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“The image of mathematical sentences being true by accident is an arresting one. It is 
plainly repugnant to anyone who believes in a fundamentally ordered universe. That, 
however, is not in itself a sufficient reason to reject it.” (M. Potter [1993, p. 308]) 

 
 
Section 1: Introduction 
 
 A conspicuous difference between ‘traditional’ philosophy of science and 
‘traditional’ philosophy of mathematics concerns the relative importance of the notion of 
explanation. Explanation has long featured centrally in debates in the philosophy of 
science, for at least two reasons. Firstly, explanation has been viewed as playing an 
important role in the methodology of science, due principally to the inductive character of 
scientific method. This has led to a focus on giving a philosophical model of scientific 
explanation, whose leading candidates have included Hempel’s deductive-nomological 
model, the causal model promoted by Lewis, van Fraassen’s pragmatic model, and the 
unification models of Kitcher and Friedman. Secondly, explanatory considerations have 
been an important feature of philosophical debates over scientific realism and anti-
realism. This has led to a focus on inference to the best explanation and the conditions 
under which this mode of inference can underpin robust ontological conclusions. 

By contrast, philosophical analysis of explanation in mathematics has – until very 
recently – been scattered and peripheral to the main debates in the philosophy of 
mathematics.1 This is partly a result of the traditional philosophical emphasis on the 
centrality of proof in mathematics, combined with the unstated assumption that issues of 
explanation are irrelevant to the regimentation and evaluation of purely deductive 
arguments. However there has recently been a significant increase of interest in 
mathematical explanation for reasons that are broadly analogous to those that have long 
held sway in the philosophy of science. Firstly, philosophers have begun to realize that 
explanatoriness is a genuine and significant feature of mathematical methodology. In 
particular, mathematicians frequently make a distinction between more and less 
explanatory proofs, and tend to value the former over the latter. Secondly, metaphysical 
debates concerning the existence of mathematical objects that arise from the Quine-
Putnam indispensability argument have started to focus more carefully on the putative 
explanatory role played by mathematics in science. These two strands of philosophical 

                                                 
1  As Tappenden [2008, p. 4] puts it, “the study of mathematical explanation is still in early adolescence.” 
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interest can be thought of as focusing on mathematical explanation in mathematics and 
on mathematical explanation in science respectively.2 
 One consequence of the philosophy of mathematical explanation still being in its 
“early adolescence” is that the philosophical terrain is still in the process of being mapped 
out. There is nothing like a consensus position on the correct philosophical account of 
mathematical explanation, or even a well-established core of basic alternative views. 
Even basic framework questions have been little thought about or discussed, such as 
whether we should look for, or expect, an account that covers both mathematical 
explanation and scientific explanation, or whether there is likely to be a single model of 
mathematical explanation as opposed to a heterogeneous collection of distinct sub-
models. It may be helpful, therefore, to get some sense of the different ways in which 
explanatory considerations enter into philosophical analyses of mathematics. These fall 
fairly naturally into the following four broad categories: 
 
 
(I) Explanation in Mathematics (single theory) 
 
Explaining a given mathematical fact by drawing on results from elsewhere in the same 
theory. Here the philosophical focus tends to be on proofs, and on comparing the relative 
explanatoriness of different proofs of the same result. Mancosu [2008] refers to accounts 
of this sort as “local” and gives as an example Steiner’s account of mathematical 
explanation. For Steiner, an explanatory proof involves a characterizing property, which 
he defines as “a property unique to a given entity or structure within a family or domain 
of such entities or structures.”3 This often allows an explanatory proof to be generalized 
by varying the crucial characterizing property. 
 
 
(II) Explanation in Mathematics (intertheoretic) 
 
Results in one mathematical theory are explained by relating them to another, distinct 
mathematical theory. Sometimes the intertheoretic explanation is a proof, and sometimes 
it is not. In the former category is Wiles’ celebrated proof of Fermat’s Last Theorem, 
which establishes a number-theoretic result by means of a detour through elliptic curves, 
modular forms, and so on. Often the explanation features a second theory which expands 
the domain of the original theory. For an example of a non-proof-based explanation 
involving domain extension, consider the issue of why 1 is not considered to be a prime 
number. This can only be satisfactorily explained by broadening the focus from the 
natural numbers to the complex numbers, and in particular the Gaussian integers a + bi, 
where a and b are integers. Units are numbers which have a multiplicative inverse; 
among the Gaussian integers there are four units, {1, -1, i, -i}. Restricting attention to the 
positive integers, 1 is both the identity element and the only unit, hence these two roles 
are blurred together. The general definition of prime number precludes units from being 
prime, and this underpins the explanation for why 1 is not prime. 
 
                                                 
2  Mancosu [2008] makes roughly this distinction between two facets of mathematical explanation. 
3  Steiner [1978, p. 144] 
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(III) Mathematical Explanation in Science 
 
An empirical fact about the world is explained, at least in part, by a piece of mathematics. 
There is debate in the philosophical literature about whether there are in fact any genuine 
mathematical explanations of physical facts. Mark Colyvan claims that there are, Joseph 
Melia that there are not.4 I have presented in print a detailed example from the biological 
literature, involving the prime periods of the periodical cicada, which I argue does 
involve mathematics playing a genuinely explanatory role.5 One way of thinking about 
this kind of explanation is by analogy with (II) above, in other words as an intertheoretic 
explanation where the ‘target’ theory is scientific rather than mathematical. 
 
