HONORS EXAM IN ANALYSIS

(1) Let $\{x_n\}$ denote a sequence of real numbers.

- (a) State what it means for the sequence $\{x_n\}$ to converge to a real number x.
- (b) Suppose that a sequence $\{x_n\}$ is bounded and for all $n \in \mathbb{N}$ $x_n \leq x_{n+1}$. Show that the sequence must converge.

(2) Let X and Y denote subsets of \mathbb{R} . Let $f: X \to Y$.

- (a) State what it means for f to be continuous at a point $x \in X$.
- (b) State what it means for f to be a uniformly continuous function on X.
- (3) Determine which of the following statements are true and which are false. Provide counter-examples for the false statements and prove the true ones. In the case of a false statement make sure you thoroughly explain why the example you give is a counter-example to the statement. In this problem X and Y will denote subsets of \mathbb{R} .

(a) If $f: \mathbb{R} \to \mathbb{R}$ is a continuous function and $\{x_n\}$ is a sequence of real numbers which converges to $x \in \mathbb{R}$ then $\{f(x_n)\}$ converges to f(x).

(b) If $f: X \to Y$ is continuous and X is a closed subset of $\mathbb R$ then f is uniformly continuous.

(c) If $f: X \to Y$ is continuous and X is a bounded subset of \mathbb{R} then f is uniformly continuous.

(d) If $f: X \to Y$ is continuous then

$$\{x: f(x) = 0\}$$

is a closed subset of X.

(e) If $f: X \to Y$ is continuous and X is a closed subset of $\mathbb R$ then

$$\{x:f(x)=0\}$$

is a closed subset of X.

(4) Let $\mathcal{C}[a,b]$ denote the set of continuous functions $f:[a,b]\to\mathbb{R}$ and for $f\in\mathcal{C}[a,b]$ set

$$||f|| = \sup_{x \in [a,b]} |f(x)|.$$

Here the notation sup, short for supremum, means the same thing as least upper bound.

(a) Show that the function $\rho: \mathcal{C}[a,b] \times \mathcal{C}[a,b] \to \mathbb{R}$ given by

$$\rho(f,g) = \|f - g\|$$

is a metric.

- (b) Is it possible for a sequence of functions $\{f_n\}$ in $\mathcal{C}[a,b]$ to converge to a function f in this metric with $f \notin \mathcal{C}[a,b]$?
- (5) Let $\sum_{n=1}^{\infty} a_n$ denote an infinite series.

(a) State what it means for the series to be convergent.

(b) Prove that the series converges if and only if for every $\epsilon>0$ there is an integer N such that

$$|\Sigma_{k=n}^m a_k| < \epsilon$$

if $m \ge n \ge N$.

(6) Prove that $exp(x) \ge 1 + x$ for all $x \in \mathbb{R}$.

(7) Let (X, f) be a dynamical system.

- (a) State the definitions of attracting and repelling fixed points of (X, f).
- (b) Identify the fixed points of (X, f) in the case that $X = \{0, 1\}^{\mathbb{Z}}$ and $f = \sigma$ and classify them as attracting, repelling, or neither.
- (c) Give an example of a dynamical system with an attracting fixed point. Prove your claim.

(8) Let X be a metric space with metric ρ .

(a) State what it means for a subset of X to be dense.

(b) Give an example of a dynamical system (X, f) whose periodic points are dense. Prove your claim.

(c) Give an example of a dynamical system (X, g) whose periodic points are not dense. Prove your claim.