted on a 2.75” conflat.
This conflat is isolated from machine ground with a ceramic break (see figure 4.1). The
photodiode assembly is shown in figure 4.4.

The photodiodes, being current sources, are terminated with 50 Ω resistors inside the LeCroy
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Figure 4.3: The SXR Detector Circuit. The actual detector has four such circuits,
one four each photodiode. The photodiode can be modeled electrically as a current
source. The current goes into the magnetically isolated screen room, where it is
measured by an oscilloscope, which is in 50 Ω coupling mode.

oscilliscope. To increase the responsiveness of the carriers and hence improve the rise-time,
it is often a good idea to bias photodiodes. Bias tees provide a high-quality bias from a
low-quality battery voltage. Our original plan was to bias the photodiodes with bias tees
(Picosecond Pulse Labs model 5535). However, when the bias tees were in place, cable
capacitance distorted the signal. When the bias tees were bypassed, the photodiodes were
still responding fast enough for our purposes. Furthermore, the line of photodiodes that we
used can be used without bias [22]. Hence we ended up not using the bias tees. The circuit
diagram is shown in figure 4.3.

As shown in chapter 7.2, the peak of the photodiode signal ranges from about 30 mV for
the aluminum signal down to 1 mV for the zirconium signal. To protect the integrity of
these small signals, care is taken in the connections. For maximal insulation from noise,
semi-rigid coaxial cable carries the signal to a screen room. Providing the best shielding
(better than 110 dB) among all types of coaxial cable , semi-rigid cables have a seamless
copper tube as an outer conductor, much like a water pipe. Our semi-rigid cables were
0.141” in diameter and purchased from [28]. Up to the screening room, all connectors are
gold-plated SMA, a type of coaxial cable connectors that is compact and high-quality.
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Anode
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Vacuum-welded
feed-thru conflat

SMA Connector

SMA Connector

22 mm

2.07 cm
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Figure 4.4: The photodiode assembly. Left: A bird’s-eye view of a photodiode.
Right: The foil filters screw onto the top of the photodiodes, which screw onto the
feed-thru conflat.
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4.3 Charged Particle Filter

The problem with putting AXUV photodiodes in the plasma is that they are not plasma-
proof. While insensitive to neutral particles, they are sensitive to charged particles, which
are sure to be found in a plasma. Hence a charged particle filter is necessary to block the
particles from reaching the photodiodes.

The charged particle filter provides a magnetic field that deflects ions and electrons from the
photodiodes. Thru-holes allow photons to pass through. Machined at Swarthmore College,
the magnetic filter consists of compact but strong Neodymium-Iron-Boron magnets, which
provide a measured magnetic field of 0.51 +/- 0.06 T in the thru-holes. To see how the
field varies within the thru-hole, a Biot-Savart code extrapolates the measured field at the
maximum (the center of the thru-hole) to the rest of the thru-hole. It does this by assuming
the magnets have uniform magnetization, and applying the Biot-Savart law to bound surface
currents. It is clear from figure (4.5) that this variation is quite small.
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Figure 4.5: Left: The charged particle filter. There are four holes that allow
photons to pass undeflected through the filter to the photodiodes. Charged particles
are trapped by the two magnets surrounding each hole. Right: A plot of the
variation of the filter magnetic field across the thru-holes on the magnetic axis.

Of course, if a charged particle is fast enough, it can make it through the magnetic field
without being sufficiently deflected. If too many particles make it through the magnetic
filter, they will distort the SXR signal. Let us see how fast such a particle would need to
be.

Since we only need this calculation to order-of-magnitude accuracy, let us simplify the
situation by assuming that all charged particles meet the magnetic filter head-on. Then the
criterion for a particle to be slow enough to be deflected by the magnetic field is that the
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diameter of its gyro-orbit fit in the length of the magnetic field:

rgyro <
L

2
(4.1)

The gyroradius of a charged particle in a uniform magnetic field is obtained by attributing
the centripetal force of a circling particle to the magnetic field:

Fcent = FB (4.2)

mv2

rgyro
= qvB (4.3)

rgyro =
mv

qB
(4.4)

Comparing this expression for the gyroradius with the deflection criterion 4.1, and using
L = 0.5” and B = 0.5T , the deflection criterion becomes

vion < 2.9 × 105 m
s

, (4.5)

or Eion < 440eV (4.6)

for ions. At SSX plasma temperatures of 20-30 eV, the tail of the thermal ion distribution
that makes it through the filter will be negligible. However, since SSX is known to have
ion beams from reconnection, those could possibly make it through the filter. We need not
consider the electrons, since they carry less inertia than the ions and hence are more easily
deflectable.

4.4 Foil Filters

The AXUV series photodiodes are sensitive to visible light as well as soft x-rays. Hence
this part of their spectrum must be filtered out. Figure 4.6 shows a bird’s eye view of the
photodiodes covered by their foil filters.

In accordance with the requirement that the SXR detector has a rough soft x-ray spectrum
resolution, the four chosen foil filters each pass different very different regions of the SXR
region. The four foil filters are Aluminum (100 nm), Zirconium (100 nm), Titanium (50
nm), and Indium (100 nm). Indium is an interesting choice, as its narrow soft band pass
around 20 eV is a good complement to the other filters with higher band passes. The
response of each filtered diode is plotted in figure 4.7.

The transmission of the foils were calculated using the Lawrence Berkeley National Lab-
oratory website [24]. This calculation proceeds by looking up the two atomic scattering
factors f1 and f2 for the atom of which the foil is made. These atomic scattering factors
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Figure 4.6: Left: A view of SSX as the SXR detector sees it. The detector is
normally mounted on the large conflat that is missing in this photo. Inside the
vacuum chamber is the flux conserver, which consists of two copper cylinders with
a space between them. Right: the foil-filtered photodiodes with their screw-on foil
filters. Each photodiode has a different foil filter.
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Figure 4.7: Responsivity of photodiodes when filtered. The unfiltered line is just
the spectral response of the diodes.
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are functions of energy. The atomic photoabsorption cross section μa is calculated from f2

using the relation [24]
μa = 2r0λf2 (4.7)

where r0 is the classical electron radius, and λ is the wavelength of light. The transmission
of x-rays through a foil of thickness d with n atoms per unit volume is then given by

T = exp(−nμad). (4.8)

The atomic scattering factors that the LBNL website uses were verified at [25].

4.5 Pre-installation tests of the Diagnostic

4.5.1 Visible Light Flash Test

Since the SXR detector is designed to look in the soft x-ray range, it ought to be insensitive
to visible light. However, the photodiodes themselves do respond to visible light. Hence
the foil filters must be capable of filtering out this light.