 
(IV) Explaining the Role of Mathematics in Science 
 
Questions have been raised by both scientists and philosophers that demand an 
explanation for why mathematics plays such a central and important role in science. 
Perhaps the most famous of these challenges is from the 1960 paper, “The Unreasonable 
Effectiveness of Mathematics in the Natural Sciences,” by Nobel prize-wining physicist 
Eugene Wigner. The question of why mathematics is applicable, or useful, or 
indispensable in science (and these are importantly distinct features) is in a sense a meta-
question, not about the explanatory role of mathematics but about explaining why it plays 
the role that it does.6 
 
 
 For the purposes of the present paper, I shall be restricting attention mostly to 
category (I) above, in other words explanation in mathematics as it occurs within a single 
mathematical theory. Towards the end of the paper I will say something about category 
(II) and intertheoretic explanations in mathematics. My central thesis is that philosophical 
understanding of the notion of explanation in mathematics can be usefully advanced by 
focusing on the hitherto neglected concept of an accidental mathematical fact, or – more 
briefly – a mathematical accident. The motivating analogy here is the distinction 
commonly drawn in the philosophical literature between “law’ and “accidental 
generalization.” Could there be accidental generalizations in mathematics? And, if so, 
what might their presence tell us about methodological issues such as confirmation, 
induction, and explanation? 
 Talk of “mathematical accidents” is apt to provoke a fairly immediate negative 
reaction. For one thing, this sort of terminology seems to play no role in the actual 
practice of mathematics. Working mathematicians are not in the habit of referring to any 
of the results of their investigations as “accidental.” Worse still, the notion seems to be 
philosophically incoherent on its face. Central to our intuitive notion of accident is that 
accidents might have happened differently, or they might not have happened at all. 
Accidents, in other words, are contingent. But most traditional philosophical accounts of 

                                                 
4 See Colyvan [2001]; Melia [2000, 2002]. 
5 Baker [2005]. See also Baker [forthcoming] for further discussion of the cicada case study. 
6 See Pincock [2007] 
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mathematics – especially those accounts according to which our core mathematical 
claims are true – take such claims to be necessary. If it is true that 2 + 3 = 5, or that 17 is 
prime, then it is true necessarily: there is no interesting sense in which 17 might not have 
been prime. So we have what seems to be an incoherent notion that is irrelevant to 
mathematical practice. This is hardly a promising starting point for a philosophical 
investigation! 
 My plan is to address these twin worries indirectly, at least initially, by focusing 
not on mathematical accidents but on the related notion of mathematical coincidence. I 
shall argue that talk of coincidence does feature in mathematical practice and that it can 
be given a coherent philosophical analysis. Moreover, this analysis provides the 
groundwork for a satisfactory definition of “mathematical accident.” With these worries 
(hopefully) allayed, I shall go on in the following section to lay out the positive case for 
the philosophical relevance of mathematical accidents. 
 
 
Section 2: Mathematical Coincidences 
 
 Mathematicians tend to use the term “mathematical coincidence” to describe 
certain ‘surprising’ low-level results. Sometimes these results concern co-incidence in a 
very literal sense, for example  
 

(1) The sequence ‘1828’ appears twice in the first ten digits of the decimal 
expansion of e. 

 
More often, the results are identities or approximate identities, such as 
  

(2) π ≈ 355 / 113, correct to 6 decimal places. 
 
At this point, the philosopher of mathematics will naturally want to know more about 
what exactly is supposed to be meant by the term “coincidence” in this context. In their 
influential work on the statistical study of coincidences (in non-mathematical contexts), 
Diaconis and Mosteller define a coincidence as “a surprising concurrence of events, 
perceived as meaningfully related, with no apparent causal connection.”7 Other features 
that are commonly taken to be aspects of coincidences include being unpredictable, being 
improbable, and being inexplicable. 
 But how to map this onto the mathematical case? Diaconis and Mosteller talk in 
terms of “events” which lack “causal connection,” and these are notions which 
presumably have no application in the context of mathematics. So we are left with the 
bare criterion of “surprise”, together with (potentially) related notions such as 
unpredictability and improbability. Arguably these latter concepts are just as difficult to 
fit into the mathematical context, at least if they are construed objectively. (Making sense 
of subjective probabilities for mathematical claims is also a delicate issue, but it may be 
more tractable. See Pólya [1954] and Corfield [2003, Chapter 5] for work on this topic.) 
Moreover, there is good reason to think that low probability and/or unpredictability in 
any strong sense are not essential to the notion of coincidence even in the empirical case. 
                                                 
7 Diaconis & Mosteller [1989, p. 853] 
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If the universe is deterministic then the falling into Todd’s lap of his name and phone 
number had a probability of 1 and was predictable in principle from the state of the world 
prior to the start of the football game he was attending. 
 The key – or so I shall argue – in importing the correct notion of coincidence into 
mathematics is to look for some appropriate analog of “lack of causal connection.” David 
Owens, in his 1992 book, Causes and Coincidences, argues that a coincidence should be 
defined as an event whose constituent events are causally independent of one another. 
For example, imagine that I pray for rain tomorrow and it does in fact rain tomorrow. The 
atheist will claim that my prayers being answered in this case is a coincidence, which – 
according to Owens – is simply to claim that the causes of my praying were independent 
of the causes of the rain. Thus to say that a coincidence occurs “for no reason” is not to 
say that it is uncaused, but rather that there is no causal story which points to any deeper 
reason that explains why the given result should be expected to hold. This suggests in turn 
that the underlying essential feature here is the inexplicability of coincidences. But, as has 
already been noted, explanation is a recognized aspect of mathematical methodology. 
Hence this may provide the way in to defining an appropriate notion of mathematical 
coincidence. 
 Support for this approach comes from mathematicians’ own reflections on the 
notion of coincidence. For example, 
 

“[A] mathematical coincidence can be said to occur when two expressions show 
a near-equality that lacks direct theoretical explanation.”8 

 
Having pinpointed inexplicability as a crucial notion, the task now is to get clearer on 
what constitutes a “direct theoretical explanation.” The identification of a claim as a 
mathematical coincidence certainly does not mean that the claim in question is 
unprovable. On the contrary, verifying the repetition of ‘1828’ in the decimal expansion 
of e, or showing the accuracy of the 335/113 approximation of π, are almost trivial 
computational tasks. 

This does not mean that proof-related factors are irrelevant, however. Consider a 
putative analogy between causation in the empirical cases of coincidence and proof in the 
mathematical cases. Empirical coincidences have causes, it is just that there is no 
particular link between the causes of the two coincident events.9 Mapping this idea onto 
the mathematical case suggests that we characterize mathematical coincidences as claims 
whose separate parts require separate proofs. Take example (2) above, concerning the 
rational approximation of π. To prove the 6-decimal accuracy of 355/113, it is necessary 
and sufficient to calculate π to 6 decimal places (using one of various geometric or 
calculus-based methods), and to calculate 355 / 113 to 6 decimal places (using long 
division). But these two calculations are quite distinct. There are no parts of one 
calculation that are used in the other. 

