Honors Exam in Topology Swarthmore College Department of Mathematics and Statistics, 2003

The exams contains 12 problems. Do at least 2 problems from each section. In each section, the harder problems are first, and will be marked appropriately.

GENERAL TOPOLOGY:

I.1 Let K be a compact subset of a topological space X. Is \overline{K} (the closure of K) also compact? [Prove or provide a counterexample.]

Can you give a condition on X such that if $K \subseteq X$ is compact, it is automatically also closed?

I.2 Let the taxi cab metric

$$d_t: \mathbf{R}^2 \times \mathbf{R}^2 \to \mathbf{R}$$

be defined by $d_t((a, b), (c, d)) = |a - c| + |b - d|$.

(a) Prove that this is indeed a metric.

(b) Prove that it induces the same topology on R² as that induced by the usual metric.

I.3 Take the space $X = [0,1]/\sim$ where $0 \sim 1$ and all other points are only equivalent to themselves. Prove that this is homeomorphic to

$$S^1 = \{(x, y) \in \mathbf{R}^2 : x^2 + y^2 = 1\}.$$

SURFACES:

- II.1 (a) Describe pictorially the process of adding a handle to a surface.
 - (b) Explain why adding a handle reduces the euler characteristic of the surface.
- II.2 Define the euler characteristic of a combinatorial surface.

Let K be a compact combinatorial surface. Let K^1 be the first barycentric subdivision of K. Show that K and K^1 have the same euler characteristic.

II.3 Let K be a combinatorial surface and T a maximal tree in K. Prove that the euler characteristic of K is 2 if and only if the dual graph to T is also a tree.

HOMOTOPY and FUNDAMENTAL GROUP:

III.1 Prove that the fundamenal group of the torus,

$$T = [0,1] \times [0,1]/\sim$$

(where $(0, y) \sim (1, y)$ and $(x, 0) \sim (x, 1)$ and there are no other relationsh) is isomorphic to $\mathbf{Z} \times \mathbf{Z}$.

- III.2 State, and prove, the Brouwer Fixed Point theorem.
- III.3 (a) Define path composition $\alpha \cdot \beta$ (assuming $\alpha(1) = \beta(0)$).
 - (b) Define what it means for two paths to be homotopic relative to {0,1}.

(c) Show that

$$(\alpha \cdot \beta) \cdot \gamma \simeq_{\{0,1\}} \alpha \cdot (\beta \cdot \gamma)$$

where $\simeq_{\{0,1\}}$ means homotopic relative to $\{0,1\}$.

ALGEBRAIC TOPOLOGY:

- IV.1 Denote real projective m-space by P^m . (a) Define P^m .
- (b) Calculate the fundamental group of P^m . IV.2 (a) Give a triangulation for the Möbius band.
 - (b) Prove that the Möbius band is homotopy equivalent to the circle, S^1 .
- IV.3 Calculate the homology groups of P^2 .