Discrete Mathematics Honors Examination
Swarthmore College
Monday, May 12, 1997

This exam has two parts. Part I focuses mostly on basic knowledge and technical
skills, while Part II focuses on proof techniques and creativity. Provide answers
and brief justifications of your solutions to the questions in Part I, but give more
details in your solutions to questions in Part II. Do at least 5 of the questions
in Part I, and at least 3 of the questions in Part 2.

Part I.

1. Solve this recurrence relation using generating functions:
T(n) =5T(n—1)+6T(n—2),

TO)=2and T(1) =5

2. For each of the following functions, give a recurrence relation that it sat-
isfies.

(a) T(n) =n!
(b) T(n) =n? +5n — 3.
(¢) T(n) =8"—2%3"

3. Ma and Pa Shoe have 8 children and no two children in the family can
keep from fighting with each other, and so the only way to keep them
quiet at dinner is to make sure that no two children sit next to each other.
Fortunately, Ma and Pa have a round table which can accomodate as many
people as they need. (For the following questions, assume that there is no
head to the table, but circular orderings which are flips of each other are
distinguishable.)

(a) How many ways can Ma and Pa Shoe arrange a group of 8 adults
and 8 children around their table so that no two children fight?

(b) If one of the children go to a friend’s house, then how many ways can
Ma and Pa Shoe arrange 8 adults and 7 children around their table?

4. Consider the Stirling numbers of the second kind, S(m,n), which denote
the number of partitions of m different objects into n sets. Give a recur-
rence relation for S(m,n), and prove its correctness.



5. A derangement of 1,2,...,n is an ordering of of 1,2,...,n such that no
integer 7 appears in the it" position in the ordering. Use the principle of
inclusion-exclusion to give a formula for the number of derangements of

1,2,...,n.
6. Suppose I1;,II,, ..., Il are decision problems, and suppose that for each
t=1,2,...,k — 1, there is a polynomial time reduction from II; to II;;;.

(a) If II4 is solvable in polynomial time, what can you say about solv-
ability in polynomial time for each of the other problems?

(b) If II4 is solvable in polynomial time and II; is NP-hard, what can
you say about the question P = NP?

(c) If II; is solvable in polynomial time and II4 is NP-hard, what can
you say about the question P = NP?
7. Let L be any language over the alphabet ¥ = {a, b}.

(a) Is the language Ly = {w € L : |w| < 50} regular?
(b) Is the language Ly = {w € L : |w| > 50} regular?

8. Is the language L = {a™b"c* : n,k > 1} context free?

Part II.

1. For a graph G = (V, E), we define the degree of a node v, denoted deg(v),
to be [{w : (v,w) € E(G)}|. We let A(G) be the maximum degree of
any node in G. A proper vertex coloring is an assignment of colors to the
nodes of the graph so that no edge connects nodes of the same color.

(a) Prove or disprove: For all such graphs G, it is impossible to properly
vertez-color G with fewer than A(G) colors.

(b) Prove or disprove: For all such graphs G, it is possible to properly
vertez-color G with exactly A(G) colors.

(c) Prove or disprove: For all such graphs G, it is possible to properly
vertez-color G with exactly A(G) + 1 colors.

2. The Partition problem is as follows:

o Input: set of positive integers {z1,z2,...,2n}.

e Question: is there a partition of z1, z2,...,z, into two sets A and B
such that the sum of the numbers in A is the same as the sum of the
numbers in B?



The Knapsack problem is as follows:

e Input: set of positive integers {z1,z2,...,2,}, and integer B.

e Question: is there a set X C {z1,z9,...,2,} such that the sum of
the numbers in X is exactly B?

(a) Assume that Partition is NP-hard, and prove that Knapsack is NP-
hard.

(b) Consider the following dynamic programming formulation for solving
Knapsack. Let M be a boolean matrix with rows indexed from i = 0
to ¢ = n and columns indexed from j = 0 to j = B, and let M (3, j)
be true if and only if there is a subset of {z1,22,...,z;} summing
to j. Describe a dynamic programming algorithm based upon this
matrix to solve the Knapsack problem, and analyze its running time.

(c) Comment on the question of P. = NP? with respect to these two
results.

3. If G = (V,E) is a graph, V' C V and G’ is a subgraph of G which
contains every edge of G connecting two vertices of V/, then G’ is called
the subgraph induced or spanned by V'. A cyclein a graph G = (V,E) is a
sequence of nodes vy, vy, . . ., v such that (v;,v;41) € Efori=1,2,...,k—
1 and (v1,vx) € E. A chord in the cycle vy, vz, ..., v is an edge between
two non-consecutive nodes in the cycle. A triangulated graph is a graph
G = (V, E) such that all cycles of size four or more contain chords (i.e.
all vertex-induced cycles are of size at most three). Thus acyclic graphs
and complete graphs are triangulated. A simplicial node in a graph G is a
node v such that its neighbors form a clique (i.e a collection of nodes every
two of which are adjacent). A perfect elimination ordering is an ordering
of the vertices vy, va, ..., vy, such that each v; is simplicial in the subgraph
of G induced by v;,viy1,...,v,. The following theorem can be proven:
Theorem: G has a perfect elimination ordering (there can be
more than one) if and only if G is triangulated.

(a) Prove only that a graph that has a perfect elimination ordering is
triangulated.

(b) Given a perfect elimination ordering vq,v2,...,v, for G = (V,E),
define X (v;) = {v; : j > ¢ and (v;,v;) € E} (so X (v;) depends upon
the graph and upon the perfect elimination ordering). Prove that the
maximum clique in a triangulated graph G is of the form {v} U X,,.

(¢} Use the fact that every triangulated graph has a perfect elimination
ordering and the result of the previous question to prove that the size
of the maximum clique in a triangulated graph can be determined in
polynomial time.



(d) The chromatic number of a graph is the minimum number of colors
needed to color the vertices of a graph so that no pair of adjacent
nodes are assigned the same color. Prove that every the chromatic
number of a triangulated graph is the size of its maximum clique, and
give a polynomial time algorithm to compute the optimal coloring.

4. Let G = (V,E) be a connected graph and let w : E — R be a function
assigning real weights to the edges of G. A minimum spanning tree of G is
a subgraph T = (V, E(T')) of G such that T is a tree (i.e. connected and

acylic graph) containing all the nodes of G and minimizing Yec By w(e).

Consider the following condition (which we will call the *-condition) on
a (not necessarily minimum) spanning tree T for G For all edges e €
E — E(T), let ve be the unique simple cycle in T U {e}, and let ¢’ be the
heaviest edge in v.. Then w(e') < w(e).

(a) Prove that every minimum spanning tree T satisfies the *-condition.

(b) Now suppose that all the weights in E are distinct, so that w(e)
w(e') for all e # €’. Show that any spanning tree T which satis-
fies the *-condition is a minimum spanning tree. (Hint: consider a
spanning tree 7 which has a smaller weight than 7', and consider
E(TYAE(T").)

(¢) Deduce from (a) and (b) above that the minimum spanning tree on
a graph in which all the edge weights are distinct is unique.

5. State the Polya-Redfield Theorem, sketch the proof, and give a simple
example of how it can be applied.

6. Let R be a regular language over an alphabet 3 and let /2 and L2 be
the languages:
LV? = {we T :ww e R}

and
L? ={wwe =* :we R}

(a) Is L*? a context free language? Justify your answer.

(b) Is L? a context free language? Justify your answer.