                                                 
8  “Mathematical Coincidences”, Wikipedia 
9  One option, terminologically speaking, would be to reserve the label “mathematical miracle” for those 
mathematical statements within a given theory which are true yet unprovable from the axioms of that 
theory. Thus unprovability would here correspond to the lack of causation for miracles in the empirical 
context. 
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 From a structural perspective, therefore, the crucial feature of any proof of a 
mathematical coincidence is its disjointness. It is this disjointness which prevents the 
explanation of the two components from constituting an explanation of the coincidence as 
a whole. In the case of identities (and near identities), the ‘components’ of the 
coincidence are easy to pick out, since they fall on each side of the identity (or 
approximate identity) sign. Whether there is such a clear breakdown into components for 
all putative cases of mathematical coincidence is unclear, but this is not an issue that I 
will take time to pursue here since the notion of mathematical coincidence is merely a 
stepping-stone on the path towards defining a broader notion of accidental mathematical 
fact.10 
 
 
Section 3: From Mathematical Coincidences to Accidental Generalizations 
 
 “Coincidence” and “accident” are closely related concepts. Frequently, one is 
defined in terms of the other. For example, the American Heritage Dictionary defines a 
coincidence is “an accidental sequence of events that appears to have a causal 
relationship.” In the philosophical literature, talk of accidents is often bound up with the 
notion of accidental generalization. Accidental generalizations are taken – by those 
philosophers who make this distinction – to be universal, true claims that share some but 
not all the features of lawlike claims and hence that fall short of expressing genuine laws 
of nature. For example the (putative) law of nature, 
 

(3) All solid spheres of enriched uranium (U235) have a diameter of less than 
a mile. 

 
may be contrasted with the accidental generalization 
 
 (4) All solid spheres of gold (Au) have a diameter of less than a mile.11 
 
What the key differentiating features are taken to be which accidental generalizations 
lack depends on what account of laws of nature is in play. 
 What little literature there is on accidental mathematical facts tends to follow the 
above pattern, although which element of lawlikeness is focused on varies from author to 
author. I shall begin by surveying a couple of sample approaches. 
 
(I) Necessity 
 
In the context of discussing the debate between intuitionist and platonist accounts of 
mathematics, Michael Potter addresses the issue of whether “there may be [mathematical] 
sentences true accidentally.” He argues that even the platonist cannot make sense of this 
notion, and in presenting his argument he explicitly equates being accidental with being 
non-necessary. In support of this analysis, it should be noted that the accidental 

                                                 
10  In fact example (1), considered earlier, may not be straightforwardly analysable in terms of disjointness 
since the calculation of the 5th to 8th decimal digits of e presupposes the calculation of the 1st to 4th digits. 
11  See van Fraassen [1989, p. 27] 
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generalization, (4), does seem to lack the necessity of the lawlike claim, (3). Potter 
frames platonism in the context of a ‘God’s-eye’ view of mathematics, and he writes 
 

“God simply does not, under the platonist interpretation of the quantifiers on the 
natural numbers, have the freedom to decide their truth or falsity, whether by 
dice-throwing or the exercise of God’s whim or anything else.”12 

 
I agree with Potter that making room for mathematical accidents, conceived of as matters 
of contingent fact, is a non-starter. The issue, then, is whether there is some other account 
of accidentality that may fare better.13 
 
(II) Natural Kinds 
 
David Corfield has also considered the issue of “the existence in mathematics of ‘quasi-
contingent’ facts, i.e., facts which are shallow or ‘happenstantial’.”14 Unlike Potter, 
Corfield argues for the existence of such facts. This difference arises mainly because 
Corfield focuses not on the link between lawlikeness and necessity but between 
lawlikeness and natural kinds. He begins by rejecting analyses that rely on modal 
distinctions, for reasons that are very similar to those canvassed in our earlier discussion 
of mathematical coincidences; 
 

“With much of the discussion of laws and necessity carried out in the 
metaphysical language of possible worlds, the notion that mathematical facts 
might vary similarly as to their lawlikeness has appeared to be hopeless. Where I 
can imagine possible worlds in which very large golden balls exist, I cannot 
imagine a possible world in which the number denoted in the decimal system by 
‘13’ is not prime.”15 

 
Instead, Corfield targets the predicates used in formulating a given generalization, 
arguing that accidental mathematical claims are characterized by their use of “non-
natural” predicates. He proposes a taxonomy of mathematical natural kinds, by analogy 
with natural kinds in empirical science. Natural mathematical predicates are those which 
pick out mathematical natural kinds. Consider the following example, given by Corfield, 
of an accidental mathematical fact: 
 

“Coining a term ‘cubeprime’ to characterise any natural number which is either 
prime or a perfect cube, we arrive at the result that: 
 
