Swarthmore College Statistics Honors Exam - Monday May 9, 1994

Instructions: This exam has three parts. Part I consists of basic statistical analysis problems and part II includes problems that are more theoretical in nature. In part III the problems are more open ended; try to give a concise and carefully thought out discussion of the issues.

Answer the questions carefully, showing necessary work. Careful answers to most of the questions are more important than careless answers to all of them. However, be sure to answer some questions from each part, so do not spend too much time working on any one part. Make sure that you leave plenty of time for the discussions in part III.

NOTE: Normal and chi-squared tables are attached.

Part I:

1. A dealer offers a 1 year guarantee for a car for the price of \$200. Suppose that three different failures may occur which we designate by A, B and C respectively.

The repair cost of failure A is \$50 and its occurrence has a Poisson distribution with parameter $\lambda = 2$ (Recall that the Poisson distribution has frequency function $P(X = k) = \frac{\lambda^k}{k!}e^{-\lambda}$, k = 0, 1, 2, ...)

The repair cost of failure B is \$100 and it may occur at most twice in a year. The probability that it occurs once is 0.2 and the probability that it occurs twice is 0.1.

The repair cost of failure C is \$200 and it occurs at most once in a year. The probability of its occurence is 0.15.

Should we accept the offer from the dealer?

- 2. Let \overline{X} be the mean of a random sample of size n from a normal distribution with mean μ and variance 9. Determine n so that $P(\overline{X}-1 \le \mu \le \overline{X}+1) = 0.90$ approximately.
- 3. Out of 600 new born babies in a year in a certain city 275 are girls. Use a Chi-Square test to determine if there is a contradiction between the hypothesis that the probability of a girl is 1/2 and our data. (Use both 95% and 99% significance levels.)
- **4.** Let the random variables X and Y have joint density f(x,y) = x + y for 0 < x < 1 and 0 < y < 1 and f(x,y) = 0 elsewhere. Determine the covariance of X and Y.

Part II.

- 1. (a) Consider the exponential density function $f(x) = \lambda e^{-\lambda x}, x \ge 0$. Prove that the cumulative distribution function is $F(x) = 1 \tilde{e}^{\lambda x}, x > 0$.
- (b) Let X_1, X_2, \ldots, X_n be independent random variables from an exponential distribution with parameter λ . Let V denote the minimum of the X_i . Observe that $V \geq v$ if and only if $X_i \geq v$ for all i. Hence the cumulative distribution of V, is given by

$$1 - F_V(v) = P(V \ge v) = P(X_1 \ge v)P(X_2 > v) \cdots P(X_n > v).$$

What is the density (not the cumulative distribution) of V?

(c) Suppose that a system consists of 13 components connected in series. So the system fails as soon as one of the components fails. If the lifetimes of the components are independent variables with exponential distribution with parameter $\lambda = 7$, what is the density function for the length of time that the system operates?

2. The Pareto density is used in economics to model incomes. This density is given by

$$f(x:\theta_1,\theta_2) = \theta_2 \theta_1^{\theta_2} \left(\frac{1}{x}\right)^{\theta_2+1}$$
 for $x \ge \theta_1$.

Assume that θ_2 is known and that $X_1, X_2, \ldots X_n$ is a random sample from this distribution. Find the maximum likelihood estimate of θ_1 .

- 3. Let X_1, X_2, \ldots, X_n be a random sample from a distribution with mean μ and variance σ^2 . Prove that the sample mean $\overline{X} = \frac{1}{n} \sum_{i=1}^n X_i$ is an unbiased estimator of μ .
- **4.** Let the random variable X have mean μ and variance σ^2 . For constants α and β satisfying $-\infty < \alpha < \infty$ and $\beta > 0$, define $Y = \alpha + \beta X$.
- (a) Find the correlation coefficient between X and Y.
- (b) Determine α and β so that Y has mean 0 and variance 1.
- 5. Consider a linear regression model in which the sum of the absolute values are minimized in place of the sum of squares in the standard least squares model. Write down the expression to be minimized in the least absolute deviation model.