To test their capability, we measured the response of the four filtered diodes, along with
the response of an unfiltered diode, to a camera flash. The camera flash has a duration of
approximately 30 μs, a similar time-scale to an actual SSX shot. Additionally, we used the
actual SXR detector’s semi-rigid cabling and oscilloscopes during this test, to make it as
similar as possible to an actual SSX shot (except without the plasma and x-rays!).

The results for the diodes filtered by aluminum, indium, and zirconium were excellent, each
of them generating a current that is 3 orders of magnitude less than the current on the
unfiltered diode. The test for the titanium-filtered diode is a little concerning, since its
current was only 2 orders of magnitude less than the current on the unfiltered diode. It
is possible that this discrepancy indicates a pinhole in the foil filter, even though the filter
looks intact to the eye. However, it is also possible that, since the titanium filter is thinner
than the others (50 nm instead of 100 nm), it simply passes more visible light. Also, since
the titanium signal appears to be about the right order of magnitude, it is possible that
this pinhole (if it exists) appeared during the last vent.

We can be reasonably confident that the Al, Zr, and In filters are essentially blocking the
photodiodes from visible light. As figure 4.8 shows, these filters reduce the visible light by
a factor of 1000. Figure 5.2 shows that the visible light emission spectrum can be up to
1000 times the intensity of the SXR spectrum, but only in sharp peaks, and usually the
discrepancy is not nearly so large.

The SXR detector requires a fast rise time in order to pick out detailed features in the
time-evolution of the plasma. However, the SXR data is averaged in 100-point blocks over
a period of 1 μs to rid the signal of noise. Thus a rise time significantly faster than that will
not improve the quality of the data much. According to its specifications, the photodiodes
have a 10-90% rise time of 700 ps when biased with 50 V. We tested the rise time using a
simple LED apparatus shown in figure (4.9).
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The results of the test are shown in figure (4.9). For reasons explained in section (4.2), we
ended up not biasing the photodiodes when we used them in SSX. However, as the results
of this test show, the bias tees do not improve the magnitude of the photodiode signal and,
while they do improve the rise time, 200 ns is fast enough if we are looking at the data in
1 μs bins. Since the speed of the pulse generator was not investigated, the 200 ns rise time
should be taken as an upper limit.
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Figure 4.8: Left: Current generated by the variously filtered photodiodes in the
flash test. Right: A comparison of the peak currents in this experiment.
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Figure 4.9: Left: Apparatus for testing the rise time of the photodiodes. A signal
generator pulses an LED. The photodiodes catch this light and push a current
through the resistor. The oscilloscope, triggering off the pulse generator, reads the
voltage across the resistor. The oscilloscope is terminated at the 50 Ω. Right: The
rise time and signal strength of the diodes in this test.
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Chapter 5

From Soft X-Rays To...

Soft x-rays are generated by two different mechanisms. First, there is the bremsstrahlung
continuum, which is the radiation from accelerating charges. Another word for this radiation
is free-free emission, since it is emitted by electrons and ions that are not bound to a nucleus.
Second, there is line emission, radiated by bound electrons undergoing atomic transitions.
Finally, there is the recombination continuum.

5.1 Bremsstrahlung

Accelerating charges radiate. In a hot plasma, this acceleration is due to collisions between
electrons and ions, which explains how bremsstrahlung, which is German for “braking ra-
diation,” found its name. The basic expression for the radiated power due to a single
accelerating charge is [7]

P =
μ0q

2a2γ6

6πc
, (5.1)

where a is the acceleration of the charge, etc. The classical model for bremsstrahlung is an
oscillating dipole. Since bremsstrahlung is proportional to the rate of change of the dipole
moment, and in collisions between like particles the dipole moment is proportional to the
center of mass of the two particles and thus a constant in time, only electron-ion collisions
contribute to bremsstrahlung radiation. Due to mismatch in the masses of electrons and
ions, electrons move so fast that their motion dominates the bremsstrahlung spectrum and,
furthermore, the approximation that the electron sees the ion as a fixed frame of reference
throughout the collision is valid. Quantum mechanical corrections for the bremsstrahlung
emission are of the same order of magnitude as the classical expression, but they affect the
classical result only by a scalar multiple. They are usually conveniently collected into a
multiplicative correction called the Gaunt factor and denoted gff .

The total bremsstrahlung emission is obtained by integrating over 1) the Maxwellian elec-
tron velocity distribution, 2) all the possible impact parameters, and 3) the particle distri-
bution in a plasma. In dimensions Power/(cm3 · Energy), the emission intensity is given
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by

ε =
25πe6

3mc3

√
2π

ekmT
Z2nenie

− hν
kT gff . (5.2)

5.2 The Rest of the Emission Spectrum

If the SSX plasma was purely 100% ionized hydrogen, the continuum would be the end of
the story. Since this is not true of SSX or any other plasma, it is necessary to consider the
radiation from atomic transitions. As figure (5.2a) shows, even if the plasma is pure hydro-
gen, a significant portion of the emission spectrum is due to recombination. In general, line
radiation from very small amounts of impurities, even less than 1% by molarity, overwhelm
the bremsstrahlung emission spectrum (see figure (5.2b). Furthermore, impurities can affect
the bremsstrahlung curve itself, due to the Z-dependence of equation 5.2, though this effect
is small for plasmas like SSX with low impurity fractions.

The impurity content of SSX is very small, but nevertheless significant. A residual gas
analyzer measures the partial pressure of residual gases in the SSX plasma, but this diag-
nostic can only be used between SSX shots. From the residual gas traces (see figure 5.1),
we conclude that, when idle, the residual gas in SSX is largely H2, with significant amounts
also of water, carbon, and some nitrogen. Since the hydrogen that is puffed into the vac-
uum chamber and ionized is 99.9995% pure, and the pressure of hydrogen pumped into the
chamber is about 10,000 times the vacuum pressure (2×10−7 torr), the residual gas in SSX
is negligible. However, the actual impurity content when running is likely to be higher, as
energetic charged particles striking the chamber walls are likely to release impurities loosely
imbedded in the walls. VUV spectrometry indicates that the impurity content of carbon
and oxygen is likely to be a few percent of each [43]. As figure 5.1 shows, any carbon during
an SSX shot is liberated from the vessel walls by the plasma.