In any base, the reversal of what we call ‘thirteen’ is cubeprime.”16 

                                                 
12  Potter [1993, p. 308] 
13 Also cf. Davis [1981, p. 320]: “A Platonic philosophy of mathematics might say that there are no 
coincidences in mathematics because all is ordained.” 
14 Corfield [2005, p. 33] 
15 op. cit., p. 31 
16 op. cit., pp. 34 – 35. The reversal of a number consists of the digits of that number taken in reverse order. 
Thus the reversal of ‘125’ is ‘521.’ The reversal of the representation of thirteen in base 10 is ’31’, but in 
base 5 (for example), thirteen is represented as ‘23’, so its reversal is ’32’. 
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I am actually quite sympathetic to Corfield’s approach, and I shall return to some of the 
issues he raises in a later section. However, there are a couple of reasons for doubting its 
effectiveness as a general account of mathematical accidenthood. Firstly, it seems 
doubtful whether the notion of mathematical natural kind is any clearer than the notion of 
mathematical accident. Hence defining the latter in terms of the former may not represent 
much in the way of analytical progress. In Corfield’s defense, Jamie Tappenden and 
others have noted that invoking ‘naturalness’ as a distinguishing mark of certain fruitful 
concepts and definitions is a relatively common feature of mathematical practice.17 
Nonetheless, the link between naturalness in this loose sense and natural kinds is not 
immediately clear. Secondly, and more seriously, there are good reasons for thinking that 
while featuring non-natural predicates may be a sufficient condition for a mathematical 
generalization to count as accident, it is not a necessary condition. Later on I shall give 
some prima facie cases of accidental mathematical generalizations which feature only 
non-gerrymandered, natural mathematical predicates. To partially preempt what follows, 
I shall argue that Corfield has the direction of dependence the wrong way around. It is not 
that mathematical accidents are accidental in virtue of featuring non-natural predicates; 
rather a predicate will count as non-natural if it features solely in accidental 
generalizations. 
 
 
(III) Explanation 
 
Given my remarks in the preceding section in discussing the notion of a mathematical 
coincidence, it will come as little surprise that my favored analysis of accidental 
mathematical generalizations will be in terms of explanation. The basic idea is to treat 
accidental generalizations as ‘universal coincidences’, with the only significant difference 
being in the number of events or phenomena that coincide. While coincidences are 
typically matters of particular fact, wherein two phenomena share some striking 
similarity, accidental generalizations are universal in form and typically involve the 
coinciding properties of many – perhaps even infinitely many – particular phenomena. 
Mapping all this into the mathematical context, accidental mathematical generalizations 
will be generalizations that lack any unified proof. Such generalizations, even when 
provable, are thus inexplicable, and they share this core property with mathematical 
coincidences. One standard way in which a mathematical generalization may lack any 
unified proof is for it to be verifiable only on a case-by-case basis. 
Before presenting this analytical approach in more detail, I shall pause to consider a 
couple of putative examples. An immediate consequence of my favored definition of 
mathematical accident is that this designation is rarely definitive, since it will usually not 
be possible to rule out some unified, explanatory proof of a given claim being found at 
some point in the future. Nonetheless, it will be useful to focus on a couple of promising -
- and well-known – claims that are prima facie candidates for being accidental 
mathematical generalizations. 

 
 
                                                 
17 Tappenden [2008] 
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Section 4: Case Studies 
 
(I) The Goldbach Conjecture 
 

 In a letter to Euler written in 1742, Christian Goldbach conjectured that all 
even numbers greater than 2 are expressible as the sum of two primes.18 Over the 
following two and a half centuries, mathematicians have been unable to prove GC. 
However it has been verified for many billions of examples, and there appears to be a 
consensus among mathematicians that the conjecture is most likely true. 

Echeverria, in a recent survey article, discusses the important role played by 
Cantor’s publication, in 1894, of a table of values of the Goldbach partition function, 
G(n), for n = 2 to 1,000.19 The partition function measures the number of distinct ways in 
which a given (even) number can be expressed as the sum of two primes. Thus G(4) = 1, 
G(6) = 1, G(8) = 1, G(10) = 2, etc. This shift of focus onto the partition function 
coincided with a dramatic increase in mathematicians’ confidence in GC; however 
Cantor did not simply provide more of the same sort of inductive evidence, since 
Desboves had already published, in 1855, tables verifying GC up to 10,000. To 
understand why Cantor’s work had such an effect it is helpful to look at the following 
graph which plots values of the partition function, G(n), from 4 to 100,000.20 
 
Figure 2 
 

                                                 
18  In fact, Goldbach made a slightly more complicated conjecture which has this as one of its 
consequences. 
19  op. cit., pp. 29-30 
20  Of course the number of results displayed here is orders of magnitude beyond Cantor’s own efforts, but 
the qualitative impression is analogous. This graph is taken from Mark Herkommer’s ‘Goldbach 
Conjecture Research’ website at http://www.petrospec-technologies.com/Herkommer/goldbach.htm 
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This graph makes manifest the close link between G(n) and increasing size of n. Note that 
what GC entails in this context is that G(n) never takes the value 0 (for any even n greater 
than 2). The overwhelming impression made by the above graph is that it is highly 
unlikely for GC to fail for some large n. At the upper end of this graph, for numbers on 
the order of 100,000, there is always at least 500 distinct ways to express each even 
number as the sum of two primes! 
 Reflection on the above picture reinforces the impression that GC’s closest 
brushes with falsity occur in the first few instances. Indeed three of the first four 
instances of GC have a partition function value of 1, in other words there is only a single 
way to decompose the given number into primes. My initial reaction, on looking at the 
graph of the Goldbach partition function, was that the fact that GC survives these first 
few instances intact is purely accidental. It is pure happenstance that it does not fail very 
early on. It was rumination on what this could possibly mean – in the mathematical 
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context – that set me to thinking more generally about the notion of mathematical 
accidents. 
 One way to motivate the link to explanation in this case is to compare GC with 
the following, deliberately trivial, general claim about even numbers: 
 

(5) All even numbers can be expressed as the sum of two odd numbers. 
 
There is no corresponding temptation to view the truth of (5) as accidental, even though 
there is a sense in which (5) also ‘comes close’ to being false for its initial few instances 
(there is only one way to express 2 as the sum of two odd numbers, and one way to 
express 4, compared with twenty-five ways to express 100 as the sum of two odd 
numbers). Partly, of course, this difference in intuition is because the truth of (5) – unlike 
the truth of GC – is immediately obvious. But the deeper reason, I think, is that there is a 
simple, general proof of (5) from which the truth of each instance straightforwardly 
follows. 
 If GC is indeed true, as most number theorists suspect, then there are several 
alternatives concerning its provability, including: 
 
(i) No proof of GC or its negation is possible from the standard axioms.21 
 
In this case, since GC has no proof, a fortiori it has no unified proof. So GC is an 
accidental mathematical fact. 
 
(ii) GC has an elegant, unified proof, it is just that we have not found it yet. 
 
So GC is not accidental. 
 
