SWARTHMORE COLLEGE Department of Mathematics and Statistics Honors Examination

9 May 1996 1:30–4:30

Real Analysis

DIRECTIONS: Do as many problems, or parts of problems, as you can.

- 1. Prove, disprove or give a counterexample to each of the following:
 - a) Every closed and bounded subset of a complete metric space is compact.
 - b) Let $\{f_n\}$ be a sequence of Riemann-integrable functions on [a,b] and define

$$F_n(x) = \int_0^x f_n(t) \, dt$$

for $x \in [a, b]$. Then there exists a subsequence $\{F_{n_k}\}$ that converges uniformly on [a, b].

- c) Suppose that I is a bounded interval and that $f_n: I \to \mathbf{R}$ is a sequence of continuous functions.
 - 1) If f_n converges uniformly to 0, then $\int_I f_n(x) dx \to 0$.
 - 2) If f_n converges pointwise to 0, then $\int_I f_n(x) dx \to 0$.
- d) A uniform limit of differentiable functions on [0, 1] is differentiable at at least one point.
- 2. With each step justified, compute

$$\lim_{a \to \infty} \lim_{n \to \infty} \int_0^a x (1 - \frac{x}{n})^n e^{x/2} dx.$$

- 3. Suppose that $X \subset \mathbf{R}$ is uncountable. Prove that there exists some $x_0 \in \mathbf{R}$ so that every open interval I containing x_0 satisfies $I \cap X \neq \emptyset$.
- 4. A subset Y in a metric space X is called a G_{δ} -set if it is the countable intersection of open sets. Given $f: X \to \mathbf{R}$, show that $A = \{x \in X \mid f \text{ is continuous at } x\}$ is a G_{δ} -set in X.
- 5. Prove that the series

$$\sum_{n=1}^{\infty} n \sin(x^n)$$

converges absolutely on $[-\delta, \delta]$ for all $\delta \in (0, 1)$.

- 6. Suppose f is a continuously differentiable map of I = [0, 1] to itself with f(0) = f(1) = 0. Denote by $f^{\circ n}$ the n-fold composition of f with itself. We say that $x_0 \in (0, 1)$ is a *local attractor* for f if there is an open interval about x_0 on which $f^{\circ n}(x) \to x_0$ for all x in the interval.
 - a) State and prove a condition guaranteeing that x_0 is a local attractor,
 - b) Interpret the condition of being a local attractor in terms of the graph of f.
 - c) Is there a higher dimensional analog to your condition?

- 7. Suppose that f(x, y, z) = x and that R is the unit cube defined by $0 \le x, y, z \le 1$ in \mathbb{R}^3 . We wish to integrate f on R. Do it three ways.
 - a) Use iterated integration.
 - b) Use only the definition of a volume integral.
 - c) Use Stokes' Theorem.
- 8. Suppose that $f: \mathbb{R}^n \to \mathbb{R}^n$ is differentiable with derivative Df.
 - a) What can you conclude if Df is zero everywhere?
 - b) What can you conclude if Df is an orthogonal transformation (i.e., represented by an orthogonal matrix)?
 - c) Suppose that F is a vector field defined on a connected open set D in \mathbb{R}^2 . Under what conditions is there a function Φ so that $F = \operatorname{grad} \Phi$?
- 9. Suppose $f: D \to \mathbb{R}^2$ where $D \subset \mathbb{R}^2$ and f is continuously differentiable.
 - a) Show that f maps sets of measure zero to sets of measure zero.
 - b) Fix $x_0 \in D$ and let $A = Df(x_0)$. Assume that ||Au|| is not independent of the choice of unit vector u (where ||Au|| denotes the length of Au).
 - 1) Show that there exists a unit vector u_1 (respectively, u_2), unique up to sign, so that $||Au_1||$ is maximal (respectively, minimal) over all choices of unit vectors.
 - 2) Show that u_1 and u_2 are orthogonal.