Swarthmore Honors Exam 2011 Real Analysis Richard A. Wentworth – University of Maryland

Part I : Real Analysis

Instructions. Please answer **three** out of the following four questions. Show all of your work. If you refer to a significant theorem, please state the theorem with all necessary hypotheses. If you answer more than three, please clearly indicate which problems you wish to be graded.

- I-1 A topological space is called *separable* if it contains a countable dense subset.
 - (a) Show that euclidean space \mathbb{R}^n is separable.
 - (b) Show that every compact metric space is separable.
 - (c) Let ℓ_{∞} be the space of bounded sequences $\mathbf{a} = \{a_j\}_{j=1}^{\infty}$. We make ℓ_{∞} into a metric space by declaring

$$d(\mathbf{a}, \mathbf{b}) = \sup_{i} |a_j - b_j|$$

Show that ℓ_{∞} is not separable.

I-2 Let $\{f_n\}$ be a uniformly bounded sequence of continuous functions on [a, b]. Let

$$F_n(x) = \int_a^x f_n(t)dt$$

- (a) Show that there is a subsequence of $\{F_n\}$ that converges uniformly on [a, b].
- (b) Each F_n is differentiable. Show by an example that the uniform limit in part (a) need not be differentiable.
- **I-3** Let $\{a_n\}_{n=1}^{\infty}$ be a positive decreasing sequence $a_n \ge a_{n+1} \ge 0$.
 - (a) Show that $\sum_{n=1}^{\infty} a_n$ converges if and only if $\sum_{k=0}^{\infty} 2^k a_{2^k}$ converges.
 - (b) Use the result in part (a) to show that the harmonic series $\sum_{n=1}^{\infty} (1/n)$ diverges.
 - (c) Use the result in part (a) to show that the series $\sum_{n=2}^{\infty} (1/n(\log n)^p)$ converges for p > 1.

I-4 Let f be a continuous function on the closed interval [a, b].

(a) Show that

$$\lim_{p \to \infty} \left(\int_a^b |f(x)|^p dx \right)^{1/p} = \max_{x \in [a,b]} |f(x)|$$

(b) Give an example of a continuous function f on (a, b) where the improper integrals

$$\int_{a}^{b} |f(x)|^{p} dx$$

exist (i.e. are finite) for all $1 \le p < \infty$, but

$$\lim_{p \to \infty} \left(\int_a^b |f(x)|^p dx \right)^{1/p} = \infty$$

Part II: Analysis on Manifolds

Instructions. Please answer **three** out of the following five questions. Show all of your work. If you refer to a significant theorem, please state the theorem with all necessary hypotheses. If you answer more than three, please clearly indicate which problems you wish to be graded.

II-1 On $\mathbb{R}^3 - \{0\}$, consider the following 2-form

$$\omega = \frac{x\,dy \wedge dz + y\,dz \wedge dx + z\,dx \wedge dy}{(x^2 + y^2 + z^2)^{3/2}}$$

- (a) Show that ω is closed.
- (b) By explicit computation show that

$$\int_{S^2} \omega$$

does not vanish. Here, $S^2 \subset \mathbb{R}^3$ is the unit sphere.

- (c) Is ω exact?
- **II-2** The space M(n) of $n \times n$ matrices is a manifold naturally identified with \mathbb{R}^{n^2} . The subspace S(n) of symmetric matrices is a manifold naturally identified with $\mathbb{R}^{n(n+1)/2}$. The space of orthogonal matrices is

$$O(n) = \left\{ A \in M(n) : AA^T = I \right\}$$

where T denotes transpose and I is the identity matrix.

- (a) Show that O(n) is manifold by considering the map $F: M(n) \to S(n): A \mapsto AA^T$ (Hint: it might be easier to first consider the derivative of F at the identity, and then use matrix multiplication).
- (b) What is the dimension of O(n)?
- (c) Describe the tangent space of O(n) at the identity matrix as a subspace of M(n).

II-3 Let $A \subset \mathbb{R}^m$, $B \subset \mathbb{R}^n$ be rectangles, $Q = A \times B$, and $f : Q \to \mathbb{R}$ a bounded function.

(a) State necessary and sufficient conditions for the existence of the Riemann integral

$$\int_Q f(x,y) \, dx dy$$

(b) Suppose $\int_Q f(x, y) dxdy$ exists. Show that there is a set $E \subset A$ of measure zero such that for all $x \in A - E$, the Riemann integral

$$\int_{\{x\}\times B} f(x,y)\,dy$$

exists.

II-4 Let M be a compact, oriented manifold without boundary of dimension n, and let $S \subset M$ be an oriented submanifold of dimension k. A *Poincaré dual* of S is a closed (n - k)-form η_S with the property that for any closed k-form ω on M,

$$\int_M \omega \wedge \eta_S = \int_S \omega$$

- (a) Show that if η_S is a Poincaré dual of S, so is $\eta_S + d\alpha$ for any (n k 1)-form α .
- (b) Find a Poincaré dual of a point.
- (c) Let $S \subset M$ be an embedded circle $S \simeq S^1$ in an oriented 2-dimensional manifold M. Find a Poincaré dual to S (Hint: use the fact that there is a neighborhood of S in M of the form $S^1 \times (-1, 1)$).
- **II-5** Let M be a differentiable manifold. If X is a smooth tangent vector field on M, then X gives a map $C^{\infty}(M) \to C^{\infty}(M)$ on smooth functions by $f \mapsto X(f) = df(X)$. Explicitly, in local coordinates x_1, \ldots, x_n ,

$$X = \sum_{i=1}^n X^i \frac{\partial}{\partial x_i} \quad , \quad X(f) = \sum_{i=1}^n X^i \frac{\partial f}{\partial x_i}$$

- (a) Show that if X_1 and X_2 are vector fields such that $X_1(f) = X_2(f)$ for all $f \in C^{\infty}(M)$, then $X_1 = X_2$.
- (b) If X, Y are vector fields on M, define the *Lie bracket* [X, Y] to be the vector field determined by the condition that

$$[X, Y](f) = X(Y(f)) - Y(X(f))$$

for all $f \in C^{\infty}(M)$. Compute [X, Y] in local coordinates.

(c) Show that if $N \subset M$ is a smooth submanifold of M and X, Y are two tangent vector fields to N, then [X, Y] is also tangent to N.