1.E-10

1.E-09

1.E-08

1.E-07

Pr
es

su
re

 (T
or

r)

Z
2 16 18 28 32 41

H

O

HO

H 0

N

O

2

2

2

2

Figure 5.1: The residual gas in SSX.
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5.2.1 Spect3D

Spect3D is a third party plasma modeling software package published by Prism Compu-
tational Sciences, Inc [26]. It allows us to calculate the emission spectrum of a plasma,
so that there is a reference to which we can compare the (rough) spectrum that the SXR
detector measures. The inputs to a Spect3D simulation are plasma size, temperature,
density, and atomic makeup. From these parameters, Spect3D calculates atomic level pop-
ulations and the emergent spectra, along with the bremsstrahlung contribution, assuming
collisional/radiative equilibrium. The temperature and density parameters are allowed to
be functions of space, but we kept them constant, as space resolved density and temperature
measurements are too difficult for us to measure.
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Figure 5.2: The output of the Spect3D model. On the left is a 25 eV, 1015 cm−3

hydrogen plasma with 0.5% each of carbon and oxygen. Both the line radiation
and the Bremmstrahlung continuum can be seen. The black curve is the spectrum
when the line radiation is smoothed. On the right is the output of the same Spect3D
model, except the impurity fractions are varied.

Before being fed to the temperature-fitting analysis, the line emission, which comes in very
strong and very narrow discrete energy widths, is smoothed (in a way that keeps

∫
εdE

constant in a neighborhood about each energy value).

36



5.3 Temperature-Fitting Analysis

5.3.1 Forward Modeling

The simplest approach to analyzing the soft x-ray data would be to try to reconstruct the
soft x-ray spectrum from the four soft x-ray measurements at each time point. Then, this
spectrum could be compared to ideal spectra generated by Spect3D or the Brehmsstrahlung
emission equation (5.2). If the reconstructed spectrum has enough detail, the fruit of this
comparison would be dynamic values for plasma temperature and impurity content.

Unfortunately, this “reconstructed spectrum” is not uniquely determined by this sort of
comparison. In fact, armed with only four soft x-ray measurements at each time point and
the responsivity curves of the diodes (see figure 4.7), attempting to directly reconstruct the
spectrum is a losing battle.

A more bountiful approach is a technique called forward modeling. Instead of asking “what
do our soft x-ray measurements say the spectrum should be?” we ask “assuming we know
the plasma temperature and impurity content, what should the soft x-ray detectors see?”
The latter question is definitely answerable, given the responsivity curves of the diodes (4.7)
and a spectrum calculated either from the Brehmsstrahlung equation (5.2) or by Spect3D
(if we want to include the effects of impurities). We then compare the simulated diode
“measurements” to the real diode measurements, and adjust the temperature and impurity
content to optimize the fit.

In practice, we do not try to adjust the impurity content dynamically (at each time point),
but rather we just make an impurity ansatz at the beginning of the calculation. Addition-
ally, we allow the fitting procedure to determine a normalization constant that essentially
sets the density and volume of plasma that the simulated diodes see. This normalization
constant is actually directly calculable from the density of the plasma and geometric con-
siderations (see appendix), but in practice the fitting procedure does a better job. Since
the normalization constant is not a dynamic variable, we run the fitting procedure in two
stages. The first stage adjusts both the temperature and normalization constant for the
best fit between the simulated and real SXR measurements. The second stage takes the
normalization constant calculated in the first stage as a known quantity and adjusts only
the temperature to fit. Adjusting the normalization constant is essentially equivalent to
adjusting the plasma density, since for both bremsstrahlung and line radiation, there is a
nearly exact proportionality:

ε ∝ n2. (5.3)

The only problem with this procedure is that if there is a time-dependent density (which
there is!), then from looking at the SXR signals alone, we cannot say whether a changing
signal is from a changing temperature or a changing density. The solution is to use the
density trace from the He-Ne interferometer and equation 5.3. If we divide the SXR signals
by the time-dependent density trace-squared, then the SXR signals that the temperature
analysis uses are effectively what the SXR signals would be if the density were constant.
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Since global scale factors do not affect the temperature-fitting analysis, this procedure is
acceptable.

We can formulate our fitting problem as trying to pick a vector x that achieves the vector
relation y = f(x). That is, to pick x such that ‖ f(x) − y ‖ is minimized. In our case,
x is the 2D vector (temperature,density). The function f : + → 4

+ is a composition
of two functions f = p ◦ s. The function s : 2

+ → F(+) is the output of the Spect3D
simulations, which gives the emission spectrum as a function of plasma temperature and
density. The function p : s(2

+) → 4
+ computes the expected signal in each photodiode

from the simulated spectrum that Spect3D outputs and the responsivity of the photodiodes.
Mathematically,

pi =
∫ ∞

0
ε(E)ri(E)dE, (5.4)

where ri is the responsivity of the ith diode. Finally, y is a set of the four actual signals
measured by the photodiodes.

5.3.2 Levenberg-Marquardt Method

The Levenberg-Marquardt Method is one of the most frequently used and arguably the
fastest non-linear least-squares fitting method in a wide variety of contexts. Its celerity is
due to the fact that it is really a compromise between two different algorithms. The first is
Newton’s Method, to assume that the function f is a linear, in which case the minimum can
be found in one step. Newton’s method is excellent near a minimum, where f is nearly linear.
The second method is the steepest-descent method, which amounts to “sliding” down the
gradient of the error function in parameter space. This method is not especially fast, but
it is guaranteed to move closer to a minimum, provided the step size is small enough.

If the current guess for the minimum is x, the Levenberg-Marquardt update formula is

Δx = − (
J tJ + λI

)−1
J te, (5.5)

where e is the vector of errors, J is the derivative matrix of these errors, and λ is a control
parameter. The first term on the right-hand side of equation (5.5) represents the Newton’s
method contribution to the update, and the second is the steepest-descent term. That is,
if λ = 0, then the update is purely Newton’s method. As λ → ∞, the step size gets smaller
and more in the gradient-descent direction. Hence the control parameter λ determines both
the relative contribution of each algorithm and the step-size of the update. The Levenberg-
Marquardt algorithm adjusts λ at each step. Updates are only accepted if they improve the
error, in which case λ is decreased by a factor of 10, under the presumption that the error
improvement means that x is approaching the linear region around the minimum, where
Newton’s method is more appropriate. If an update is rejected, λ is increased by a factor
of 10.

Our fitting algorithm gives more weight to more reliable data points. In precise terms,
“weight” means the square of the inverse of the uncertainty of a data point. We took the
standard deviation of the noise in a neighborhood of a point to be its uncertainty, and each
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data “point” is really the time average of the oscilloscope trace in a small neighborhood,
and each neighborhood is 1 μs. Also, part of the fitting algorithm feedback is an uncertainty
for each calculated temperature.
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Chapter 6

The Mach Probe

The Mach probe diagnostic is a variation on the Langmuir Probe. The Langmuir Probe
is the simplest possible plasma diagnostic, a simple metal rod which, when exposed to the
plasma, can be biased to collect either electrons or ions. A calculation based on the collected
current versus bias voltage yields both the plasma density and the plasma temperature.

