
implausible first premiss, (J). On the other, it fails because Roache hasn’t
provided reasons to think cohabitants know their survival is guaranteed.
I conclude that her argument does not show cohabitants are unlike the rest
of us in their concern for survival.5
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Mathematical induction and explanation
ALAN BAKER

Marc Lange (2009) sets out to offer a ‘neat argument that proofs by math-

ematical induction are generally not explanatory’, and to do so without
appealing to any ‘controversial premisses’ (2009: 203). The issue of the ex-

planatory status of inductive proofs is an interesting one, and one about

which – as Lange points out – there are sharply diverging views in the phil-
osophy of mathematics literature. It may be that Lange is correct in his

5 Many thanks to the editor for helpful comments.
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verdict that proofs by mathematical induction lack explanatory power.
However, I think that his argument to this conclusion is too quick.

Lange’s core argument may be reconstructed as follows:

(1) Assume that a particular proof by mathematical induction of some
general result, 8nP(n), is explanatory.

(2) Thus the basis step, P(1), of the inductive proof partly explains
8nP(n).

(3) Typically a proof by mathematical induction that starts from n¼ 1 can
also be proved by going ‘upwards and downwards’ from any other
arbitrarily selected n¼ k. For example, an inductive proof of 8nP(n)
can usually be formulated whose basis step is P(5).

(4) There is no difference between the explanatoriness of a P(1)-based
inductive proof of 8nP(n) and a P(5)-based inductive proof of
8nP(n). So P(5) also partly explains 8nP(n).

(5) Since P(1) partly explains 8nP(n), in particular it partly explains P(m),
for any m 6¼ 1. Similarly, since P(5) partly explains 8nP(n), in par-
ticular it partly explains P(m), for any m 6¼ 5.

(6) Hence P(1) partly explains P(5), and P(5) partly explains P(1).
(7) This explanatory circularity refutes the initial assumption, (1), that the

inductive proof of 8nP(n) is explanatory.
(8) Hence no proofs by mathematical induction are explanatory.

1. Assessing the argument

Lange’s argument, which has the form of a reductio, depends on the
condition (appealed to in step (7)) that mathematical explanations cannot
run in a circle. In other words it cannot be the case, for two mathematical
facts A and B, both that A explains B and that B explains A. I have
some doubts about the inevitability of this condition, especially since
Lange’s argument is formulated in terms of partial explanation, but I shall
not pursue them here. Instead I shall focus on what I take to be both
the most central and the most problematic step in the above argument,
step (4), which claims that a standard inductive proof of 8nP(n) (with
basis case n¼ 1) and an alternative inductive proof that proceeds
‘upwards and downwards’ from some other base case (such as n¼ 5) must
be regarded as equally explanatory. Schematically, the two kinds of proof
run as follows:

P1P P(1)-based proof
For any property P:

if P(1), and
for any natural number k, if P(k), then P(k þ 1),
then for any natural number, n, P(n).

682 | alan baker

 at S
w

arthm
ore C

ollege Library on A
pril 11, 2011

analysis.oxfordjournals.org
D

ow
nloaded from

 

http://analysis.oxfordjournals.org/


P5P P(5)-based proof
For any property P:

if P(5), and
for any natural number k, if P(k), then P(kþ1), and
for any natural number k> 1, if P(k), then P(k – 1),
then for any natural number, n, P(n).

In comparing these two examples, Lange makes the following assertion:

If the proofs by mathematical induction are explanatory, then the very
similar proofs by the ‘upwards and downwards from 5’ rule are equally
explanatory. There is nothing to distinguish them, except where they
start. (2009: 209)

Clearly Lange does not think that there are literally no differences between
the two kinds of proof. One obvious difference is that P1P involves verifying
the base case P(1), while P5P involves verifying P(5). A second, equally
obvious difference is that P5P includes a ‘downward’ induction step that
P1P lacks. The real issue is whether either of these differences has any impli-
cations for the relative explanatory power of these proofs. In other words, do
these differences make a difference? In the next section, I shall survey some
potential candidates for such a difference-maker.

2. Inductive proofs compared

(i) P5P is longer than P1P

The combined effect of the two differences mentioned above is to make the
P5P proof longer than its P1P counterpart. (This is certainly true for the
example that Lange focuses on, involving proofs of the theorem that
the sum of the first n natural numbers is equal to n(nþ 1)/2, and will be
true in general except for occasional situations in which verifying P(5) turns
out to be much shorter than verifying P(1).)