(iii) There is a unified proof that all numbers greater than some specified (large) N 

conform to GC. The finite number of cases N and below can only be verified 
individually. 

 
In this third situation, according to my analysis, GC would still count as accidental 
despite being provable because the best possible proof of GC is highly disjunctive and 
hence does not explain the truth of the conjecture. 
 
 
(II) The Four-Color Theorem 
 

The Four-Color Theorem was first conjectured by a British mapmaker in the mid-
19th Century: the claim is that, given any plane separated into regions (such as a political 
map of the states of a country), the regions may be colored using no more than four 
colors in such a way that no two adjacent regions receive the same color. Various flawed 
proofs were produced in the latter part of the century. Progress was made on reducing the 
problem during the 20th Century, culminating in Appel and Haken’s 1976 proof, part of 
                                                 
21 Note that the undecidability of GC would entail its truth, because if it were false then it would fail for 
some number, n, and hence the negation of GC would be provable. 
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which consisted of the code for a computer program. The program was used to check 
through 1476 different graphs (each quite complex) on a case-by-case basis.22 

Philosophers have worried about the Four-Color Theorem because the Appel-
Haken proof makes unavoidable use of computers, and (relatedly) is unsurveyable. 
Mathematicians, by contrast, are dissatisfied with the Four-Color Theorem mainly 
because they consider the proof to be unexplanatory. The previous analysis fits nicely 
with this latter intuition: according to my definition, our best current evidence suggests 
that the Four-Color Theorem is an accidental mathematical fact. The proof is highly 
disjunctive: 1476 different sub-cases are individually considered. Thus the proof is very 
unexplanatory.23 
 
 
Section 5: Mathematical Accidents Defined 
 
 Bearing in mind the above discussion of the two case studies, I propose the 
following definition of the notion of a mathematical accident: 
 

(MA) A universal, true mathematical statement is accidental if it lacks a unified, 
non-disjunctive proof. 

 
The disjunctiveness of a proof is measured by the number of distinct sub-cases that need 
to be considered separately. Definition (MA) is coupled to the philosophical claim that – 
other things being equal – disjunctiveness is negatively correlated with explanatoriness in 
the context of proof. Hence an accidental mathematical truth is inexplicable, or – putting 
the point more carefully – such a truth has only a ‘bottom-up’ explanation of its 
components as opposed to a ‘top-down’ explanation of the whole. It is important to note 
that (MA) is being proposed here as a sufficient condition for a mathematical claim being 
accidental, but it is not a necessary condition. For my underlying thesis is that 
accidentality is tied to lack of explanation, and there are certainly other ways than 
disjunctiveness in which proofs can be unexplanatory. 
 Though I do not have the space to pursuit it here, it would be interesting to look at 
how the above definition might be supplemented to take into account features of the 
disjuncts of a proof other than simply how many there are. One candidate feature is the 
naturalness of the division of the space of possibilities into distinct subcases. Another is 
the specificity of the subcases themselves: do they consist of individual elements (for 
example, the individual even numbers checked in the Goldbach case), or are they 
groupings of cases of a certain type (for example, the different types of map 
configuration checked in the Four-Color Theorem case)? 
 One consequence of the above definition is that accidentality is a matter of 
degree. It inherits this feature from the original definition of (non-mathematical) 
coincidence, based on causal independence, which inspired (MA). Causal independence 
may seem like an all-or-nothing matter, but strict causal independence looks to be too 
stringent a criterion for our ordinary notion of coincidence. Take the praying for rain 

                                                 
22 For more on the mathematical details of the Four-Color Theorem, see Thomas [1998] and Wilson [2002]. 
23 For discussion of some philosophical considerations arising from the Four-Color Theorem, see 
Tymoczko [1979], and McEvoy [forthcoming]. 
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example. Even for the atheist, it should seem plausible that there is some causal link 
between my praying for rain tomorrow and it raining tomorrow. My praying did not 
cause the rain. However, if we go back far enough then there will presumably be some 
event that features as a cause both of my praying and of the rain. For example, the early 
conditions on Earth that to the retention of large quantities of water on its surface and in 
its atmosphere. Without the presence of this water I would not have been around to pray, 
and there would have been no raw materials for rain. And if all else fails, the Big Bang 
can always be cited as a common cause of any two events in the subsequent history of the 
universe. But neither the early atmospheric conditions of the Earth, nor the Big Bang, 
should undermine the claim that it raining after I prayed for rain is a coincidence. The 
reason why not, at least intuitively, is that the cited causes are very remote from the 
events in question. This suggests that causal independence should be taken to be a matter 
of degree. The longer and more circuitous the causal chain connecting the two events, the 
more coincidental they are. Hence coincidence is itself a matter of degree. 
 The above points apply mutatis mutandis to the notion of mathematical accident. 
The optimal proof of a given result may be more or less disjunctive, and the degree of 
accidentality of the result corresponds to the degree of disjunctiveness of the proof. The 
parallel with the empirical case also provides a way to head off one potential line of 
objection to my account of mathematical accidents. If a mathematical claim is provable 
then it is provable from the axioms of the theory in which it is embedded. So why not cite 
the axioms as providing an explanation of any provable claim? Here the axioms are 
analogous to the boundary conditions right after the Big Bang, and the same point about 
indirectness applies. Tracing inferential paths back to axioms is no more explanatory per 
se than tracing causal chains back to the Big Bang. Sometimes axioms are explanatory 
and sometimes they are not, but this depends on the nature of the proof and not on its 
bare existence. 
 At the beginning of the paper I promised an analysis of the concept of 
mathematical accident that would meet three benchmarks of acceptability: that the 
concept is coherent (i.e. that there could be mathematical accidents); that the concept has 
significant links to mathematical practice; and that the concept is philosophically fruitful. 
Hopefully it is clear enough that the first of these hurdles has already been met: it 
certainly seems possible for there to be mathematical claims whose ‘best’ proof is highly 
disjunctive. What about links to mathematical practice? Some such links are already 
apparent, insofar as the two putative examples of mathematical accidents discussed above 
each concern claims (the Goldbach Conjecture and the Four-Color Theorem) that 
mathematicians have found interesting and significant. My analysis also respects the 
more general role of accidents as barriers to effective theorizing. Other things being 
equal, if a given fact counts as accidental according to theory A but non-accidental 
according to theory B then this counts in favor of B over A. Along these lines, my 
account of mathematical accidents links them to a feature of proofs, namely 
disjunctiveness, which tends to be regarded by mathematicians as undesirable. The 
general preference is for ‘top-down’ proofs rather than ‘brute force’, case-by-case 
verifications. Indeed this preference is encapsulated in the – perhaps apocryphal – story 
of Gauss as a schoolboy taking a matter of seconds to sum the numbers from 1 to 100 
while his classmates laboriously added them one by one. The early sign of Gauss’s 
mathematical genius is here identified precisely with his ability to find a general method 
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for immediately generating this sum, in this case by rearranging it to form fifty pairs, (1 + 
100), (2 + 99), (3 + 98), and so on, to give a total of 5050. Not only this, but the 
preference for less disjunctive proofs is often expressed by citing the greater explanatory 
power of the ‘better’ proof. 
 The third and final benchmark I promised would be met by my proposed notion of 
mathematical accident is that it be philosophically fruitful. Doubtless this is the hardest of 
the three to measure in any definitive fashion, nonetheless I hope to indicate in these 
concluding sections some of the various philosophical ends to which reflection on the 
nature and role of mathematical accidents may be put. 
 