The concept underlying the Mach probe is elementary. Suppose we wanted to measure
the migration of small fish in the ocean, without measuring the velocity of each individual
fish. An ingenious method would be to bind two sharks together tail-to-tail, place them
in the ocean, and let fish swim into their mouths. Assuming that they have the same size
mouth and that they are equally hungry, we could measure the amount of waste each shark
produces and know that the shark producing more waste is facing against the fish current.

Suppose you want to measure not the migration of fish, but the ion drift velocity in plasma.
Following the shark gluing paradigm, you could assemble a set of two Langmuir Probes, each
of which is partially blinded so that it can collect particles from only a specific direction.
Apply a negative bias to both probes so that they collect ions. If there is no ion drift
velocity, then they will both collect the same current (assuming that they “see” the same
solid angle). However, if the plasma has a drift velocity with a nonzero component along
the vector connecting the two Langmuir probes, then the upstream probe will collect more
current than the downstream probe. Thus the ratio of currents collected by the Mach probe
yields information about the ion drift velocity.

The simplicity of the qualitative connection between the ratio of currents and the ion drift
velocity belies the theoretical difficulty posed by the quantification of this relationship.
Models used to quantify the relationship can be divided into roughly two categories: those
that apply to “un-magnetized” plasma, in which the ion gyroradius is larger than the
characteristic dimension of the probe, and those that apply to “magnetized” plasma, which
assume the opposite limit. The theory for the magnetized model is more or less complete
[35], largely due to the fact that large-scale plasma devices like tokamaks operate in this
regime. The Mach probe theory for unmagnetized plasma is not as completely developed.

One common feature of all the models, however, is that they are all calibrated to yield not
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the ion drift speed itself, but the ion drift Mach number. The Mach number M corresponding
to a velocity v is the ratio of that velocity to the sound speed:

M =
v

cs
. (6.1)

The sound speed in plasma is cs = γ
√

Te+Ti
mi

. This is not to be confused with the ion

thermal speed vt =
√

Ti
mi

. In this section we will consistently absorb Boltzmann’s constant
k into the temperature, which is a common maneuver in plasma physics.

6.1 Drifting Maxwellian Model

Another approach to the Mach probe calibration question would be simply to assume that
the only effect of the negative potential to which the component Langmuir probes are
charged is to preclude electrons from being picked up by these probes. That is, to as-
sume that the ions have a constant density and are distributed in a drifting Maxwellian
everywhere, including near the probe. In this model, the ratio of currents is [31]

R =
e−W 2

+ W
√

π[erf(W ) + 1]
e−W 2 + W

√
π[erf(W ) − 1]

(6.2)

where W = Mdrift

√
Te+Ti

2Ti
. For small Mdrift, this expression can be approximated as

K =
√

2π
Te + Ti

Ti
Mdrift (6.3)

.

v vdrift

f

Figure 6.1: Two Maxwellian velocity distributions. The solid distribution is cen-
tered around 0 and hence has no velocity drift, whereas the hatched distribution is
centered around a finite drift velocity.
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6.2 Hudis-Lidsky Model

The Hudis-Lidsky model has been the most frequently invoked model for a Mach probe in
unmagnetized plasma. A fluid approach, this model rests on several assumptions [30].

1. That the Debye length is very small compared to the probe radius: λD � rp. This is
a pretty safe assumption, as the Debye length in a plasma is normally extremely small. In
SSX, it is about 1 μm.

2. That the probe radius is smaller than the ion Larmor radius: rp < rL,i. This is the
“unmagnetized” assumption.

3. That the plasma is collisionless (probe radius � mean free path and high-density (λd �
characteristic probe dimension).

4. That the important physics of the Mach probe can be captured in a one-dimensional
model.

5. That the ion temperature is small compared to the electron temperature: Ti � Te. Note
that this assumption already invalidates the Hudis-Lidsky model for use in SSX, where
Ti ≈ Te.

6. The Bohm Sheath criterion. Recall that the sheath is the region within one Debye length
of a charge inserted into a plasma, that is, the non-neutral region about a perturbing charge.
The Bohm Sheath criterion follows from the continuity equation in plasma (equation 3.7),
and it states that ions must enter the sheath with kinetic energy greater or equal than the
sound velocity:

vi > cs(at sheath edge) (6.4)

In order for ions to be accelerated to this velocity, there must be a nonzero electric field
outside the sheath of the probe. This region is called the pre-sheath region, and it typically
extends 20 to 50 Debye lengths into the plasma [30].

The Hudis-Lidsky model essentially assumes that ions are flowing at the ion thermal speed
vt far from the probe. As they approach the probe, they acquire an incoming kinetic energy
equal to its change in potential energy, to satisfy 1D energy conservation. The pre-sheath
region around the probe must be large enough so that ions have reached the sound speed
by the time they enter the sheath (Bohm sheath criterion). All ions entering the sheath
region are collected into the probe.

the Hudis-Lidsky Mach probe model predicts that the ratio of current collected upstream
to current collected downstream is [30]

R =
iup

idown
= exp

(
4
√

Ti

Ti + Te
Mdrift

)
(6.5)

.

Note that the commonly used “quotation” of this equation in [31] is incorrect by a factor
of 2 (if Ti � Te) or

√
2 (if Ti ≈ Te) .
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If we were to forget about the Ti � Te hypothesis and apply the Hudis-Lidsky model to
SSX, where Ti ≈ Te, we would have (from equation 6.5):

R = 2
√

2Mdrift. (6.6)

6.3 Problems with the Hudis-Lidsky Model

The Hudis-Lidsky analysis is an alluring model, incorporating as it does several important
principles from plasma physics into a single easy-to-use equation (equation 6.5). Further-
more, it does indeed predict drift velocities that match-up reasonably well against data from
other diagnostics [32] [33].

Unfortunately, its ostensible veracity is only a coincidence. As I. Hutchinson explains in
[29], it is only a heuristic. Being entirely one-dimensional, the Hudis-Lidsky model assumes
that an ion acquires an incoming kinetic energy equal to its change in potential energy, as
is true in one-dimension. In two and three dimensions, however, the kinetic energy that the
ion picks up can be both in the incoming direction and the transverse direction. Hence, a
one-dimensional energy conservation argument cannot produce the correct incoming kinetic
energy at the sheath edge.

Drift velocity

DownstreamUpstream

Figure 6.2: Ion collection is inherently multidimensional. As explained in [29],
ions can acquire both transverse and incoming kinetic energy as they approach the
probe.

