ANALYSIS HONORS EXAM REAL ANALYSIS I AND COMPLEX ANALYSIS

Please explicitly state any results you use in answering the following questions.

- 1. Denote the subset $\{(x,y): x^2+y^2=1\}$ of the plane by S^1 . Show that S^1 is connected.
- 2. Is C([0,1]) compact with the metric

$$d(f,g) = \max_{p \in [0,1]} \{ |f(p) - g(p)| \}?$$

Why or why not?

3. Prove that the function

$$f(x) = \begin{cases} x^2 \sin \frac{1}{x}, & \text{if } x \neq 0 \\ 0, & \text{if } x = 0 \end{cases}$$

is differentiable but that

$$f(x) \neq \int_0^x f'(x)dx.$$

4. Approximate

$$\int_0^{.1} \sin(x^2) dx$$

up to three decimal places.

5. Suppose C is a convex, closed curve in the plane. Namely, if you pick any two points on the curve and join them by a line, the line lies entirely inside the closed curve. (Like an oval.) Assume the curve is smooth.

Let P be an arbitrary point on the curve. Prove that it is possible to find two other points Q and R on the curve so that PQR is an equilateral triangle.

6. Prove Schwarz' Lemma:

Suppose that f is analytic in the unit disc, that $|f(z)| \le 1$ for all z in the unit disc and that f(0) = 0. Then

- (a) $|f(z)| \le |z|$
- (b) $|f'(0)| \le 1$

with equality in either of the above if $f(z) = e^{i\theta}z$.

7. Evaluate

$$\int_{|z|=2} z e^{\frac{3}{z}} dz.$$