Lange acknowledges this contrast between the two proofs, but dismisses its
significance, writing that ‘the longer argument would be just as effective as
the argument by mathematical induction in proving that P(n) for any natural
number n’ (2009: 207–8). This response seems to miss the point at hand,
since ‘effectiveness for proving’ a given result turns on the soundness of
a proof rather than on its explanatoriness. However, it seems plausible to
think that length per se – in other words, sheer number of symbols – has no
particular correlation with (lack of) explanatoriness either. Hence this is not
a relevant difference between the two proofs.

(ii) P5P is more functionally complex than P1P

Another respect in which P5P is more complex than P1P, aside from just
containing more symbols, is that it has more parts. Both proofs include a base
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case and an upward induction step, but in addition P5P has a downward

induction step. What is the best way to describe this kind of complexity? One
idea is to think of it as a form of functional complexity: P5P has more

‘working parts’ than P1P.
One way to try to link complexity to explanatoriness is via some version of

Occam’s Razor. Standard formulations of Occam’s Razor give credit to the-

ories that are qualitatively parsimonious, in other words theories that pos-
tulate fewer kinds of entities or mechanisms. In the present context, this

suggests that a distinction should be made between how many different func-

tional parts a given proof has and how many kinds of parts it has.
How might this play out in actual examples? Consider a third alternative

inductive proof of the n(nþ1)/2 result which proceeds by verifying the cases
P(1), P(2) and P(3) separately, and then proving an upward induction step for

all n> 3. This proof has four parts, one more than the P5P proof. However, a

case can be made that it only has two kinds of parts, namely base cases and
an upward induction step, and thus that this ‘multi-base-case’ proof is more

qualitatively parsimonious than P5P.
Verdicts of the above sort concerning the numbers of kinds of parts of

different proofs suffer from the problem that the key notions of ‘kind’ and

‘part’ are not clearly delineated for mathematics. Analogies can be made from
science and from metaphysics, but it not always clear how to do this appro-

priately. Hence it is worthwhile to examine alternative ways to cash out the

effects of the multi-part nature of proofs such as P5P.

(iii) P5P is more disjunctive than P1P

Perhaps the parts of P5P are better viewed not as functions but as disjuncts,

in which case the salient difference between the two proofs is that P5P is more
disjunctive. One advantage of adopting this perspective is that there is sug-

gestive evidence from various sources that the degree of disjunctiveness of a

proof does impact negatively on its perceived explanatoriness.
There is evidence from mathematical practice, for example when mathem-

aticians voice dissatisfaction with certain aspects of computer-based proofs.
Thus the original proof by Appel and Haken of the Four Colour Theorem

was criticized by some mathematicians because the core of the proof

involved going through several thousand cases (using a computer program),
and it therefore did not provide a satisfying explanation for why the result

is true.
There is also support from intuition. For example, going through the first

98 even numbers greater than 2 and verifying that each can be expressed as
the sum of two primes clearly counts as a perfectly acceptable proof of the

proposition ‘All even numbers less than 200 satisfy Golbach’s Conjecture.’

Equally clearly, however, it does nothing to explain why this proposition
is true.
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Finally, there is support from the philosophical literature. This support
comes from general models of explanation, such as the Kitcher/Friedman

model that connects explanation with unification and therefore sees the
disunifying aspect of disjunction as counting against explanatoriness.
And support also comes from more specific analyses of explanation in

mathematics. Indeed Lange himself, in Lange, forthcoming, develops a
notion of ‘mathematical coincidence’ and defines such coincidences as true
mathematical claims which lack explanation because they lack unified
(i.e. non-disjunctive) proofs.1

3. Minimality

The best way to understand the disjunctiveness of a given proof is as relating to
the number of different sub-cases into which the domain is divided by the

proof. Note that even standard inductive proofs such as P1P are disjunctive
to some degree, since the base case is always treated differently from all other
cases in the domain. One potential problem, therefore, with highlighting dis-
junctiveness as the key explanation-related difference between the P1P and

P5P proofs is that P1P is also disjunctive. This would seem to lend support to
Lange’s claim that even ‘standard’ inductive proofs are not explanatory.

It is worth recalling, however, that what we are responding to here in the

first instance is Lange’s specific assertion that there is nothing to choose
explanation-wise between P1P and P5P; Lange’s claim, as quoted earlier, is
that there is no reasonable way to maintain that P1P is explanatory while P5P
is not. Reflection on disjunctiveness suggests at least two ways to repudiate

this claim, which rely on different background models of mathematical
explanation.