 
Section 6: New Work for a Theory of Mathematical Accidents 
 
(I) The End of Explanation 
 

I have claimed as a virtue of my account of mathematical accidents that it ties 
accidentality to disjunctiveness of proof and disjunctiveness in turn to explanation (or 
lack of explanation), and that this mirrors the way in which explanatory considerations 
are invoked in some accounts of the law / accidental generalization distinction in 
empirical science. However, on closer inspection, it might seem that I am being 
disingenuous here. Explanation-based accounts of laws of nature typically cite the role of 
laws in explaining other phenomena, the implication being that accidental generalizations 
fail to explain their instances. By contrast, the account I have offered of mathematical 
accidents highlights the fact that the generalizations themselves lack explanation. So 
doesn’t my account get the direction of inexplicability the wrong way around? This 
worry is further bolstered by reflection on laws of nature, for example Newton’s Law of 
Gravitation. It seems reasonable to conclude that fundamental laws of this sort are 
inexplicable also. After all, to categorize them as fundamental is to imply that they do not 
follow from any deeper principles. 
 My reaction to this line of objection is to try to hang onto the motivating analogy 
but to subdivide it into two sorts of case. We had occasion in the previous section to talk 
about the role of axioms in explanatory versus non-explanatory proofs. And it is axioms 
that provide the most natural analogs for fundamental laws of nature. The remaining 
cases of ‘non-accidental’ mathematical generalizations, in other words general 
mathematical claims that are provable nondisjunctively from the axioms, are analogous to 
‘derived’ laws of nature. Nor is this merely a defensive move, an unwelcome retreat 
forced by the previous objections, for this more fine-grained analogy has the potential to 
cast light on issues concerning the endpoints of chains of explanation. 
 In the empirical context, there seem to be two basic ways in which answers to 
why-questions can run out. The first kind of case involves questions that push back to 
boundary conditions. If we ask, for example, why the fauna of Australia has such little 
overlap with the rest of the world, then an explanation can be given in terms of 
Australia’s historical isolation from other major land masses. If we ask how Australia 
came to be thus isolated, the original explanation can be extended by citing tectonic shifts 
and other geomorphological features. But there seems to come a point in this sequence of 
questions (‘why were the tectonic plates in this arrangement?’) where no further 
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explanation is possible. This is just how things were: these were the boundary conditions. 
The second kind of case involves pushing back to basic laws. Why is X amount of energy 
released by the fission of amount Y of uranium 235? Because mass is converted into 
energy according to the equation E = mc2. Why does E = mc2? It just does! 

One can think of these two barriers to further explanation as the particular and the 
fundamental. In some cases they may come together in one and the same situation; for 
example, the values of some of the fundamental physical constants (the gravitational 
constant, Planck’s constant, etc.) may perhaps best be viewed as fundamental matters of 
particular fact. As such, they are barriers to explanation in both the above senses. But 
when we look at more restricted domains than the cosmological, the distinction between 
laws and boundary conditions seems clear enough. In deterministic systems, the laws 
together with the boundary conditions entail all facts about the evolution of the system 
over time. But boundary conditions are unique to each system, indeed to each time-slice 
of each system, whereas laws are common across multiple systems. 
 What about the mathematical context? One point to bear in mind is that the 
axioms of a given mathematical theory come out as non-accidental, according to my 
definition (MA), since any axiom is trivially provable in a nondisjunctive way from itself. 
Hence although axioms figure at the end of explanatory chains, they are not exactly 
barriers to explanation since each axiom explains itself! Whether there is any analog in 
mathematics of the law / boundary condition distinction is unclear. Certainly, it is 
unusual to find mathematicians using these terms in the context of pure mathematics. 
Perhaps one could divide up the axioms of a theory according to their logical form: 
universal / general axioms would correspond to laws, and existential / particular axioms 
would correspond to boundary conditions. Take the axioms of Peano arithmetic (PA). All 
but one of these axioms is universal in form: the only “boundary condition” is the axiom 
which states that 0 is a natural number. 
 I won’t look in any more detail here into whether the above distinction has any 
mathematical significance, except to note that the role of the boundary condition axiom 
does seem to be different from the other Peano axioms. For one thing, it is the 
specification of 0 as a natural number which guarantees that the domain of natural 
numbers is non-empty. There is also a sense in which this is the only ‘non-structural’ 
axiom of PA. Finally, it is worth mentioning that there is also another, more speculative 
way to map the law / boundary condition into mathematics and that is to classify all the 
axioms of a given theory as ‘boundary conditions’, and then identify the “laws” with the 
rules of inference of the theory. The idea is that the evolution of a physical system from 
initial conditions, governed by laws, is equated with the unfolding of proofs from axioms, 
using rules of inference. Discussion of the philosophical merits, if any, of such a position 
must wait for another occasion. 
 
