Swarthmore College Honors Exam - Combinatorics - Spring 2006

Instructions:

- Thig is closed book, notes etc.

- Pick two problems to work on from each of the following ‘groups’ of problems 1-4, 5-8, 9-12.

- Provide concise and well thought out answers. If there is a part of answer where you are not
sure of what to do, it is better to admit the gap then to make a mistake or fudge your answer.
- Many of the questions have more straightforward or computational parts followed by more
theoretical parts. Be sure to answer some of the theoretical parts.

- If you spend more than 30 minutes on a problem you may be spending too much time on it.
-Make sure that you move on if you are stuck on a part of a problem.

- The problems are not of equal difficulty. You will not be evaluated based on some number
of correct answers but rather on demonstrating the ability to write clear, concise and correct
answers to a reasonable variety of problems of different types and levels of difficulty.

1: The Ramsey number R(p,¢) is the smallest number r such that every two coloring of the
edges of K, the complete graph on r vertices contains either a red clique of size p or a blue
clique of size g.

(a) Show R(3,3) = 6.
(b) Prove that R(p,q) exists and R(p,q) < (P+q 2)'

p=1
(c) The Ramsey number R,(3) is the smallest number 7 such that every k- colormg of the

edges of K, contains a triangle (a cligue of size 3) in one of the colors. Prove that R(3) <
k(Re-1(3) — 1) + 2.

2: Recall that the chromatic number x(G) of a graph is the minimum number of colors needed
to color the vertices of (G so that adjacent vertices get different colors. Recall also that a planar
graph is a graph that can be drawn in the plane without crossing edges.

> n{G}/a(G) where

(a) Prove that x(G) < A(G) + 1, x{G) < n{G) — a(G) + 1 and x(G) >

A(G) is the maximum degree of a vertex in &, n(G) is the number of vertices and «(G) is the
maximum size of an independent set in G. :
(b) Prove Euler’s formula n—e+ f = 2 for connected planar graphs where n, e, f are, respectively,
the numbers of vertices, edges and faces of G.

(c) Use Buler’s formula to prove that a simple planar graph has a vertex with degree at most 3.
{(d) Outline (you do not need to provide all of the details) a proof that every planar graph has
chromatic number at most 5. You may use part {c).

3: Recall that a tournament is an orientation of the edges of a complete graph.

(a) Prove Redei's Theorem: Every tournament of order n contains a path of length n — 1. (This
is called a Hamiltonian path.)

(b) A transitive tournament is a tournament whose vertices can be labelled 1,2, ... n such that
the arcs are (7, 7) for i < j. Prove that every tournament that is not transitive contains a directed
cycle on 3 vertices.

(¢) Prove that every tournament contains a king, a vertex z such that for every other vertex x
either (#, ) is an arc or there exists a y such that {z,y) and (y, z) are arcs.



4: Recall the Konig-Egervary Theorem: For a bipartite graph G, the maximum size of a matching
in (G is equal to the minimum size of a vertex cover of the edges of (G. Equivalently, if A isa 0, 1
matrix, the maximum number of 1's, no two on a line is equal to the minimum number of lines
needed to cover the 1’s.

Recall also Hall Theorem: A bipartite graph G with bipartition X,Y has a matching covering
X if and only if for each § € X we have |V(S)| > |S| where N(S) is the neighborhood of S, the
set of all vertices adjacent to a vertex of S. Equivalently, sets X1, Xs, ..., X, have a system of
distinct representatives if and only if for all £ = 1,2,... m, the union of any % of the sets has
size at least k.

(a) Explain the ‘equivalently’ in the descriptions above.

(b) Prove the Marriage Theorem: A regular bipartite graph has a matching saturating all the
vertices. Equivalently, a 0,1 matrix for which all row and column sums equal the same constant
conttains a permutation matrix.

(c) Do one of the following: Prove the Konig-Egervary Theorem, Prove Hall’'s Theorem, derive
Hall’s Theorem from the Konig-Egervary Theorem, derive the Konig-Egervary Theorem from
Hall’s Theorem.

(d) Prove the Birkhoff-Von Neuman Theorem: If A is an n x n doubly stochastic matrix then A
is a convex combination of permutation matrices: A = >.7° ; \;P; where the P} are permutation
matrices and the A; are non-negative numbers summing to 1.

5: Recall that the binomial coeflicients (:“) =
{1,2,...,n}.

(a) Prove the statement above about what the binomial coefficients count.

(b) Prove Pascal’s identity: (Z) = (”;1) + (:’:D

ﬁlk), count the number of size & subsets of

T
(¢) Prove the Binomial Theorem for positive integers n: (z +y)" = (Z) T
k=0
(d) Use the Binomial Theorem to prove that the number of odd size subsets of {1,2,... ,n}

equals the number of even size subsets.
(e) Give a combinatorial proof (not using the Binomial Theorem) of part (d).

6: Recall that the Fibonacci nmumbers are given by the recursion F,, = F, | + F, 5 for n > 2
with FO = F]_ =1.

n+1 n+1
1 /1 1 (1—-+/5
(a) Use induction to prove that F, = — i \/5) v Tf) .