Which model (least squares or least absolute deviation) do you expect will be less sensitive to one outlying observation, if the other data are highly correlated?

Part III

1. Many calculators have two buttons, one labeled σ_{n-1} and one labeled σ_n , with the following definitions:

$$\sigma_{n-1} = \sqrt{\frac{\sum_{i=1}^{n} (X_i - \overline{X})^2}{n-1}}$$

and

$$\sigma_n = \sqrt{\frac{\sum_{i=1}^n (X_i - \overline{X})^2}{n}}.$$

Discuss why there are two different buttons, including when it is appropriate to use each one.

2. State the Central Limit Theorem. Give both an informal statement (one that you might give to a friend with no mathematical background) and as precise a mathematical statement as you can.

What is the importance of the Central Limit Theorem in determining a confidence interval for a mean? Do you need to make any assumptions about the underlying population distribution for your sample?

- 3. Recall that a Type I error involves rejecting the null hypothesis H_0 when it is true and a Type II error involves accepting the null hypothesis H_0 when it is false.
- Which of these relates to the *significance level* and which to the *power* and how? Which level is usually decided on by the statistician?
- Discuss what the null and alternative hypotheses are and why there is no simple relation between the probability of a Type I error and the probability of a Type II error.
- Discuss anything else that you think is important in understanding the distinction between these two types of error, for example what the 'real world' implications might be in a typical hypothesis testing situation.
- 4. Discuss the major distinction between non-parametric statistical methods and 'standard' methods. Describe the difference informally and explain why and/or when non-parametric methods may be desirable. If possible, illustrate by contrasting a non-parametric method (of your choice) with a corresponding 'standard' method.

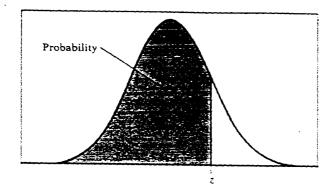


Table entry is probability at or below z.

