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Topology

DIRECTIONS: Please do at least one problem from each of the four sections; try to do at least six prob-
lems altogether. If you are asked to provide a counterexample for something, explain briefly why it’s a
counterexample—you don’t have to give all of the details.

1. POINT-SET TOPOLOGY.

I.1.

(a) Prove that X is Hausdorff if and only if the set A = {(z,z) € X x X} is closed in X x X.

(b) If X is connected, must X be path connected? If X is path connected, must X be connected? For each
question: if you answer yes, prove it; if no, then provide a counterexample.

I.2.

(a) Suppose that f: X — Y is a continuous bijective map with X compact and Y Hausdorff. Must f be a
homeomorphism? If so, prove it. If not, provide a counterexample.

(b) Do the same thing, but instead assuming that X is Hausdorff and Y is compact.

1.3.

(a) A collection C of subsets of X is said to satisfy the finite intersection condition if for every finite
subcollection {C1,...,Cn} of C, the intersection C; N ... N C, is nonempty. There is a theorem that
says that a space X is compact if and only if (something to do with the finite intersection condition).
Clarify the part in parentheses, and prove the theorem.

(b) Use part (a) to prove that if X is a nonempty compact Hausdorff space such that every point of X is a
limit point of X, then X is uncountable.

I1. CLASSIFICATION OF SURFACES.

I1.1. Suppose that M is a compact triangulated surface. Let v, e, and ¢ denote the numbers of vertices,
edges, and triangles in the triangulation; let x denote the Euler characteristic of M. Show that

3t = 2e, e=3(v —x),
U—(yzlll > e, v > 3(7+ A9 = 24).

What are lower bounds for v, e, and t when M is the sphere? The torus? The projective plane? Can you
give triangulations realizing these lower bounds?

11.2. Use the Euler characteristic to prove that there are only five regular polyhedra.

11.3. Describe the classification of compact surfaces, and sketch the proof.




III. THE FUNDAMENTAL GROUP.

IIL.1.
(a) Let X and Y be topological spaces. How is the fundamental group of X x Y related to the fundamental

groups of X and Y7
(b) Compute the fundamental group of the solid torus S' x B?, where

B?={(z,y) eR*:a’ + ¢’ < 1}
is the unit disk. (Use part (a) or not, as you wish.)

I1.2.

(a) Let X be the disjoint union of a circle and a disk. What is the fundamental group of X?

(b) State Van Kampen’s theorem in as general a form as you can; use it to compute the fundamental group
of S™ for n > 1.

II1.3.

(a) Fix an integer n > 0, and let P™ be the quotient space of S™ obtained by identifying each = € S™ with
its antipode. Show that the map S™ — P™ is a covering map.

(b) Use this to compute 71(P™,y) for n > 0 (for some point y € P™).

III.4. Suppose that G is a topological group with identity element e. Must 71(G,e) be abelian? Prove or
give a counterexample.

IV. HomoLogy.

IV.1.
(a) If K is a simplicial complex with subcomplexes L and M so that LU M = K, then the Mayer- Vietoris
sequence is the following long exact sequence:

s Ho(L M) * %5 (L) @ Ha (M) 525 Ho(K) — Ho ((LOM) — .

(Here, 14, j«, k«, £« are all maps induced by the obvious inclusions.) Prove that this is exact.
(b) Use it to compute the homology groups of S™ for n > 1.

IV.2. State the Lefschetz fixed-point theorem and use it to prove that the projective plane has the fixed-point
property. Try to give some details of the relevant homology calculations, rather than just stating them.

IV.3. Consider the following representation of the torus:
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Pretend that this is a simplicial complex with 1 vertex, 2 edges, and one “triangle” (well, it looks more
like a rectangle), with orientations as pictured. Now compute its homology groups. Do you get the right
answer? Would you get the right answer if this had been some other surface? Explain what’s going on
here. (You don’t have to give all of the details, just hit the high points.)