After Hudis and Lidsky falsely assume this one-dimensional energy conservation relation,
their problems multiply. If there is a velocity drift, then there is a greater incoming kinetic
energy on the upstream side, and hence a smaller potential energy drop on the upstream
side to conserve energy. Similarly, there must be a larger potential energy drop on the
downstream side due to the outgoing drift kinetic energy. However, it is unphysical to
suppose that this potential drop is just increased by the amount of the outgoing drift kinetic
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energy. This is because far from the probe, the plasma must be at the same potential (i.e.,
if the probe is at the origin, then φ+∞ = φ−∞). In a 1D model, there can be a discrepancy
in potentials far from the probe, because the negative axis never connects with the positive
axis, except through the origin, where the probe is located). In 2 and 3 dimensions this is no
longer true. Unless φ+∞ = φ−∞, the probe will set up a potential difference arbitrarily far
from it. This is cannot be. The Hudis-Lidsky model should be viewed as only a heuristic.

6.4 Particle Simulation

In response to Hutchinson’s criticism, we rejected the Hudis-Lidsky Model as a valid model
for the Mach probe. In its place, a 2D simulation, which we developed, calibrates our Mach
probe. This simulation is essentially a Monte-Carlo integration of the relative currents that
reach the upstream and downstream probes. It treats ions as non-interacting particles,
a valid approximation considering that the mean free-path in SSX is 10 cm. Instead of
including electrons, it invokes an ad-hoc sheath potential. Being two-dimensional, it is able
to capture the fact that ions pick up both incoming and transverse kinetic energy, as shown
in figure 6.2. Moreover, it uses the actual Gundestrup geometry of the SSX Mach probe.

The simulation is conceptually simple. An ion starts out in a random spot on a sphere
centered about the probe, but far from the probe. Its velocity is chosen out of a Gaussian
distribution of particles with a drift (see figure 6.1). The particle is allowed to propagate,
generally in a straight line, but subject to the sheath electric field when it gets close enough.

The results of the simulation are presented in figure 6.3.

Admittedly, the Falk model has shortcomings of its own. It does not include a pre-sheath
potential, and it was only run with SSX parameters. Recently, a rigorous treatment of Mach
probes in unmagnetized plasma has been published [40]. Hutchinson’s new “SCEPTIC”
code uses a 3D Particle-In-Cell method to calculate the pre-sheath potential for a spherical
probe in plasma. The result of his simulation is a calibration constant k = 1.34 for a broad
range of parameters.

Despite this simulation’s rigor and inclusion of pre-sheaths, we calibrate the flow data in this
thesis with the Falk model, since the geometry of the latter has the “gundestrup” geometry
of our probe. The constant k is likely to be at least as dependent on the shape of the probe
as whether pre-sheaths are included. We are heartened by the fact that our calibration
constant k = 2.34 falls in between the Hudis-Lidsky constant k = 2

√
2 and the Hutchinson

constant k = 1.34. A comparison of the various Mach models is shown in (figure 6.4).
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Figure 6.3: The results of the Falk model for the Mach probe calibration. The
slope of this graph yields the calibration constant k = 2.34.

Model Type of plasma Geometry k (Ti=Te) Notes
Hutchinson SCEPTIC unmagnetized spherical 1.34 rigorous

Falk Model unmagnetized gundestrup 2.34 no pre-sheath
Hudis and Lidsky unmagnetized ~ 2.83 faulty

Integrated Gaussian unmagnetized ~ 3.54 no potentials
Hutchinson magnetized ~ 1.64 fluid model

Chung and Hutchinson magnetized ~ 1.7 kinetic model

Figure 6.4: A comparison of various Mach probe models. The calibration factor
k is used to calibrate the Mach probe using the equation R = exp(kM), where k

is the ratio of currents in the upstream to downstream probes and M is the Mach
number. References for the table are [40], [30], and [35]
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6.5 Mach probe Design

Essentially three Mach probes on one stalk, the “gundestrup” design [36] of the SSX Mach
probe allows for measurements of ion flow in an entire plane. There are seven tungsten rods
exposed to the plasma: three pairs of opposite Langmuir probes and a center “pride” pin
about which the six Langmuir probes (i.e. three Mach probes) are biased. The probes are
normally biased negatively with respect to the pride pin so that they will collect ions.

To current
transformer

Figure 6.5: The gundestrup probe. The ion gyro-radii are roughly to scale. The
electron orbits are really much smaller than the one drawn.

All seven tungsten rods are housed in a boron nitride turret, which is 0.25” in diameter.
Carrying the triple blessings of high temperature resistance, low vacuum outgassing, and
machinability, boron nitride is a good material for a protective turret. Choosing the area
of plasma to which the six ion collecting probes should be exposed is a delicate task, as
the twin demons of arcs and low signal delimit a narrow space for this parameter. Our
Langmuir probes are exposed to 0.020” diameter circles of plasma. The tungsten probes
themselves are a slightly larger 0.025”, so that we could know for certain that each hole
leads to a full circle of tungsten. The “pride” pin, which receives electrons, is a generous 1
mm in diameter, as this pin should not limit the current on any of the six circuits of the
probe. It extends 1 mm from the boron nitride turret.

The current picked up by (any of) the Langmuir probes on the Mach probe should be about
I = nevtA. The SSX Mach probe collects currents that peak at 0.1 A. A prototype Mach
probe on loan to SSX from Princeton Plasma Physics Laboratory (PPPL) measured currents
in SSX that peaked at about 10 A (see figure 7.11). Since the PPPL probe collection area is
8 times the size of the SSX probe, it is currently unclear why the SSX Mach probe collects
smaller currents by a factor of 100 instead of by a factor of 8. One possible explanation is
that, since the tungsten rods are burrowed more deeply (see figure 6.5c) in the SSX probe
than in the Princeton Probe, ions are failing to navigate their way through the “tunnel” to
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the probe, especially if B fields are curving their trajectories.

6.5.1 Connections

A photo of the connections to the Mach probe is shown in figure 6.6. The boron nitride turret
has a small lip, so that it can sit atop a 0.25 ” (outer-diameter) non magnetic stainless steel
tube. This steel tube contains the electrical connections to the Mach probe and provides
the mechanical support for the Mach probe. Since one cannot solder to tungsten, a gold pin
crimps to each of the seven tungsten rods. To conserve space in the steel tube, the outside
diameter of the gold pins are shaved, the inside diameter of the steel tube is enlarged in the
region containing the gold pins, and the gold pins are staggered. The gold pins are coated
with heat-shrink to electrically insulate them from each other and the steel tube, and their
back ends are soltered to 28-gauge magnet wire.

Passing through an O-ring on the vacuum feed-thru, the steel tube is finally vacuum welded
to mini-conflat. Thanks to the O-ring, the steel tube can be raised and lowered to any
position along its axis in SSX without removing the probe. The mag wire is soldered to
alumina feed-thru pins on this mini-conflat. On the other end of the feed-thru lies a box
which receives BNC cables and takes the electrical connections to the screening room, where
they meet the biasing circuit.

