SWARTHMORE COLLEGE Department of Mathematics and Statistics Honors Examination

16 May 1996 1:30-4:30

Complex Analysis

DIRECTIONS: Do as many problems as you can. The term *holomorphic* is used to mean analytic in an open set. The holomorphic functions in D are denoted $\mathcal{O}(D)$; the meromorphic functions are denoted $\mathcal{M}(D)$. $\widehat{\mathbf{C}}$ is the Riemann sphere: \mathbf{C} together with the point ∞ .

- 1. Suppose that D is a domain in C and that $f: D \to \mathbf{R}$ has continuous partial derivatives.
 - a) Express the condition that f defines a holomorphic function of the variable z = x + iy.
 - b) Express the condition that f defines a holomorphic function of the variable $\zeta = x + 2iy$.
- 2. Suppose that D is a domain in \mathbb{C} and that $f:D\to\mathbb{C}$ has a complex derivative at each point in D. Prove that, about each point $z_0\in D$, f may be expressed as a power series that is absolutely convergent in a nontrivial disk about z_0 . (Give enough details of the proof to show that you understand both the question and the answer.)
- 3. Find $\int_0^\infty \frac{dx}{1+x^{2n}}$ for $n \in \mathbb{N}$.
- 4. Suppose that $f: \partial \Delta \to \mathbf{C}$ is continuous. (Here, and henceforth, ∂ denotes boundary and Δ is the open unit disk.) Without getting too fancy, show (with justification) that $f(e^{i\theta}) = \sum_{n \in \mathbf{Z}} a_n e^{in\theta}$ may be used to define two functions, one of which is holomorphic in Δ and the other is holomorphic in $\widehat{\mathbf{C}} \overline{\Delta}$. How does this differ from the formation of a Laurent series?
- 5. Suppose that f is holomorphic, maps the unit disk Δ into itself, and f(0) = 0. Can you make any assertion about the value of f'(0)? Can you make any assertion about the value of f' at any other points in Δ ?
- 6. Given two complex numbers, say, ω_1 and ω_2 , which are linearly independent over the reals, we may form the Weierstrass \wp -function

$$\wp(z) = \frac{1}{z^2} + \sum_{\omega \in \Omega'} \left\{ \frac{1}{(z - \omega)^2} - \frac{1}{\omega^2} \right\}$$

where $\Omega' = \{n\omega_1 + m\omega_2 \mid (n, m) \in \mathbf{Z}^2 - \{(0, 0)\}\}$. Prove that the derivative of \wp may be obtained by differentiating the series term by term.

7. Suppose that f is an entire function and that there exist positive constants R, A, α so that

$$|f(z)| \le A|z|^\alpha$$

whenever |z| > R. Prove that f is a polynomial and estimate its degree.

- 8. Suppose that $f, g \in \mathcal{O}(\mathbf{C})$ are nonconstant and that $f \circ g$ is a polynomial. Prove that both f and g are polynomials.
- 9. A Möbius transformation is an injective meromorphic mapping of $\widehat{\mathbf{C}}$ into itself.

c) Determine the conditions under which two Möbius transformations commute.

- a) Prove that such a mapping must be onto.
- b) Prove that every Möbius transformation has the form

$$\gamma: z \mapsto \frac{az+b}{cz+d}$$

with $ad - bc \neq 0$.

- 10. Let z_i for $i=1,\ldots,4$ be four distinct points in $\widehat{\mathbf{C}}$. Determine when there exists a constant $k\in\mathbf{C}$ and a Möbius transformation γ so that $\gamma(z_1)=0, \, \gamma(z_2)=\infty, \, \gamma(z_3)=k$ and $\gamma(z_4)=\bar{k}$. Interpret your answer geometrically.
- 11. Find all Laurent series expansions of the function

$$f(z) = \frac{1}{(z^2 + 1)(z + 2)}$$

about the point $z_0 = 0$.