One model is the winner takes all model. According to this model, different

proofs of a given result may vary along one or more explanation-related
parameters, but only the proof that has the best combination of ‘explanatory
virtues’ counts as genuinely explanatory. If disjunctiveness is one such par-

ameter then, according to the winner takes all model, P1P is explanatory
while P5P is not, since P1P is the less disjunctive of the two proofs and
P5P has no compensating explanatory virtues. Although it does allow a dis-
tinction between the two proofs to be drawn, the winner takes all model is

open to the criticism that it is not faithful to actual mathematical practice. Is
it the case, for example, that mathematicians typically view only the most
explanatory proof of a given theorem as being a genuine explanation?2

1 See also Baker 2009 for an account in the same spirit of notion of an ‘accidental math-

ematical truth’.

2 Analogous criticisms have been raised concerning Kitcher’s unification model of scientific
explanation.
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A second model is the threshold model. According to this model, a proof is

explanatory if and only if it meets a certain threshold of explanatoriness.
If this threshold invokes disjunctiveness, it might be that proofs with three

or more disjuncts cannot be explanatory. P5P exceeds this threshold, while

P1P does not, hence only P1P is explanatory. It is worth noting, however,
that Lange might justifiably respond to this analysis by alleging that the

threshold here is itself arbitrary and unmotivated, and hence that this

method does not deserve to be counted as ‘reasonable’. If one is going to
take the threshold approach then why not, for example, treat two disjuncts as

the threshold for unexplanatoriness (which is Lange’s preferred approach in

Lange (forthcoming))?
The underlying difficulty with both of the above models, in the current

context at least, is that our goal is to draw an absolute conclusion (i.e. that
P1P is explanatory while P5P is not) from a comparative difference (i.e. that

P1P is less disjunctive than P5P). This suggests that the crucial feature of P1P

is not that it is less disjunctive than P5P but that it is – in a certain sense,
that needs to be made precise – minimally disjunctive. In order to flesh

out this thought, it will be helpful to start with a general definition of

minimality.

Definition: A proof, X, of a theorem, P, is minimal, relative to some
larger family of proofs, F, if every part of X is present in every other

proof (in F) of P.

Using this notion of minimality (which is an absolute, not comparative prop-
erty), we can formulate a fourth difference between P1P and P5P, as follows:

(iv) P1P is minimal, among inductive proofs of 8nPn, and P5P is not
minimal

We have already noted that P1P has only two basic parts: a base case and an
upward induction step. This is significant because every proof by induction

includes each of these kinds of part. In other words, every inductive proof

requires at least one base case, and each inductive proof requires at least one
upward induction step. P5P, by contrast, contains a part – the downward

induction step – which is not common to all proofs by induction. Thus P1P

is minimal, while P5P is not.
One objection to distinguishing P1P from P5P on the basis of minimality

is that while some kind of base case and upward induction step are common

to all inductive proofs, the particular forms that these take in P1P are not.

In other words, it is not the case that every inductive proof includes a base
case of n¼ 1 (e.g. the P5P proof does not). And it is not the case that every

inductive proof has an upward induction step that proceeds in steps of 1 (for

example, the inductive proof mentioned at the end of Section 3). Doesn’t this
undermine the attempt to use minimality to defend, for example, the claim
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that the P1P proof of the n¼ 1 base case partially explains why P(n) is true
for all n?

Interestingly, it turns out that there is a way to connect even these specific
features of the P1P proof to the general property of minimality. The key point
is that, although having a base case of n¼ 1, or an upward induction step of
size 1, is not required of every inductive proof, each is required of every
inductive proof that is minimal. Assume, for example, that an inductive
proof of 8nP(n) has a base case of n¼ 2, but no base case of n¼ 1. The
proof must include an upward induction step, to cover the cases n> 2, but
it also needs a downward induction step, to cover the case n¼ 1. Hence this
proof is not minimal, since it contains two kinds of induction step. A similar
point holds for the induction step. Assume that an inductive proof as a
(single) upward induction step that proceeds in steps of 2. If it also has
only a single base case, for n¼ 1, then the proof will only cover the odd
numbers. In order to generalize to all natural numbers, the proof also needs a
second base case, for n¼ 2. So the proof is not minimal. (In general, m base
cases will be required for an m-sized induction step.)