29.9 "

Boron nitride tip
Feed-thru conflat with O-ring

Steel tube is vacuum welded
to mini-conflat

Alumina pin
electrical feed-thru

Figure 6.6: The Mach probe in its entirety. The 29.9” length of the Mach probe is
measured from the drilled holes in the boron nitride tip to the machine-end of the
mini-conflat. The steel tube is vacuum welded to a mini conflat, which is bolted to
a connector piece, which is in turn bolted to the electrical feed-thru. The purpose of
the connector piece is to make room for the alumina pins on the electrical feed-thru,
to which the mag wire is soldered.

6.5.2 Biasing Circuit

The biasing circuit is shown in figure 6.7. A capacitor bank biases each of the six Langmuir
probes to -60 V with respect to the pride pin. The capacitors are 88 μF, and each Langmuir
probe is biased by two capacitors in parallel (which make one 176 μF capacitor). A 10Ω
current limiting resistor is also in the circuit, so that the occasional arc will not damage the
electronics. In the time scale of an SSX shot, a few hundred microseconds, the capacitors are
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essentially a DC power supply. However, it is important to use the capacitor bank instead of
power supplies in order to preclude ground loops. Although attached to a charging circuit,
once the capacitors are charged, three DPST switches and one SPST switch isolate them
from everything but the Mach probe.

Current transformers (Pearson Model 411) measure the current in each of the six probe
circuits. Their output is 0.1 V/A, to within an accuracy better than 1%.

To Scope
To Probe 1

To Probe 2

To Probe 3

To Pride Pin

To Probe 4

To Probe 5

To Probe 6

+ -

+ -

+ -

+ -

+ -

+ -

10 Ω
60 V

Figure 6.7: Left: The Mach probe biasing circuit. Before each SSX shot, the
six capacitors are charged to 60 V and then isolated. Right: The Mach probe
Capacitor Bank. Six pairs of capacitors bias the Mach probe. During an SSX shot,
the capacitors are isolated from the laboratory, which precludes ground loops on
behalf of the Mach probe.
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Chapter 7

Results and Discussion

7.1 SXR results

The SXR detector has proven to be a nice detector for SSX. All four filtered-diodes show
a signal. Figure 7.1 shows the raw signals of three of these diodes (the fourth, the Indium-
filtered diode, has too small of a signal to be seen on this graph). The SXR signals are
averaged in bundles of 1 μs to rid the signal of noise. Figure 7.2 is a sample SXR trace with
the noise averaged out. Though some be small, the signals from all four filtered diodes are
nonzero.
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Figure 7.1: The raw SXR signals of three of the diodes. The Indium-filtered diode
signal is left out of this figure, as its signal is too small to be seen here.

Figure 7.3 is an interesting sequence of three consecutive shots. These shots happened right
after SSX was vented and then re-sealed, so there are still lots of impurities in the vacuum.
These impurities impede heating and activity in the plasma, causing the initial SXR signals
to be smaller than usual. As the plasma shots clean the vacuum vessel, the SXR signals
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Figure 7.2: A sample signal from the SXR detector. For the magnetic energy
corresponding to this signal, see figure 7.4.

rise. As the plasma gets cleaner, though the SXR signals rise, the density is actually gets
smaller. This is because among the impurities in the dirty plasma is residual H2, which is
attached to the vessel walls, and which is released when the plasma strikes the walls.

7.1.1 Comparison of SXR signals to magnetic data

The analysis of the SSX-FRC magnetic data is presented in [44] and is a rich topic on its
own. Here we would like to discuss the most visible correlations between the SXR signal
and the magnetic structure of the FRC. As discussed in chapter 2, it is possible to separate
magnetic flux (or magnetic energy) in an FRC in two ways: 1) toroidal vs. poloidal fields,
and 2) by the index m of the FRC solution. With the magnetic probes in SSX, we can
observe whether a field is m = 0 (symmetric mode) or m = 1 (tilted mode). Figure 7.4 is a
plot of the magnetic energy separated into these four categories.

The reconnection is manifest in the poloidal m=0 magnetic energy plot (lower left). Here,
the midplane magnetic energy lags behind the peripheral magnetic energy, which the mag-
netic flux in the midplane is being consumed by reconnection. As the two poloidal fields
reconnect, an FRC is formed. This takes place from plasma ionization (20 μs to 40 μs). If
we take the difference between the midplane and peripheral magnetic fields to be a measure
of reconnection, the peak reconnection occurs at 35 μs. Meanwhile, the FRC starts to roll
over from the m = 0 to the m = 1 mode, even as the fields are reconnecting. The tilt begins
at 45 μs and, by 60 μs, the FRC is maximally tilted.

Since figure 7.4 is from the same shot as the SXR data in figure 7.2, we can directly compare
features. The SXR signals have three main peaks: at 38 μs, 53 μs, and 65 μs. The first
peak, at 38 μs corresponds to time at which the poloidal reconnection peaks (≈ 35 μs).
The second SXR peak, at 53 μs, corresponds to the very center of the developing tilt. This
makes sense, since the tilted FRC mode m = 1 is a lower energy state than the m = 0 mode,
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Figure 7.3: A sequence of three consecutive shots in SSX, the first when SSX
is at its dirtiest from having been opened. The SXR signal shown is from the
Aluminum-filtered diode. The SXR signals rise, while the density falls.

so energy will naturally be released from the plasma as the FRC tilts. It is not so clear
what causes the third SXR peak (at 65 μs). It seems to correspond to a local minimum on
the m = 0 toroidal magnetic energy plot.
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Figure 7.4: A plot of the magnetic energy in SSX, separated into four categories.
The shot displayed here is the same shot as the SXR data in figure 7.2.
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7.1.2 Temperature-Fitting Analysis and Discussion

The temperature-fitting analysis is a qualified success. A plot of the fitted temperature
is shown in figure 7.6, using four different emission spectra as hypotheses. The analysis
produces very consistent temperature plots for similar shots in SSX. Each curve in figure
7.6 is really the average of fitted temperatures for 2 different shots. As figure 7.6 makes
manifest, the time-dependence of the calculated temperature varies a great deal depending
on what impurity hypothesis is used in the calculation. The calculation based on the
Spect3D 0% impurity content differs from the pure bremsstrahlung calculation, because the
former includes recombination lines and continuum as well as the bremsstrahlung in the
emission spectrum. N. B: although we have not been careful to distinguish electron from
ion temperature, the fitted-temperature is really electron temperature, since electrons are the
principal radiators in plasma.