Standard normal probabilities

z	.00	.01	.02	.03	.04 🔌	٠, .05	.06	.07	.08	.09
0.0	.5000	.5040	.5080	.5120	.5160	.5199	.5239	.5279	.5319	.5359
0.1	.5398	.5438	.5478	.5517	.5557	.5596	.5636	.5675	.5714	.5753
0.2	.5793	.5832	.5871	.5910	.5948	.5987	.6026	.6064	.6103	.6141
0.3	.6179	.6217	.6255	.6293	.6331	.6368	.6406	.6443	.6480	.6517
0.4	.6554	.6591	.6628	.6664	.6700	.6736	.6772	.6808	.6844	.6879
0.5	.6915	.6950	.6985	.7019	.7054	.7088	.7123	.7157	.7190	.7224
0.6	.7257	.7291	.7324	.7357	.7389	.7422	.7454	.7486	.7517	.7549
0.7	.7580	.7611	.7642	.7673	.7704	.7734	.7764	.7794	.7823	.7852
0.8	.7881	.7910	.7939	.7967	.7995	.8023	.8051	.8078	.8106	.8133
0.9	.8159	.8186	.8212	.8238	.8264	.8289	.8315	.8340	.8365	.8389
1.0	.8413	.8438	.8461	.8485	.8508	.8531	.8554	.8577	.8599	.8621
1.1	.8643	.8665	.8686	.8708	.8729	.8749	.8770	.8790	.8810	.8830
1.2	.8849	.8869	.8888	.8907	.8925	.8944	.8962	.8980	.8997	.9015
1.3	.9032	.9049	.9066	.9082	.9099	.9115	.9131	.9147	.9162	.9177
1.4	.9192	.9207	.9222	.9236	.9251	.9265.	.9279	.9292	.9306	.9319
1.5	.9332	.9345	.9357	.9370	.9382	.9394	.9406	.9418	.9429	.9441
1.6	.9452	.9463	.9474	.9484	.9495	.9505	.9515	.9525	.9535	.9545
1.7	.9554	.9564	.9573	.9582	.9591	.9599	.9608	.9616	.9625	.9633
1.8	.9641	.9649	.9656	.9664	.9671		.9686	.9693	.9699	.9706
1.9	.9713	.9719	.9726	.9732	.9738	.9744	.9750	.9756	.9761	.9767
2.0	.9772	.9778	.9783	.9788	.9793	.9798	.9803	.9808	.9812	.9817
2.1	.9821	.9826	.9830	.9834	.9838	.9842	.9846	.9850	.9854	.9857
2.2	.9861	.9864	.9868	.9871	.9875	.9878	.9881	.9884	.9887	.9890
2.3	.9893	.9896	.9 89 8	.9901	.9904	.9906	.9909	.9911	.9913	.9916
2.4	.9918	.9920	.9922	.9925	.9927	.9929	.9931	.9932	.9934	.9936
2.5	.9938	.9940	.9941	.9943	.9945	.9946	.9948	.9949	.9951	.9952
2.6	.9953	.9955	.9956	.9957	.9959	.9960	.9961	.9962	.9963	.9964
2.7	.9965	.9966	.9967	.9968	.9969	.9970	.9971	.9972	.9973	.9974
2.8	.9974	.9975	.9976	.9977	.9977	.9978	.9979	.9979	.9980	.9981
2.9	.9981	.9982	.9982	.9983	.9984	.9984	.9985	.9985	.9986	.9986
3.0	.9987	.9987	.9987	.9988	.9988	.9989	.9989	.9989	.9990	.9990
3.1	.9990	.9991	.9991	.9991	.9992	.9992	.9992	.9992	.9993	.9993
3.2	.9993	.9993	.9994	.9994	.9994	.9994	.9994	.9995	.9995	.9995
3 .3	.9995	.9995	.9995	.9996	.9996	.9996	.9996	.9996	.9996	.9997
3.4	.9997	.9997	.9997	.9997	.9997	.9997	.9997	.9997	.9997	.9998

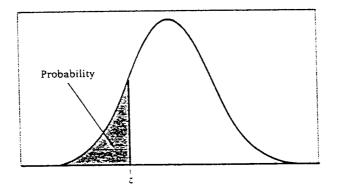
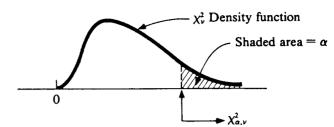



Table entry is probability at or below z.