 
(II) Axiom Choice 
 
 Mathematicians – and philosophers – have gradually moved away from the 
Euclidean conception of axioms as fundamental, ‘self-evident’ truths. This traditional 
view has been replaced by a variety of attitudes, including the completely instrumental 
according to which axioms are arbitrary sets of rules, and there is no substantive sense in 
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which one set is ‘better’ than another. One popular view, sometimes associated with 
Bertrand Russell, is that axioms are justified by their consequences.24 On this view a 
mathematical theory such as arithmetic has various core claims, for example ‘obvious’ 
claims such as “2 + 2 = 4”, or “7 is a prime number.” A given set of axioms is judged not 
according to the self-evidence of its component axioms but rather by the extent to which 
it allows the core claims of the theory to be deduced (and prevents the deduction of 
patently false claims). There is a clear analogy here with use of inference to the best 
explanation in the empirical sciences to justify belief in statements about theoretical 
posits such as electrons and black holes. 
 If something like inference to the best explanation (IBE) does underlie axiom 
choice in mathematics, doesn’t this mean that we ought to pay attention to the distinction 
between explanatory and non-explanatory proofs? The thought is that it is not enough, as 
a basis for IBE, for a set of axioms simply to prove a particular core claim, the proof must 
also be explanatory. In other words, the optimal set of axioms for a given theory is that 
which (other things being equal) yields explanatory proofs of the maximum number of 
core claims. If we have reason to believe that amongst the core claims of a given theory – 
with a given set of axioms, A – there are some mathematical accidents, then their 
presence counts against A. 
 Of course, the explanatory power of A will not be the only criterion of evaluation, 
otherwise we should just keep adding axioms. There will also be desiderata such as 
consistency, independence, and simplicity. The most active area of debate concerning the 
selection of axioms is in set theory. Should provably independent axioms such as the 
Axiom of Choice (AC) or the Continuum Hypothesis (CH) be added to the basic ZF 
axioms? What about various ‘large cardinal’ axioms? Typically arguments in favor of 
adopting a particular axiom, such as AC, proceed by coming up with various powerful 
and useful results that can be proved only if AC is added to the core axioms. The problem 
– from the IBE perspective – is that there is no independent route to the verification of 
these results. What this suggests is a different route to the justification of a new axiom 
candidate, namely if there are important results, provable from the existing axioms in a 
non-explanatory way, whose proofs would be rendered much more explanatory if the 
candidate axiom were adopted. 
 
 
Section 7: Intertheoretic Mathematical Accidents 
 
 My discussion thus far has focused almost exclusively on the intratheoretic case, 
in other words on mathematical coincidences and mathematical accidents where the 
‘coinciding’ facts all lie within a single mathematical theory, typically number theory. 
We already know, from Gödel’s incompleteness theorems, that any consistent 
axiomatization of number theory will fail to prove certain arithmetical truths. Of course 
the Gödel results per se tell us nothing about whether any of these unprovable truths are 
mathematically interesting. My presumption has been that there may well be 
mathematical truths, such as the Goldbach Conjecture, that are both mathematically 
interesting and are accidental either because they are unprovable or because their best 

                                                 
24 See, for example, Russell [1973, p. 282]. 
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proof is highly disjunctive. There may, in other words, be interesting mathematical truths 
that are true for no reason. 
 What happens when we broaden our focus to encompass multiple mathematical 
theories? Intertheoretic considerations raise some new possibilities. The first is when a 
result that is naturally expressed in mathematical theory X has no non-disjunctive proof 
in X (and perhaps no proof of any kind in X), but it does have a non-disjunctive proof in 
some stronger background theory Y. Relatively well-known examples of this sort include 
the Paris-Harrington theorem and Goodstein’s theorem, both of which are arithmetically 
expressible claims which can be shown to be unprovable in first-order Peano arithmetic 
but which are provable in stronger theories such as ZF set theory. I am not aware of any 
examples where the background theory reduces the disjunctiveness of a proof in the 
weaker theory, but there seems no reason in principle why this should not occur. How 
should such examples be classified on the accidental / non-accidental spectrum? One idea 
is to conceive of accidentality as a theory-relative notion. Thus one and the same result 
might be both accidental from a number-theoretic perspective and explicable from a set-
theoretic perspective. 
 A second sort of possibility is where the coincidence – or apparent coincidence – 
itself concerns items from more than one theory. One notorious example along these lines 
concerns the so-called “Monstrous Moonshine.” The (so-called) j-function is connected 
to the parameterization of elliptic curves, and it has the following Fourier expansion in q 
= exp(2πiτ): 
 
 j(τ) = 1/q + 744 + 196884q + 21493760q2 + … 
 
Mathematician John McKay was the first to notice that the third coefficient, 196884, was 
the same as the sum of the dimensions of the two smallest irreducible representations of 
the Monster finite group. Yet the two theories in which these numbers appear – elliptic 
curves and group theory – seem to be almost completely unrelated to one another. The 
initial reaction of many mathematicians to McKay’s observation was that it was purely a 
coincidence that this number appeared in both theories. Yet it soon became clear that all 
the coefficients of the j-function can be expressed as linear combinations of irreducible 
representations of the Monster group, and this prompted mathematicians to start 
searching for a connection between these two theories. A connection was eventually  
found by Richard Borcherds, who won a Fields Medal in 1998 for his work. As Corfield 
summarizes it, Borcherds “managed to spin a thread from the j-function to the 24-
dimensional Leech lattice, and from there to a 26-dimensional space-time inhabited by a 
string theory whose vertex algebra has the Monster as its symmetry group.”25 
 Although McKay’s initial observation spanned two distinct theories, the analysis 
of mathematical coincidence that I sketched earlier in the paper seems to apply. Recall 
that coincidence was there characterized as “lack of direct theoretical explanation” and 
this was cashed out in turn in terms of disjointness of any proof of the result. If the 
Monstrous moonshine were a genuine a coincidence then the only way to prove it would 
be to give a proof in each theory of the respective occurrence of 196884. Borcherds result 
gives a ‘theoretical explanation’ of the result by connecting the two halves of the 