Figure 7.5 is another interesting result of the temperature-fitting analysis. Normally, SSX
merges two counter-helicity spheromaks, so that there are fully-opposing magnetic fields
at the midplane, which reconnect and form an FRC or a hybrid FRC. However, SSX can
also be run in co-helicity mode, where the spheromaks have the same helicity. Instead of
forming an FRC when they merge, in this mode they merge into one larger spheromak. As
figure 7.5 shows, the stronger reconnection in the counter-helicity mode heats the plasma
more than the weaker co-helicity reconnection. Furthermore, the time scale of the more
stable FRC is longer than the spheromak. The fitted temperatures are higher in figure 7.5
than in 7.6, because SSX was in a slightly different configuration when figure 7.5 was made,
and the plasma was hotter then. The emission model used to calculate the temperature in
figure 7.5 is the pure bremsstrahlung model.
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Figure 7.5: A comparison of the temperature in SSX during co-helicity and counter-
helicty modes. In the counter-helicity mode, the plasma gets hotter and the time-
scale is longer.

A complication of including impurities in the emission spectrum is that, unlike the bremsstrahlung
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emission spectra which are monotonically increasing functions of temperature (at least for
energies greater than 25 eV or so), there is no such monotonicity for the full emission spec-
tra. Figure 7.7 shows this well. Notice that in the impure plasma, the coldest plasma (10
eV) actually emits the most light for most of the 20 eV to 40 eV interval. After 40 eV, the
second coldest plasma (20 eV) emits the most light.

This lack of monotonicity explains why the temperature results in figure 7.6 depend not only
quantitatively but also qualitatively on the impurity model that is used. At the beginning
and the end of an SSX shot, when the SXR signals are small, the bremsstrahlung and
Spect3D 0% analyses take the small signals as evidence of low temperatures, whereas the
Spect3D 0.5% and 2% analyses take them as evidence of high temperatures. As explained
in chapter 5.2, we do not have an a priori way of determining the absolute impurity content
in SSX (although 2% impurities is definitely on the high end of the possibilities), so there
is not a definite way to choose among the temperature plots. At the very least, we can
conclude from the way the 0.5% and 2% impurity ansatzen result in manifestly unphysical
100 eV plasmas when the plasma is decaying (see figure 7.6) that the impurity content of
SSX is likely lower than these numbers.

As figure 7.6 also shows, despite qualitative differences in the dynamic temperature trace,
the mean temperature in SSX is roughly consistent, no matter which impurity content we
use in the analysis. We find this value to be 30 eV ± 10 eV. Previously performed VUV
spectroscopy has found the temperature of SSX (in a slightly different configuration) to be
in the interval 10 eV to 30 eV [43].
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Figure 7.6: Left: The temperature of SSX as a function of time, as calculated
from the SXR signals and the simulated emission spectrum. The various impurity
models yield differing traces. Right: The mean temperature from 30 to 70 μs is
roughly consistent among the four different emission spectra.
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Figure 7.7: Left: The emission spectra, as calculated by SPECT 3D, for a pure
hydrogen plasma. Right: The emission spectra for a plasma with 0.5 % carbon and
oxygen (each, by molarity).
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7.2 Flow Results

In its current configuration, the SSX Mach Probe can measure ion flow in the θ̂−ẑ plane but
not radial flow. The timescale of an SSX shot is shown in figure 7.4. The basic bounds are
that plasma is ionized at t = 20μs and the magnetic structures have more-or-less decayed
by t = 80 to 100μs. Thus we are looking for flow in the (20,100) μs interval. In the data
presented here, the Mach probe is in the midplane of SSX.

Diagnostics like the Mach probe that are in electrical contact with the plasma are notoriously
trying partners in science. Like a seaman trying to sail through a stormy shark-filled sea,
these diagnostics must frequently navigate through arcing, small signal-to-noise ratios, and
damage from the plasma. Indeed, our Mach probe was beset by the first two of these
plasma-monsters. Thanks to the stalwart boron-nitride turret, the plasma did not damage
the probe, though the probe does show evidence of intense plasma-to-probe contact (see
figure 7.8).

Figure 7.8: The Mach probe after a few hundred shots in SSX. Evidence of in-
teraction with plasma on the probe includes 1) shininess on the tungsten due to
plasma “cleaning”, 2) blackness on the boron nitride due to arcing to impurities,
and 3) both blackness and shininess on the steel shaft.

Because of the current transformer’s orientation, Mach probe signals are negative. This is
arbitrary and signifies nothing. Figure 7.9 shows the unprocessed current through one of
the probes in a typical shot. It is hard to see much signal! One thing to notice is that there
is a relatively low-frequency (≈ 2-3 μs period) oscillation throughout the signal. It is likely
that this oscillation is an actual plasma phenomenon (as oppose to instrumentation noise),
as no other SSX diagnostics experience such low-frequency noise.

To partially cleanse the data of this noise, the Mach probe signals are averaged in 5 μs
bundles. The cleansed signals from a shot are shown in figure 7.10. The data after 60 μs
does not appear to be as trustworthy as the 30-60 μs data. As a comparison, data from the
Princeton Mach probe in SSX (which only measures one-component of flow) is shown in
figure 7.11. Although signals from the Princeton probe are larger than those from the SSX
probe, there are a few ways in which the SSX probe is a better diagnostic. Not only does
it measure a plane of flow instead of a single component, but it has less residual glue and,
since the thru-holes on the turret are small, the collected current is more acutely directed.

As explained in chapter 6, a non-unity ratio of upstream-to-downstream currents indicates
ion flow. The important question now is how can we decide if a current discrepancy in a
probe pair is due to real ion flow or whether it is due to some instrumental imprecision
(e.g. machining error, mismatched resistors). Happily, there is a good test. If we rotate the
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Figure 7.9: A typical trace of the signal through one of the Langmuir probes that
compose the Mach probe. Not much signal to see here, although a careful look
shows a little bit of (negative) signal around 50 μs.

-50

-40

-30

-20

-10

0

10

0 20 40 60 80 100 120 140

facing c
facing -c

Time (μs)

C
ur

re
nt

 (m
A

)

-50

-40

-30

-20

-10

0

10

0 20 40 60 80 100 120 140

facing b
facing -b

Time (μs)

C
ur

re
nt

 (m
A

)

-70

-60

-50

-40

-30

-20

-10

0

10

0 20 40 60 80 100 120 140

facing a
facing -a

Time (μs)

C
ur

re
nt

 (m
A

)

ˆ
ˆ

ˆ
ˆ

ˆ
ˆ

â b̂
ĉ
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Figure 7.10: The Mach signals, after the noise has been averaged away (as much
as possible).
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Figure 7.11: A (cleaned) trace from the Princeton Mach probe on loan to SSX.

probe 180 in the plasma, the calculated drift velocity should be opposite. In reality, every
shot is different, so we do not exactly see this.