Standard normal probabilities

Standard	normal pro	babilities								
z	.00	.01	.02	.03	.04	.05	.06	.07	.08	.09
-3.4	.0003	.0003	.0003	.0003	.0003	.0003	.0003	.0003	.0003	1.0002
-3.3	.0005	.0005	.0005	.0004	.0004	.0004	.0004	.0004	.0004	.0003
-3.2	.0007	.0007	.0006	.0006	.0006	.0006	.0006	.0005	.0005	.0005
-3.1	.0010	.0009	.0009	.0009	.0008	.0008	.0008	.0008	.0007	.0007
-3.0	.0013	.0013	.0013	.0012	.0012	.0011	.0011	.0011	.0010	.0010
-2.9	.0019	.0018	.0018	.0017	.0016	.0016	.0015	.0015	.0014	.0014
-2.8	.0026	.0025	.0024	.0023	.0023	.0022	.0021	.0021	.0020	.0019
-2.7	.0035	.0034	.0033	.0032	.0031	.0030	.0029	.0028	.0027	.0026
-2.6	.0047	.0045	.0044	.0043	.0041	.0040	.0039	.0038	.0037	.0036
-2.5	.0062	.0060	.0059	.0057	.0055	.0054	.0052	.0051	.0049	.0048
-2.4	.0082	.0080	.0078	.0075	.0073	.0071	.0069	.0068	.0066	.0064
-2.3	.0107	.0104	.0102	.0099	.0096	.0094	.0091	.0089	.0087	.0084
-2.2	.0139	.0136	.0132	.0129	.0125	.0122	.0119	.0116	.0113	.0110
-2.1	.0179	.0174	.0170	.0166	.0162	.0158	.0154	.0150	.0146	.0143
-2.0	.0228	.0222	.0217	.0212	.0207	.0202	.0197	.0192	.0188	.0183
-1.9	.0287	.0281	.0274	.0268	.0262	.0256	.0250	.0244	.0239	.0233
-1.8	.0359	.0351	.0344	.0336	.0329	.0322	.0314	.0307	.0301	.0294
-1.7	.0446	.0436	.0427	.0418	.0409	.0401	.0392	.0384	.0375	.0367
-1.6	.0548	.0537	.0526	.0516	.0505	.0495	.0485	.0475	.0465	.0455
-1.5	.0668	.0655	.0643	.0630	.0618	.0606	.0594	.0582	.0571	.0559
-1.4	.0808	.0793	.0778	.0764	.0749	.0735	.0721	.0708	.0694	.0681
-1.3	.0968	.0951	.0934	.0918	.0901	.0885	.0869	.0853	.0838	.0823
-1.2	.1151	.1131	.1112	.1093	.1075	.1056	.1038	.1020	.1003	.0985
-1.1	.1357	.1335	.1314	.1292	.1271	.1251	.1230	.1210	.1190	.1170
-1.0	.1587	.1562	.1539	.1515	.1492	.1469	.1446	.1423	.1401	.1379
-0.9	.1841	.1814	.1788	.1762	.1736	.1711	.1685	.1660	.1635	.1611
-0.8	.2119	.2090	.2061	.2033	.2005	.1977	.1949	.1922	.1894	.1867
-0.7	.2420	.2389	.2358	.2327	.2296	.2266	.2236	.2206	.2177	.2148
-0.6	.2743	.2709	.2676	.2643	.2611	.2578	.2546	.2514	.2483	.2451
-0.5	.3085	.3050	.3015	.2981	.2946	.2912	.2877	.2843	.2810	.2776
-0.4	.3446	.3409	.3372	.3336	.3300	.3264	.3228	.3192	.3156	.3121
-0.3	.3821	.3783	.3745	.3707	.3669	.3632	.3594	.3557	.3520	.3483
-0.2	.4207	.4168	.4129	.4090	.4052	.4013	.3974	.3936	.3897	.3859
-0.1	.4602	.4562	.4522	.4483	.4443	.4404 -	.4364	.4325	.4286	.4247
-0.0	± .5000.	.4960	.4920	.4880	.4840	.4801	.4761	.4721	.4681	.4641