                                                 
25 Corfield [2003, p. 126] 
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apparent coincidence together in a single proof. Hence the Monstrous moonshine turns 
out not to be a coincidence after all. 
 A less well-known, and more recent, example of a putative intertheoretic 
mathematical coincidence concerns some surprising correspondences that have been 
discovered between the theory of certain ordinary differential equations and particular 
integrable lattice models and quantum field theories in two dimensions. This 
phenomenon is sometimes referred to as the ODE/IM correspondence.26 Unlike in the 
Monstrous moonshine case, the consensus seems to be that the ODE/IM has not (yet) 
been adequately explained. 
 The above episodes raise a question that has more general significance for the 
status – and existence – of mathematical coincidences and mathematical accidents, 
namely what attitude mathematicians ought to take to putative examples of coincidences. 
Whatever the answer to this normative question, it appears that as a matter of fact 
mathematicians are more inclined to accept genuine coincidences within one theory than 
they are between two or more theories. For instance, nearly all of the dozens of examples 
that appear on the Wikipedia page devoted to “Mathematical Coincidences” concern 
results within a single theory. Where the single theory is arithmetic, this acceptance of 
coincidences might be motivated by appeal to Gödel’s incompleteness results. But if we 
insist on coincidences being ‘surprising,’ ‘significant,’ or ‘interesting,’ then there is no 
guarantee that any strictly unprovable arithmetical claims will be coincidental. 
 By contrast, when a striking feature occurs in two distinct mathematical theories, 
usually the presumption is that there is some substantive connection to be unearthed. In 
this regard, the views expressed by mathematician Philip Davis seem quite typical: 
 

“I cannot define coincidence. But I shall argue that coincidence can always be 
elevated or organized into a superstructure which performs a unification along the 
coincidental elements. The existence of a coincidence is strong evidence for the 
existence of a covering theory.”27 

 
Elsewhere in the same paper, Davis is even more definitive, writing that “the existence of 
a coincidence implies the existence of an explanation.”28 As was pointed out in our 
earlier discussion, there are good reasons to rule out mathematical coincidences if one 
takes a modal perspective according to which coincidence implies contingency. What is 
striking about Davis’s view is that he seems to be following the sort of explanation-based 
account of mathematical coincidence that I have been arguing for, and yet still concludes 
that there are no (intertheoretic) coincidences in mathematics. The only general grounds I 
can see for adopting this kind of position is via some version of Leibniz’s “Principle of 
Sufficient Reason” (PSR) for mathematics. As Leibniz formulates this principle, it states 
that “nothing happens without a reason why it should be so, rather than otherwise.”29 
Traditionally, PSR has only been taken to apply to contingent matters of fact, and Leibniz 
himself thought that a ‘principle of contradiction’ was sufficient to found arithmetic and 

                                                 
26 Here “ODE” refers to “ordinary differential equations”, and “IM” refers to “integrable models.” See 
Dorey et al. [2003] for more details. 
27 Davis [1981, p. 311] 
28 op. cit., p. 320 
29 Leibniz [1956, L.II.1] 
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geometry. Quite apart from the historical incongruity of applying PSR to mathematics, 
there is also the pressing issue of how – if at all – PSR itself is to be justified. 
 
 
Section 8: Conclusions 
 
 There are many ways to carve up the space of mathematical truths, and many 
purposes towards which such a carving-up might be put. We might distinguish the pure 
from the applied, the universal from the particular, the provable from the unprovable, and 
so on. My proposal has been to add another way of carving up this space, namely by 
distinguishing the accidental from the non-accidental mathematical truths. In so doing I 
am placing together on one side of the divide mathematical truths which are unprovable 
and mathematical truths whose only proofs are highly disjunctive (as well as truths whose 
‘best’ proofs are unexplanatory in other ways). This is my category of mathematical 
accidents. This unorthodox suggestion can best be judged – or so I claim – by the extent 
to which it helps our philosophical understanding of mathematical methodology. And 
here there are, I think, at least two significant areas of benefit: 
 
(I) Means of Justification 
 

We may care about whether there exists – in some abstract sense – a proof of 
some given conjecture, C. But we may care even more whether we can in fact formulate a 
proof of C. Some provable claims are not provable by us. Furthermore, there are also 
provable claims which we can only prove with the help of computers. The category of 
mathematical accidents encompasses both of these categories. Once a proof is disjunctive 
enough then, as a matter of practical necessity, our only way of formulating and checking 
the proof is by harnessing the power and speed of electronic computers. As their degree 
of disjunctiveness increases, proofs become inaccessible even to computers. In this latter 
case, our only way of gathering evidence for the truth of the result is by enumerative 
induction based on verification of some of its instances. 
 From a methodological point of view, a unifying feature of mathematical 
accidents is that they are amenable to (and may only be amenable to) investigation using 
‘experimental’ methods. The newly emerging field of experimental mathematics 
harnesses the power of computers to discover plausible-looking conjectures and to gather 
evidence of their truth.30 If the conjecture in question is a mathematical accident, then this 
may be the best that can be done. 
 
(II) Explanatory Basis 
 
 A second unifying feature of mathematical accidents is the barrier they present to 
explanation. Mathematical proofs often function as explanations of the results which they 
prove, but this link between proof and explanation is broken for results whose only 
proofs are highly disjunctive. Nothing in what has been said above rules out the 
possibility that an accidental mathematical truth may function as an explanation of some 
other mathematical fact. However even if this were to be the case, the mathematical 
                                                 
30 See Baker [forthcoming]. 
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accident would itself be inexplicable. Mathematical accidents are at best the endpoints of 
explanatory chains and at worst more-or-less completely isolated from the broader 
explanatory framework of mathematical theories. Nor is there any plausible way to view 
these endpoints as ‘self-explanatory,’ along the lines (perhaps) of axioms. Mathematical 
accidents are brute facts but they are not fundamental in any significant sense.31 
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