The main result that we observed with the Mach probe is flow in the +θ̂ direction in the
30 to 50 μs interval. Figure 7.12 displays this result, which is seen both with the Princeton
Mach probe and the SSX Mach probe. The flow results in figure 7.12 for the Princeton
probe is an average of 2 shots for each probe direction, and the flow results from the SSX
probe comes from averaging 20 shots. The Mach probe data are calibrated using the Falk
Mach model (see chapter 6.4). Note that the only effect of using a different Mach probe
model is that the flow result will be scaled by a positive constant, namely the constant k
(see figure 6.4). Hence positive azimuthal flow is positive azimuthal flow, no matter what
model we use.

The SSX probe also seems to measure a flipping of the azimuthal flow: at t ≈ 75μs, the
probe measures flow in the −θ̂ direction. As mentioned above, there is good reason to
be mistrustful of the Mach signals at this point. Nevertheless, the Princeton probe also
measures flow in the −θ̂ direction around this time. This flow seems to last until about 100
μs, by which time the flow patterns and magnetic structure have largely decayed.

Flow results in the ẑ direction are less conclusive. Figure 7.13 summarizes what the Mach
probe saw in the two directions that have a ẑ component. The −ĉ-directed flow at 40 μs is
likely from the probe picking up a component of the +θ̂ flow.
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Figure 7.12: The toroidal (azimuthal) flow, as measured by the Princeton Mach
probe (left) and the SSX Mach probe (right). The data are calibrated using the
Falk model (see Chapter 6). These flows are averages of the flows on several shots
(38 total). If the Mach probe were perfect, and every SSX shot were identical, the
grey and black curves would be mirror images.
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Figure 7.13: Flow measured by the SSX Mach probe in the other two (not purely
azimuthal) directions. If the Mach probe were perfect, and every SSX shot identical,
the grey and black curves would be mirror images. The probe facing +ĉ measures
-ĉ directed flow at 40 μs. These flows are the averages of flows on several shots (8
per line)
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7.2.1 Discussion

Toroidal flow has previously been observed [41] in the midplane of a spheromak experi-
ment. In this experiment, they attributed the toroidal flow to J × B forces that operated
during spheromak formation, and further noted that this toroidal flow causes a twisting of
the poloidal magnetic field into the toroidal direction. This mechanism should be noted
as a possible explanation for the anomalously resilient toroidal magnetic fields that SSX
measures [44].

The principle J × B flow during spheromak formation is the axial force that pushes the
spheromak out of the gun, caused by the −r̂-directed J toward the center electrode and the
toroidal B from the axial current in the center electrode. However, as the spheromaks form
they also “pull” an axial field through the length of SSX. This ẑ-directed B, along with the
−r̂-directed J result in a toroidal J×B force. This J and B are shown in figure 7.14. The
sign of this toroidal force is such that 1) the two spheromaks’ J×B · θ̂ add constructively,
and 2) the sign is consistent with the direction of flow observed on the SSX Mach probe
and the Princeton Mach probe.

BJJ

Figure 7.14: A possible mechanism that explains the +θ̂ ion velocity. A −r̂ directed
J and an axial B give rise to an azimuthal J × B.

The Mach probes also measure a reversal of the toroidal flow, starting at about 75 μs, though
this flow is more dubious in the +θ̂-flow that is measured earlier. One explanation for this
flow is reconnection outflow current, which is discussed in chapter 3.3. Reconnection outflow
current is perpendicular to the reconnecting fields so, to explain a toroidal flow, this current
would have to be from the reconnecting poloidal fields. On the other hand, reconnection
outflow current is not a very satisfactory explanation for toroidal ion flow, since currents in
plasma are mostly due to electron, not ion, motion.
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7.3 Conclusion

A Succinct Recapitulation of Findings:

1. Two of the three normally-observed SXR peaks are identified. One corresponds to peak
reconnection and the other to the peak FRC tilt.

2. From analysis of the SXR signals and emission spectra analysis, the mean (electron)
temperature in SSX in the (30 μs, 70 μs) interval is 30 ± 10 eV. Counter-helicity shots have
more peak heating due to more reconnection.

3. Azimuthal (toroidal) flow is observed in the early stages of FRC formation, likely caused
by the J×B force during spheromak formation. A possible reversal of this flow is observed
as the FRC decays.

The SXR detector and the Mach probe have proven to be good complements to the other
SSX diagnostics. Spheromak merging and Field-Reversed Configuration will be continued
to be studied in the years to come. Though potentially a magnetic confinement reactor
configuration, the FRC’s best merit is its illustration of basic plasma principles and its
agency in leading scientists to new plasma principles. For plasma physics is still an immature
field. In the words of a National Academy of Sciences panel, “Then as now, the obstacles
to achieving controlled fusion lay not in our ignorance of nuclear physics, but of plasma
physics [5].”
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Appendix A

Glossary

β : β is defined to be the ratio of kinetic pressure to magnetic pressure: β = μ0nkT
B2

Bremsstrahlung: German for “braking radiation,” bremsstrahlung is the radiation given
off by charges accelerating as they collide.

Field Reversed Configuration (FRC): An equilibrium genus-1 plasma configuration
that has high β. In its ideal form, its magnetic field has no toroidal component, but rather
it is entirely poloidal.

Langmuir Probe: The simplest of all plasma diagnostics, the Langmuir probe is essentially
a grounded and biased wire that is inserted into the plasma. It can be biased to collect
either electrons or ions, and it measures both plasma temperature and density.

Mach Number: The Mach number corresponding to a velocity in a fluid is the ratio of
that velocity to the sound speed in the fluid.

Mach probe: A directional Langmuir probe used to measure ion flow.

Magnetohydrodynamics (MHD): A simple set of magnetized fluid equations for plasma.

Ohm’s Law: The resistive Ohm’s law in a plasma is E + V × B = ηJ.

Poloidal: The direction traced out by circles on a torus that pass “through the donut
hole.” See toroidal.

s: Approximately the number of ion gyroradii in the minor length of a plasma. s is a
measure of whether the plasma is fluid-like (high s) or kinetic-like (low s).

Soft x-rays (SXRs): Electromagnetic radiation in the 10 eV to 150 eV range.

Spheromak: An equilibrium low β plasma configuration with both toroidal and poloidal
magnetic fields.

SPECT3D: A third-party plasma equilibrium simulation that we use to calculate the
emission spectrum in SSX.
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SSX (SSX-FRC): The Swarthmore Spheromak Experiment. The ’FRC’ (Field-Reversed
Configuration) was appended to the name two years ago, but nevertheless, we often refer
to the experiment as plain SSX for short.

Toroidal: The azimuthal θ direction in cylindrical geometry. “The long way around the
doughnut.” See poloidal.
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