SWARTHMORE COLLEGE ANALYSIS HONORS EXAM REAL ANALYSIS I AND II

Please explicitly state any results you use in answering the following questions.

- 1. Denote the subset $\{(x,y): x^2+y^2=1\}$ of the plane by S^1 . Show that S^1 is connected.
- 2. Is C([0,1]) compact with the metric

$$d(f,g) = \max_{p \in [0,1]} \{|f(p) - g(p)|\}?$$

Why or why not?

3. Prove that the function

$$f(x) = \begin{cases} x^2 \sin \frac{1}{x}, & \text{if } x \neq 0 \\ 0, & \text{if } x = 0 \end{cases}$$

is differentiable but that

$$f(x) \neq \int_0^x f'(x) dx.$$

4. Approximate

$$\int_0^{.1} \sin(x^2) dx$$

up to three decimal places.

5. Suppose C is a convex, closed curve in the plane. Namely, if you pick any two points on the curve and join them by a line, the line lies entirely inside the closed curve. (Like an oval.) Assume the curve is smooth.

Let P be an arbitrary point on the curve. Prove that it is possible to find two other points Q and R on the curve so that PQR is an equilateral triangle.

- 6. (a) Give the definition of a k-manifold in \mathbb{R}^n , $0 < k \le n$.
 - (b) Is I = [0, 1] a 1 manifold in \mathbb{R} ? Why or why not?

1

- (c) Is $I^2 = I \times I = [0, 1] \times [0, 1]$ a 1 manifold in \mathbb{R}^2 ? Why or why not?
- 7. Consider the function $f: \mathbb{R}^2 \to \mathbb{R}^2$ given by

$$f(x,y) = (e^x \cos y, e^x \sin y).$$

Prove that

- (a) f is C^{∞} .
- (b) f is locally one-to-one.
- (c) f is not one-to-one.