2025 SWARTHMORE HONORS EXAM IN COMPLEX ANALYSIS

1. Real Analysis

- (1) (a) Let C be a closed subset of \mathbb{R} . Show that there exists a continuous function $f: \mathbb{R} \to \mathbb{R}$ such that $C = f^{-1}(0)$.
 - (b) The Extreme Value Theorem says the following: let C be a compact subset of \mathbb{R} , and let $f:C\to\mathbb{R}$ be a continuous function. Then f attains a global minimum on C. Prove the following converse statement: Let S be a subset of \mathbb{R} with the property that every continuous function $g:S\to\mathbb{R}$ attains a global minimum on S. Then S must be a compact set.
- (2) Let $f: \mathbb{R} \to \mathbb{R}$ be a continuously differentiable function.
 - (a) Let $x \in \mathbb{R}$ with f'(x) > 0. Prove that there exists an $\varepsilon > 0$ such that f is strictly increasing on the interval $(x \varepsilon, x + \varepsilon)$.
 - (b) Suppose f attains a local minimum at $x \in \mathbb{R}$. Prove that f'(x) = 0.
- (3) (a) Let $f: \mathbb{R} \to \mathbb{R}$ be a non-constant polynomial of odd degree. Prove that f has a zero in \mathbb{R} .
 - (b) Let $g : \mathbb{R} \to \mathbb{R}$ be a polynomial of even degree with positive leading coefficient. Prove that g has a global minimum on \mathbb{R} .
- (4) Let S be a set, and let $(a_s)_{s \in S}$ be a collection of non-negative real numbers indexed by the set S. Then we define the sum

$$\sum_{s \in S} a_s$$

as the supremum

$$\sup_{F\subseteq S} \sum_{s\in F} \alpha_s$$

where the supremum is taken over all finite subsets F of S. If the supremum does not exist, we formally define the sum to have value $+\infty$.

(a) When the set S is the natural numbers \mathbb{N} , prove that this definition agrees with the usual definition of the sum:

$$\sum_{i=1}^{\infty} a_i$$

(b) If the set S is uncountable, prove that

$$\sum_{s \in S} \alpha_s = +\infty$$

unless $a_s = 0$ for all but countably many s.

2. Complex Analysis

- (1) (a) Prove Liouville's theorem that a bounded entire function must be constant.
 - (b) Use this to prove the Fundamental Theorem of Algebra.

- (2) (a) The open unit disk centered at zero in \mathbb{R} is the interval (-1,1). Construct a infinitely differentiable bijective function $f:(-1,1)\to\mathbb{R}$ such that the inverse $f^{-1}:\mathbb{R}\to(-1,1)$ is also infinitely differentiable.
 - (b) Show that the analogous statement fails for the complex numbers, i.e. there is no holomorphic bijection $f: D \to \mathbb{C}$ with holomorphic inverse. Here D is the open unit disk centered at zero in \mathbb{C} .
- (3) Let $f: \mathbb{C} \to \mathbb{C}$ be an entire function that has a power series expansion

$$f(z) = \sum_{n \ge 0} a_n z^n$$

for all $z \in \mathbb{C}$.

(a) Compute the contour integral

$$\frac{1}{2\pi i} \oint_{\gamma} \frac{f(z)}{z} dz$$

where γ is the unit circle oriented counterclockwise. Do not appeal to Cauchy's theorem. You may use the fact that the power series expansion converges uniformly on open disks.

(b) For k > 1, compute the contour integral

$$\frac{1}{2\pi i} \oint_{\gamma} \frac{f(z)}{z^k} dz$$

Again, do not appeal to Cauchy's theorem. You may use the fact that the power series expansion converges uniformly on open disks.

(c) Let $f: \mathbb{C}^* \to \mathbb{C}$ be a holomorphic function such that for all $\theta \in \mathbb{R}$,

$$f(e^{i\theta}) = \sin(\theta)$$

What is the value f(z) for arbitrary $z \in \mathbb{C}$? Prove your answer.

- (4) (a) Let $U = \{z \in \mathbb{C} \mid |z-1| < 1\}$ be the open unit disk centered at 1. Prove that there exists a function $f: U \to \mathbb{C}$ such that $e^{f(z)} = z$ for all $z \in U$.
 - (b) Can we enlarge the domain where f is defined? Prove that f cannot be extended to a holomorphic function $\mathbb{C}^* \to \mathbb{C}$.
 - (c) What does it mean that f is a "multivalued function" on \mathbb{C}^* ?
 - (d) As above, let $U = \{z \in \mathbb{C} \mid |z-1| < 1\}$ be the open unit disk centered at 1. Prove that there exists a function $q: U \to \mathbb{C}$ such that $q(z)^2 = z$.
 - (e) Can we enlarge the domain where g is defined? Prove that g cannot be extended to a holomorphic function $\mathbb{C}^* \to \mathbb{C}$.
 - (f) What does it mean that g is a "multivalued function" on \mathbb{C}^* ?
- (5) (a) Use the argument principle to count (with multiplicity) the number of zeros of the polynomial $z^4 + 3z^3 + z + 10$ in the upper-right quadrant

$$Q = \{ z \in \mathbb{C} \mid \operatorname{Re}(z) > 0 \text{ and } \operatorname{Im}(z) > 0 \}$$

(b) Use the residue theorem to compute the integral

$$\int_{-\infty}^{\infty} \frac{1}{1+x^2} \mathrm{d}x$$