The upshot is that not only is the P1P proof minimal, in the sense defined
above, but that it is uniquely minimal among inductive proofs. The only way
for an inductive proof of 8nP(n) to have just two parts is for it to have a base
case of n¼ 1 and an upward induction step of size 1. Every other variation on
this basic inductive form will have some sort of base case and some sort of up-
ward inductive step, but all of this alternatives will have other, extra parts.3

What about the method known as strong induction (or complete induc-
tion, or course of values induction)? Lange includes strong induction in his
survey of variants, and sets it out as follows:

For any property P:
if P(1) and
for any natural number k, if P(1) and P(2) and. . . P(k – 1), then P(k),
then for any natural number n, P(n).
(2009: 208)

It is not necessary, however, to list the base case as a separate assumption in
the strong induction schema. In other words, the above schema can be com-
pressed to the following single step:

For any property P:
if for any natural number k, if P(1) and P(2) and. . . P(k – 1), then P(k),
then for any natural number n, P(n).

Moreover, it can be shown that any result provable using ordinary induction
can also be proved using strong induction. Hence at first glance it would

3 For a useful discussion of various alternative forms of inductive proof, see Hafner and
Mancosu 2005: 21–23.
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seem that strong induction undermines the claim that ordinary induction
using the P1P base case is minimal, for strong induction allows an alternative
proof from no base case.

I think that it is still possible to defend the minimality of the P1P proof.
To see why, note that even though the P(1) base case need not be listed
independently, it must still be proved separately within the context of the
induction step. This is because for n¼ 1, the antecedent of the initial condi-
tional of the induction step is vacuously true: P(m) holds for all m< 1 because
there are no such cases. Hence for this conditional to be established, one
needs to check that P(1) holds. Having done this, one can go on to prove the
conditional for all other values of k. Thus, despite initial appearances, strong
induction does not eliminate the need to prove a base case: instead it incorp-
orates this proof as a separate component of proving the induction step.
Hence the minimality of the ordinary induction schema, P1P, can be
maintained.

How might minimality be linked to explanatoriness? One idea is to view it
as analogous to an oft-cited condition on scientific explanations, namely that
such explanations cite only factors that are relevant to the given explanan-
dum. For example, appealing to the fact that a given sample of salt was placed
in hexed water fails to count as a genuine explanation for why the salt dis-
solved. Why not? Because the fact that the water had been hexed is irrelevant
to the behaviour of the salt. One point about an irrelevant factor is that it is
superfluous: the given line of (putative) explanation can be reformulated with-
out it. So too with certain features of non-minimal proofs. The downward
induction step in P5P, for example, is not essential to an inductive proof of
8nP(n). This seems like a good reason to conclude that P5P is not explanatory.

4. Conclusion

Lange’s thesis is that no proof by induction can be explanatory, on pain of
explanatory circularity. Any ‘standard’ inductive proof of a given result can
be mirrored by various modified inductive proofs which proceed in upward
and downward induction steps from different base cases. Lange’s thesis is
based on the claim that the standard inductive proof and its rivals are all
explanatorily on a par.

My response to Lange has been to indicate some features on the basis of
which the purported explanatory symmetry between a standard inductive
proof and other rival proofs might be broken. The two most promising
such features are, firstly, that the standard proof is less disjunctive than its
rivals, and, secondly, that the standard proof is minimal (in a precisely de-
finable sense) whereas its rivals are not. As was pointed out earlier, both
non-disjunctiveness and minimality have links to aspects of scientific explan-
ation that have been discussed in the literature. Non-disjunctiveness fits well
with unificationist models of explanation, such as those of Kitcher and
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Friedman. And minimality echoes the spirit of causal models of explanation,
where such models are used to rule out derivations involving irrelevant fac-
tors (such as the hexed salt example) that are deemed explanatory by the
deductive-nomological model.

As I mentioned at the outset, my aim has not been to attack Lange’s gen-
eral thesis that proofs by mathematical induction are not explanatory,
but rather to undercut the argument that Lange provides for this thesis.
To defend the contrary claim that certain inductive proofs are explanatory
would require providing a worked-out theory of mathematical explanation,
something that I have not tried to do here. What I have tried to do is to show
that there are plausible ways of thinking about mathematical explanation
which are in tension with key steps in Lange’s argument, and to this extent
his premises are more ‘controversial’ than he admits.4
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Bangu’s random thoughts on Bertrand’s paradox
DARRELL P. ROWBOTTOM AND NICHOLAS SHACKEL

Bangu (2010) claims that Bertrand’s paradox rests on a hitherto unrecog-
nized assumption, which assumption is sufficiently dubious to throw the

4 A version of this paper was delivered to the Work in Progress Seminar, Department of

Philosophy, University of Oxford, in July 2009 and benefited from useful feedback from
audience members. Thanks also to Marc Lange and Arlyss Gease for helpful comments on

earlier drafts.
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