Table A.6 Critical Values $\chi^2_{\alpha,r}$ for the Chi-Squared Distribution

V	.995	.99	.975	.95	α .90	.10	.05	.025	.01	.005
1	0.000	0.000	0.001	0.004	0.016	2.706	3.843	5.025	6.637	7.882
2	0.010	0.020	0.051	0.103	0.211	4.605	5.992	7.378	9.210	10.597
3	0.072	0.115	0.216	0.352	0.584	6.251	7.815	9.348	11.344	12.837
4	0.207	0.297	0.484	0.711	1.064	7.779	9.488	11.143	13.277	14.860
5	0.412	0.554	0.831	1.145	1.610	9.236	11.070	12.832	15.085	16.748
6	0.676	0.872	1.237	1.635	2.204	10.645	12.592	14.440	16.812	18.548
7	0.989	1.239	1.690	2.167	2.833	12.017	14.067	16.012	18.474	20.276
8	1.344	1.646	2.180	2.733	3.490	13.362	15.507	17.534	20.090	21.954
9	1.735	2.088	2.700	3.325	4.168	14.684	16.919	19.022	21.665	23.587
10	2.156	2.558	3.247	3.940	4.865	15.987	18.307	20.483	23.209	25.188
11	2.603	3.053	3.816	4.575	5.578	17.275	19.675	21.920	24.724	26.755
12	3.074	3.571	4.404	5.226	6.304	18.549	21.026	23.337	26.217	28.300
13	3.565	4.107	5.009	5.892	7.041	19.812	22.362	24.735	27.687	29.817
14	4.075	4.660	5.629	6.571	7.790	21.064	23.685	26.119	29.141	31.319
15	4.600	5.229	6.262	7.261	8.547	22.307	24.996	27.488	30.577	32.799
16	5.142	5.812	6.908	7.962	9.312	23.542	26.296	28.845	32.000	34.267
17	5.697	6.407	7.564	8.682	10.085	24.769	27.587	30.190	33.408	35.716
18	6.265	7.015	8.231	9.390	10.865	25.989	28.869	31.526	34.805	37.156
19	6.843	7.632	8.906	10.117	11.651	27.203	30.143	32.852	36.190	38.580
20	7.434	8.260	9.591	10.851	12.443	28.412	31.410	34.170	37.566	39.997
21	8.033	8.897	10.283	11.591	13.240	29.615	32.670	35.478	38.930	41.399
22	8.643	9.542	10.982	12.338	14.042	30.813	33.924	36.781	40.289	42.796
23	9.260	10.195	11.688	13.090	14.848	32.007	35.172	38.075	41.637	44.179
24	9.886	10.856	12.401	13.848	15.659	33.196	36.415	39.364	42.980	45.558
25	10.519	11.523	13.120	14.611	16.473	34.381	37.652	40.646	44.313	46.925
26	11.160	12.198	13.844	15.379	17.292	35.563	38.885	41.923	45.642	48.290
27	11.807	12.878	14.573	16.151	18.114	36.741	40.113	43.194	46.962	49.642
28	12.461	13.565	15.308	16.928	18.939	37.916	41.337	44.461	48.278	50.993
29	13.120	14.256	16.147	17.708	19.768	39.087	42.557	45.772	49.586	52.333
30	13.787	14.954	16.791	18.493	20.599	40.256	43.773	46.979	50.892	53.672
31	14.457	15.655	17.538	19.280	21.433	41.422	44.985	48.231	52.190	55.000
32	15.134	16.362	18.291	20.072	22.271	42.585	46.194	49.480	53.486	56.328
33	15.814	17.073	19.046	20.866	23.110	43.745	47.400	50.724	54.774	57.646
34	16.501	17.789	19.806	21.664	23.952	44.903	48.602	51.966	56.061	58.964
35	17.191	18.508	20.569	22.465	24.796	46.059	49.802	53.203	57.340	60.272
36	17.887	19.233	21.336	23.269	25.643	47.212	50.998	54.437	58.619	61.581
37	18.584	19.960	22.105	24.075	26.492	48.363	52.192	55.667	59.891	62.880
38	19.289	20.691	22.878	24.884	27.343	49.513	53.384	56.896	61.162	64.181
39	19.994	21.425	23.654	25.695	28.196	50.660	54.572	58.119	62.426	65.473
40	20.706	22.164	24.433	26.509	29.050	51.805	55.758	59.342	63.691	66.766

For
$$\nu > 40$$
, $x_{\alpha,\nu}^2 \doteq \nu \left(1 - \frac{2}{9\nu} + z_\alpha \sqrt{\frac{2}{9\nu}}\right)^3$

Source: This table is reproduced with the kind permission of the Trustees of Biometrika from E. S. Pearson and H. O. Hartley (eds.), The Biometrika Tables for Statisticians, vol. 1, 3rd ed., Biometrika, 1966.