Honors Exam in Topology Swarthmore College Department of Mathematics and Statistics, 2002

The exams contains 12 problems. Do at least 2 problems from each section. In each section, the harder problems are first, and will be marked appropriately.

GENERAL TOPOLOGY:

- I.1 Let X and Y be topological spaces, and let $f:X\to Y$ be a continuous bijection.
 - (a) Suppose X and Y are both compact and Hausdorff. Prove that f is a homeomorphism.
 - (b) Can you remove a hypothesis on both X and Y and still have a theorem? Explain any necessary adaptations of the proof.
- I.2 Let $X \subseteq \mathbf{R}^2$ be the *Hawaiian earring*, i.e. the union of the circles of radius 1/n around the point (1/n, 0) for $n = 1, 2, \ldots$ Let Y be the union of circles of radius n around (n, 0).
 - (a) Construct a continuous bijection from one of these spaces to another.
 - (b) Is this a homeomorphism?
- I.3 Prove that any compact Hausdorff space is normal.

SURFACES:

- II.1 (a) Show that any triangulation of a closed surface contains at least 4 twosimplices.
 - (b) Give an example of a triangulated closed surface with exactly 4 twosimplices.
- II.2 State the classification theorem for compact surfaces. Denote the Klein bottle by K^2 and the projective plane by P^2 . Identify, using any techniques you need from the classification of surfaces, $K^2 \# K^2$, $P^2 \# P^2$ and $P^2 \# K^2$
- II.3 (a) Define the euler characteristic of a simplicial complex.
 - (b) Derive a formula for the connected sum of two surfaces in terms of the euler characteristics of the individual surfaces.
 - (c) Repeat the previous exercise for two n-manifolds.

FUNDAMENTAL GROUP:

- III.1 Prove the Nielsen-Schreier theorem (any subgroup of a free group is free).
- III.2 The Fundamental Theorem of Algebra states that any non-constant polynomial over the complex numbers, C, has a zero. Prove this theorem.
- III.3 A graph is a simplicial complex with only 0-cells and 1-cells (thought of as a collection of vertices and edges). If Γ is a graph, and $\chi(\Gamma) < 1$, what can one say about Γ ?

HOMOLOGY:

- IV.1 Denote real projective *m*-space by P^m , so that P^m is the quotient space obtained by identifying antipodal points of the *m*-sphere, S^m .
 - (a) Show any self map of P^{2n} has a fixed point.
 - (b) Exhibit a self map of P^{2n+1} with no fixed point.
- IV.2 (a) Define a simplicial map.
 - (b) Prove that if $f: |K| \to |L|$ has a simplicial approximation s, then f is homotopic to s.
 - (c) State the simplicial approximation theorem.
 - (d) Prove that if k < n, K a simplicial complex of dimension k, then any map $f : |K| \to S^n$ is homotopic to a constant map.
- IV.3 If C_* is a chain complex of vector spaces over K (each group is a vector space over K, and the differentials (the boundary maps in the chain complex) are K-linear), prove that $H_i(C_*)$ is a K-vector space for each i.