Swarthmore College Department of Mathematics and Statistics Honors Examinations in Topology 2019

Instructions: Do as many of the following problems as thoroughly as you can in the time you have. Include at least one problem from each of the four parts of the exam.

Part I: Point Set Topology

1) For each integer $n \ge 1$ consider the following subsets of \mathbb{R}^2 (with the euclidean topology):

$$W_n = \{(x, y) \in \mathbb{R}^2 \mid (x - n)^2 + y^2 = n^2\};$$

$$X_n = \{(x, y) \in \mathbb{R}^2 \mid (nx - 1)^2 + n^2y^2 = 1\};$$

$$Y_n = \{(x, y) \in \mathbb{R}^2 \mid x^2 + n^2y^2 = n^2\};$$

$$Z_n = \{(x, y) \in \mathbb{R}^2 \mid x^2 + n^2y^2 = 1\}.$$

Group the subspaces $W = \bigcup_{n=1}^{\infty} W_n$, $X = \bigcup_{n=1}^{\infty} X_n$, $Y = \bigcup_{n=1}^{\infty} Y_n$, and $Z = \bigcup_{n=1}^{\infty} Z_n$ into homeomorphism classes.

2) Let X be the set of all functions $f : \mathbb{R} \to \mathbb{R}$. For each $t \in \mathbb{R}$, let X_t be the subset of all $f \in X$ such that

$$\sup_{x \in \mathbb{R}} f(x) < t \, .$$

- Let τ be the coarsest topology on X that contains X_t for each $t \in \mathbb{R}$.
- a) Show that (X, τ) is not Hausdorff.
- b) Show that every subset $K \subseteq (X, \tau)$ that contains the identity function is compact.
- c) Let $Y \subseteq (X, \tau)$ be the subset of all constant functions. Is Y compact? Is it connected? Is it path-connected?
- 3) Let I be the interval [0, 1] with the euclidean topology, let X be a compact Hausdorff topological space, and let $f: X \to X$ be a continuous bijection. Show that the quotient Y of $X \times I$ obtained by identifying (x, 0) with (f(x), 1) for each $x \in X$ is compact Hausdorff.

Part II: Homotopy

4) Let G be the group of all matrices of the form

$$\begin{bmatrix} 1 & l & m \\ 0 & 1 & n \\ 0 & 0 & 1 \end{bmatrix}$$

for some $l, m, n \in \mathbb{Z}$. Let X be the quotient of \mathbb{R}^3 (with the euclidean topology) by the action of G defined by

$$\begin{bmatrix} 1 & l & m \\ 0 & 1 & n \\ 0 & 0 & 1 \end{bmatrix} (x, y, z) = (x + l, y + m + lz, z + n).$$

- a) Show that the projection $\mathbb{R}^3 \to X$ is a covering of infinite degree.
- b) Show that X is path connected.
- c) Calculate $\pi_1(X)$.
- d) Show that X admits a degree n covering for each integer $n \ge 2$.

 $\mathbf{2}$

- 5) Let F be a finite subset of S^2 , let $X = S^2 \setminus F$ (i.e. the 2-sphere with |F| points removed) and let $Y = S^2/F$ (i.e. the sphere with |F| points identified).
 - a) Calculate $\pi_1(X)$.
 - b) Calculate $\pi_1(Y)$.
 - c) Are X and Y homeomorphic?
- 6) Consider the subset of \mathbb{R}^3 consisting of points $P_0 = (0, 0, 0), P_1 = (1, 0, 0), P_2 = (0, 1, 0)$ and $P_3 = (0, 0, 1)$, let

$$X = \bigcup_{0 \le i < j \le 3} \{ tP_i + (1-t)P_j \, | \, t \in [0,1] \} \, .$$

- a) Show that X and $\mathbb{R}^3 \setminus X$ are both connected.
- b) Calculate $\pi_1(X)$.
- c) Calculate $\pi_1(\mathbb{R}^3 \setminus X)$.

Part III: Homology

- 7) Let X be a simplicial complex homeomorphic to a surface of genus g.
 - a) Show that X has at least $\frac{7+\sqrt{1+48g}}{2}$ vertices.
 - b) Find a triangulation of X with the minimum possible number of edges when g = 1.
 - c) Assume that every vertex belongs to the same number d of edges. Find an upper bound for d that is sharp when g = 1.
- 8) Let X be a topological space.
 - a) Given an abelian topological group G, show that pointwise multiplication induces a structure of abelian group on the set [X, G] of equivalence classes of continuous maps $f: X \to G$ up to homotopy.
 - b) Given closed subspaces U, V of X, show that there is an exact sequence

 $0 \to [X,\mathbb{Z}] \to [U,\mathbb{Z}] \oplus [V,\mathbb{Z}] \to [W,\mathbb{Z}] \to [X,S^1] \to [U,S^1] \oplus [V,S^1] \to [W,S^1]$

of abelian groups, where S^1 is identified with the multiplicative group of unit complex numbers, \mathbb{Z} has the discrete topology, and $W = U \cap V$.

- c) Use part b) to calculate $[S^2, S^1]$.
- 9) Let $\tau_n : S^n \to S^n$ be the antipodal map defined by $\tau_n(x) = -x$ for all $x \in S^n$ (with respect to the standard embedding of S^n in \mathbb{R}^{n+1}). Let X be simply connected and let $f: X \to X$ be an involution (i.e. $f^2 = \mathrm{Id}_X$). Construct a continuous function $g: S^2 \to X$ such that $g \circ \tau_2 = f \circ g$ and show that there is no continuous function $h: X \to S^1$ such that $h \circ f = \tau_1 \circ h$.

Part IV: Essays

- 10) Write a short essay on Fixed Point Theorems that you know, including a discussion of topological spaces that have the Fixed Point Property (every continuous self map has a fixed point). Include at least one proof.
- 11) Write a short essay on the triangulation and classification of topological surfaces. Include at least one proof.
- 12) Write a short essay on existence and uniqueness theorems for covering spaces. Include at least one proof.