NAWE

(b) Use the recursion to derive the {ordinary) generating function for Fibonacci numbers F(z) =

1—z—2?
(c) Use the generating function from part (b) to give another proof of the formula in part (a).
(d) Explain why the Fibonacci numbers F,, count the number of sequences of 1’s and 2’s with
sum n. . .
(e) Prove that » (nk ) = I, {where (g) =0ifb>a).

k=0



7: Recall the inclusion-exclusion formula in the following form: If A, Ay, ..., A, are subsets of a
universe such that the size of the intersection of any k& of the sets is independent of the choice of
the sets and has size g; (with g interpreted to count the size of the universe) then the number

T

of elements in none of the sets is given by > (—1)* (:) Tre-

k=0
(a) At a small school with 100 students four courses are offered. Each class has 40 students, for
every pair of classes there are 20 students attending both classes, for every group of 3 classes
there are 10 students attending all 3 and there are 5 students taking all 4 classes. How many
students are not taking any classes?
(b) Use inclusion-exclusion to solve the drunk professor problem: A drunk professor returns
papers at random to a class of n students. In how many ways can this be done so that no
student gets their own paper back?
(c) How many ways can the drunk professor return a test and a quiz to each student so that no
student gets both of their own papers back (they might get one of the two).
(d) Explain why the inclusion-exclusion formula holds. You may use the result of 5(d).

8: A weak composition of a positive integer £ with n parts is a non-negative integral solution to
n o0

Z x; = k. A partition of a positive integer k is a non-negative integral solution to Z Joy =k,
=1 J=1

(a) Show that the number of weak compositions of k with n parts, that is, the number of non-

3

negative integral solutions to Zazz = k, is equal to the number of k element multisets from
i=1

{1,2,...,n} and that this number is (n+;:_1).

(b) Show that the number of partitions of k, that is, the number of non-negative integral solutions

to > ja; =k, is the number of multisets of positive numbers with sum & and give the ordinary
i=1

. >
generating function P(z) = > Py for partitions (where Py is the number of partitions of k).
k=0
(c) Determine the number of weak compositions of k with n parts such that each part has size

at least 1 {which is the number of compositions of & with n parts). Determine the number of
weak compositions of k£ with n parts such that each part has size at least ¢ for some given £.
(d) Prove that the number of partitions of &£ into parts of size at most ¢ is equal to the number
of partitions of &k into at most ¢ parts. :

9: Recall that in Polya’s enumeration theory that the pattern inventory is the generating function
with the coefficient of ¢ ¢5® - - - ¢f* equal to the number of different colorings with color 7 used
o times. Here different means in different orbits under the group action under consideration.

(a) Explain how the pattern inventory can be obtained from the cycle index polynomial.

(b) Give the pattern inventory for the number of necklaces with 4 beads (free to move in space)
using two possible colors of beads. (This is the same as coloring either the edges or vertices of a
square free to move in space).

(c) If instead there are three possible colors for the beads in part (b) how many different necklaces
are there in total?



10: Recall that an n x n matrix A is irreducible if the rows and columns can be permuted so
that A has block form An Ay
matrix is irreducible if and only if D is strongly connected where D is the digraph with adjacency
matrix A = A(D). Recall also that for a digraph D, its adjacency matrix A(D) has entry A(3, j)
equal to the number of arcs directed from ¢ to j. A strongly connected digraph is primitive if
the greatest common divisor of the lengths of closed directed walks is 1. Equivalently, a digraph
is primitive if some power of the adjacency matrix A{D) has all entries positive.

) where A1 is k& x k for some 0 < k& < n. Equivalently, a

(a) Explain the equivalence between the digraph and matrix definitions of irreducible given
above.

(b) Explain the equivalence between the digraph and the matrix definitions of primitive given
above. '

(c) Prove that A is irreducible if and only if every entry of (I + A)*"! is positive.

(d) If A is primitive its spectral radius p is positive and A has a positive eigenvector. Explain,
in terms of theorems that you know, why this is true.

(e) If A is doubly stochastic and primitive show that its spectral radius is 1.

11: Recall that a Hadamard matrix of order n is an n x n matrix with entries from {—1,+1}
such that HT H = I,, where I,, is the identity matrix.

(a) Prove that the order of a Hadamard matrix is either 2 or a multiple of 4.

(b) Describe how to construct infinitely many Hadamard matrices.

(c) Show that there is a Hadamard matrix of order n — 4¢ > 8 if and only if there is a symmetric
2 — (4t — 1,2t — 1, — 1) design. (See problem 12 for notation for designs.)

12: Recall that a 2 — (v, k, \) design is a collection of b size k subsets of a v element set such that
every element appears in 7 of the subsets and every pair of elements appears together in A subsets.
The elements are also sometimes called varieties or points and the sets are often called blocks. If
k < v — 1 these axe called balanced incomplete block designs {BIBD’s). It is symmetric if b = v.
For a symmeiric BIBD with blocks By, Bs, ..., B, the derived design with respect to By has
elements (varieties, points) By and blocks By N By, BsN By, ... B,N Bi. The residual design with
respect to By has elements (varieties, points) V — B; and blocks By — By, B3 — By,..., By, — By.
The incidence matrix A is a b by v matrix with rows indexed by the blocks and columns indexed
by the elements with the B;, v; entry equal to 1 if v; is an element of B; and equal to 0 otherwise.

(a) Prove that in a BIBD bk = vr and r(k — 1) = Av —1).

(b) Prove Fisher’s inequality: In a BIBD v < b.

(c) If A is the incidence matrix of a symmetric design with block B corresponding to the first
row, show that the incidence matrix of the derived design is the columns of A with a 1 in the first
row {with the first row deleted) and the incidence matrix of the residual design is the columns
of A with a 0 in the first row (with the first row deleted).

(d) For a symmetric BIBD with parameters b = v, r = k, A determine the parameters &', v/, 7/, &', X'
and b7, v", 7", k", X" for the residual and derived designs. (You may use part (c).}



