Using experimental physics to explore sediment transport

Doug Jerolmack and Cacey Bester

Sediment Dynamics Laboratory
Department of Earth and Environmental Science
University of Pennsylvania

Summer 2019 research advertisement
Certain materials defy categories as solid or fluid.
granular materials
large collection of solid grains; Dissipative, athermal, exist in phases

Pharmaceuticals
Coffee beans
Logs
Coal
M&M candies

Phase transitions? Constitutive models?

Andreotti, Forterre, and Pouliquen Granular Media (2012)
Earth’s surface is composed of granular materials

- Boulders
- Soil
- Landslide with long runout
- Mudslide near Minneapolis, MN
- Soil creep
- Plumes at Mississippi delta

Slow Creep (~10^-8 m/s) ↔ Debris flows and avalanches (10 m/s)

Goal: describe geophysical flows w/ granular physics
Sediment: an experimental physicist’s perspective

Project Idea I

Universal signatures of creep

Experiment: simplification of a river channel

Data Analysis:
Analyze grain-scale displacement to assess topological rearrangements and dynamical heterogeneities

Project Idea II

Signal transmissibility of Marginal granular systems

Experiment design and construction: 2D apparatus to measure grain displacements and internal stresses while remotely controlling individual constituents
Questions? Contact: bester@sas.upenn.edu

Experimental physics of fluid and granular systems with motivations in geomorphology

Experimental design and construction

Imaging methods of soft matter physics

Computational analysis

Interdisciplinary research