SENIOR HONORS EXAM IN TOPOLOGY

Swarthmore College

15 May 1993 page 1 of 3 pages

INSTRUCTIONS:

Please do at least 6 of the following problems as thoroughly as you can. Choose at least two problems from each of the following three sections:

SECTION I:

- (1). Show that if A is a closed subspace of a compact Hausdorff space X, then
 - (a). A is compact, and
 - (b). X/A is Hausdorff.
- (2). Show that the unit interval [0,1] is connected in the usual Euclidean topology.
- (3). (a). Let Q denote the rational numbers and let a,b,c and d be irrational numbers with a < b, and c < d. Consider the intervals A = (a,b) and B = (c,d) and show that $A \cap Q$ is homeomorphic to $B \cap Q$.
 - (b). Using part (a) show that $[0,1) \cap Q$ is homeomorphic to $(0,1) \cap Q$.
- (4). Prove that the product of two compact spaces is compact (in the product topology).

SECTION II:

(5). Compute the homology of the one-dimensional simplicial complex whose 0-simplices and 1-simplices are pictured below.

(6). (a).Compute the homology of the space Y pictured below where Y is the one point union of the 2-sphere with itself.

(b). Let f be a continuous map from Y to itself. Show that f has a fixed point. That is, show that there is a point p in X such that f(p) = p.

(7). Let P(2) denote the space of all monic polynomials of degree two over the complex numbers in the variable z. Thus P(2) is the space of polynomials

$$\{z^2 + az + b \mid a \text{ and b are complex numbers }\}$$

which is topologized as a subspace of Euclidean space given by $C \times C$.

exactly 2 distinct roots. Show that D(2) is homeomorphic to the cartesian

product of a circle and 3-dimensional Euclidean space.

- (a). Show that P(2) is contractible.(b). Let D(2) denote the subspace of P(2) given by the polynomials with
 - (c). Show that D(2) cannot be a retract of P(2).
- (8). Let X denote the subspace of a product of two circles given by

$$\{(x,y) \mid x \text{ and } y \text{ are unit complex numbers, } x \neq y, \text{ and } x \neq -y\}.$$

Define $f: X \longrightarrow X$ by f(x,y) = (y,x). Is f homotopic to the identity 1: X---> X? Please justify your answer.

SECTION III:

- (9). Let S(3) denote a closed, orientable surface of genus 3.
 - (a). Compute the fundamental group of S(3).
 - (b). Compute the first homology group of S(3).
- (c). Show that the abelianization of the fundamental group of S(3) is isomorphic to the first homology group of S(3).

- (10). Let G be a finite group. Asssume that G acts continuously on a path connected Hausdorff space X and that G acts without fixed points (That is, if g(x) = x for some x then g = 1.). Thus G is a group of deck transformations for X.
 - (a). Show that there is an exact sequence

$$1 \longrightarrow \Pi_{I}(X) \longrightarrow \Pi_{I}(X/G) \longrightarrow G \longrightarrow 1.$$

- (b). Give an example of this exact sequence when $G = \mathbb{Z}/3\mathbb{Z}$ where the fundamental group of X/G has no elements of finite order.
- (11). Consider the group G = Z/2Z and define an action of this group as deck transformations on a product of two circles $V = S \times S$ by the formula $g(x,y) = (-x, \overline{y})$ for g the non-identity element in G and unit complex numbers x and y. (Here \overline{y} denotes the complex conjugate of y.) Let W be the quotient space V/G. Use the results in problem (10) to answer the following questions:
 - (a). Is W orientable?
 - (b). What is the genus of W?
 - (c). Identify the surface W in terms of the classification of closed surfaces.
 - (d). What is the universal cover of this surface?
- (12). Let K denote the Klein bottle.
 - (a) Determine the fundamental group of the surface K.
 - (b) Find the abelianization of this group
 - (c) Find the first homology group of the surface K.
- (d) Show that the abelianization of the fundamental group is isomorphic to the first homology group of the surface.