Swarthmore College Department of Mathematics and Statistics Topology Honors Examination 2000

Do as many questions as you can; if you get stuck go on to something else. You may use a result from one problem in solving another, even if you did not solve the first problem. You may also use without proof:

- · Any facts you know about the homology groups of balls or spheres.
- \cdot The homotopy invariance of the fundamental group, homology groups, or of the Euler characteristic.
- · The least upper bound property of the real numbers.
- · The Heine-Borel theorem. (Characterizes compact subsets of Euclidean space.)
- · The Lefschetz fixed point theorem. (Be sure to state it carefully.)
- 1) Prove that any open, connected subset of Euclidean space \Re^n is path connected.
- 2) If A is a linear map $\Re^n \to \Re^n$, the norm of A is defined by

$$Norm(A) = \frac{Sup}{x \in \Re^n, x \neq 0} \frac{||Ax||}{||x||}$$

Show that for any linear map A, the norm is finite. Do not mention matrices. The only things you should need from algebra are:

$$||ax|| = a||x|| \text{ if } a > 0$$

A is continuous.

$$Aax = aAx \text{ if } a \in \Re$$

The norm ||x|| on \Re^n is continuous.

$$||x|| \neq 0$$
 if $x \neq 0$.

- 3) Let X be Hausdorff. Show that if K is a compact subset of X, and x a point of X not in K, then there are disjoint open sets U,V in X with K contained in U and x contained in V.
- 4) a. State the classification theorem for compact surfaces. (All surfaces are assumed connected.)
 - b. Explain how you can be sure that no two of the surfaces on your list are homeomorphic.
- c. Let T be the connected sum of 5 tori and P the connected sum of 3 projective planes. Three small disks are cut from each of the 2 surfaces, and each boundary circle from T is glued to a boundary circle from P. Where does the resulting surface fit into your classification?

5) Let $S^1 = \Re/Z$. A continuous map $f: S^1 \to S^1$ lifts to a continuous map $F: \Re \to \Re$. The lift is not unique but if x is in \Re the degree

$$d = F(x+1) - F(x)$$

does not depend on the lift. Show that

- a) The degree is an integer.
- b) The degree does not depend upon the choice of x.
- c) Two continuous maps $f, g: S^1 \to S^1$ with the same degree are homotopic. (You should be able to write down a map which descends to a homotopy; explain briefly why the construction would not work if the degrees were not equal.)
- 6) Consider the following statement:

Let X be a topological space which is the union of two path-connected, simply connected, open subsets U and V. Assume $U \cap V$ is nonempty. Then X is simply connected.

If true, outline the proof of the part of the Seifert-Van Kampen theorem from which it follows. If false, give a counterexample, say what part of the hypothesis of Seifert-Van Kampen is missing, and explain how the proof of the relevant part of the theorem fails when this hypothesis is missing.

7) Let X be the quotient space obtained from identifying the edges of three solid triangles indicated below. Compute the homology groups of X.

Is there a compact surface with these homology groups? Explain briefly.

- 8) For each pair (X, A) write out the long exact homology sequence. Give the isomorphism type (e.g. $\mathcal{D}(X, A)$) for each group in the sequence. Give a rough description of generators and (if applicable) relations for each nonzero group $H_k(X, A)$. (There should be 3 groups in all you need to describe this way.)
 - a. X= Cylinder $S^1 \times [0,1]$, A = Boundary $(X) = S^1 \times \{0,1\}$
 - b. X= Mobius band, A= Boundary $(X) = S^1$.
- 9) Find a fixed-point free map from the circle S^1 to itself, and show that every fixed-point free self map of the circle is homotopic to this one.