HONORS EXAM IN ANALYSIS

- (1) Let $\{x_n\}$ denote a sequence of real numbers.
 - (a) State what it means for the sequence $\{x_n\}$ to converge to a real number x.
 - (b) Suppose that a sequence $\{x_n\}$ is bounded and for all $n \in \mathbb{N}$ $x_n \leq x_{n+1}$. Show that the sequence must converge.
- (2) Let X and Y denote subsets of \mathbb{R} . Let $f: X \to Y$.
 - (a) State what it means for f to be continuous at a point $x \in X$.
 - (b) State what it means for f to be a uniformly continuous function on X.
- (3) Determine which of the following statements are true and which are false. Provide counter-examples for the false statements and prove the true ones. In the case of a false statement make sure you thoroughly explain why the example you give is a counter-example to the statement. In this problem X and Y will denote subsets of \mathbb{R} .
 - (a) If a function $f: \mathbb{R} \to \mathbb{R}$ is continuous then for all open subsets O of \mathbb{R} , $f^{-1}(O)$ is also open.
 - (b) If a function $f: \mathbb{R} \to \mathbb{R}$ is continuous and onto then for all open subsets O of \mathbb{R} , f(O) is also open.
 - (c) If $f : \mathbb{R} \to \mathbb{R}$ is continuous and C is a compact subset of \mathbb{R} , then f(C) is also compact.
 - (d) If $f: X \to Y$ is continuous, one-to-one and onto, and if X is a compact subset of \mathbb{R} , then for all closed subsets A of X, f(A) is a closed subset of Y.

- (4) Let $\{f_n\}$ be a sequence of functions $f_n: X \to Y$, where X and Y are metric spaces.
 - (a) State what it means for the sequence $\{f_n\}$ to converge (pointwise) to a function f.
 - (b) State what it means for the sequence $\{f_n\}$ to converge uniformly to a function f.
- (5) Let $\mathcal{C}[a,b]$ denote the set of continuous functions $f:[a,b]\to\mathbb{R}$ and for $f\in\mathcal{C}[a,b]$ set

$$||f|| = \sup_{x \in [a,b]} |f(x)|.$$

Here the notation sup, short for supremum, means the same thing as least upper bound.

(a) Show that the function $\rho: \mathcal{C}[a,b] \times \mathcal{C}[a,b] \to \mathbb{R}$ given by

$$\rho(f,g) = \|f - g\|$$

is a metric.

- (b) Show that if a sequence of functions $\{f_n\}$ in $\mathcal{C}[a,b]$ converges to $f \in \mathcal{C}[a,b]$ in this metric then it converges uniformly.
- (c) Is it possible for a sequence of functions $\{f_n\}$ in $\mathcal{C}[a,b]$ to converge to a function f in this metric and $f \notin \mathcal{C}[a,b]$?
- (6) Let $S \subset \mathbb{R}^n$.
 - (a) State the definition of a rectifiable set S.
 - (b) State the definition of a set S of measure zero.
 - (c) Prove that S is rectifiable if and only if it is bounded and the boundary of S has measure zero.
 - (d) Show by example that not all bounded open subsets of \mathbb{R}^n need be rectifiable.
- (7) Let A be an $n \times n$ matrix. Let $h: \mathbb{R}^n \to \mathbb{R}^n$ be the linear transformation $h(x) = A \cdot x$. Let S be a rectifiable set in \mathbb{R}^n and denote its volume by v(S). Let T = h(S).

Show that

$$v(T) = |det A| \cdot v(S).$$

- (8) Let $f: [a, b] \to \mathbb{R}$, with a < b.
 - (a) Prove Rolle's Theorem: Suppose f is continuous on [a, b] and differentiable on (a, b). If f(a) = f(b) then $f'(x_0) = 0$ for some $x_0 \in (a, b)$.
 - (b) Prove by example that the condition of differentiable on (a, b) cannot be relaxed even at one point for Rolle's Theorem to hold.