ALGEBRAIC GEOMETRY EXAM

SPRING 2021

This exam consists of 9 problems. You are not required to solve them all, but rather should work on the ones you find interesting and approachable.

I am interested in seeing how you approach the various problems, so please turn in your solutions to a problem even if you can only make progress on some of the individual parts. If you find it useful, you may assume an earlier part of a problem when working on the later parts even if you haven't been able to solve it. However, please bear in mind that I would rather see substantial progress on a few problems than a handful of computations for every problem.

- (1) (a) Let k be \mathbb{R} or \mathbb{C} . Show that $\mathbb{A}_k^2 \setminus \{(0,0)\}$ is not an affine variety. (b) Is $\mathbb{A}_k^2 \setminus \{(0,0)\}$ on affine variety when k is a finite field? Why are wh
 - (b) Is $\mathbb{A}^2_k \setminus \{(0,0)\}$ an affine variety when k is a finite field? Why or why not?
- (2) Let *k* be an algebraically closed field, and let $\mathbb{A}^n = \mathbb{A}^n_k$.
 - (a) Let *J* be the ideal $(xy, xz, yz) \subset k[x, y, z]$. Find $\tilde{V}(J) \subset \mathbb{A}^3$. Is it irreducible? Is it true that J = I(V(J))?
 - (b) Let *K* be the ideal (xy, (x y)z). Find V(*K*), and calculate \sqrt{K} .
- (3) Let *k* be an algebraically closed field. Define $\phi : \mathbb{A}^1_k \to \mathbb{A}^3_k$ by

$$\phi(t) = (t, t^2, t^3)$$

Let $W \subset \mathbb{A}^3_k$ be the image of ϕ . Prove that W is an irreducible algebraic variety.

- (4) Let C = V((x+y)(x-y)(x-2y)) be a curve in \mathbb{C}^2 .
 - (a) Show that C has a singular point at the origin.
 - (b) Describe the blow up of C at the origin (restricting your attention to the strict transform).
 - (c) How many points are there over the origin in the blow up you have described?
- (5) Fix points $\mathbf{p} = [p_0, \dots, p_n]$ and $\mathbf{q} = [q_0, \dots, q_n]$ in $\mathbb{P}^n(\mathbb{C})$. (a) Define a map $F : \mathbb{P}^1(\mathbb{C}) \dashrightarrow \mathbb{P}^n(\mathbb{C})$ by

$$F(u,v) = u\mathbf{p} - v\mathbf{q} = [up_0 - vq_0, \dots, up_n - vq_n].$$

Describe the domain of *F* and show that *F* is one-to-one on its domain.

- (b) Let $\ell = a_0 x_0 + \cdots + a_n x_n$ be a linear homogeneous polynomial. Show that ℓ vanishes on the image of *F* if and only if $\mathbf{p}, \mathbf{q} \in V(\ell)$.
- (c) Fix n = 3 and let $\mathbf{p} = [1, -2, 0, 0]$ and $\mathbf{q} = [0, 1, 0, 0]$. Write the image of *F* as $V(\ell_1, \ldots, \ell_k)$, where the ℓ_i are linear polynomials. How many do you need?
- (6) Consider the *Cremona map* on $\mathbb{P}^2(\mathbb{C})$ given in projective coordinates by

$$[x, y, z] \mapsto [yz, xz, xy]$$

- (a) Show that the Cremona map is a rational map. What is its domain?
- (b) Show that the Cremona map is a birational map. (Hint: what happens if you compose the Cremona map with itself?)
- (c) Sometimes the map on $\mathbb{P}^2(\mathbb{C})$ given in projective coordinates by

$$[x, y, z] \mapsto [1/x, 1/y, 1/z]$$

is also referred to as the Cremona map. Is this consistent terminology? Why or why not?

(7) Consider the Segre map $\Sigma_{m,n} : \mathbb{P}^m(\mathbb{C}) \times \mathbb{P}^n(\mathbb{C}) \to \mathbb{P}^{(m+1)(n+1)-1}$. One way to define the Segre map is to write coordinates of points in $\mathbb{P}^m(\mathbb{C})$ and $\mathbb{P}^n(\mathbb{C})$ as (m+1)and (n+1)-dimensional column vectors, respectively, and to write coordinates of points in $\mathbb{P}^{(m+1)(n+1)-1}$ as $(m+1) \times (n+1)$ matrices. Then the Segre map is given by

$$\Sigma_{m,n}(\mathbf{p},\mathbf{q}) = \mathbf{p}\mathbf{q}^T.$$

- (a) Let $S \subset \mathbb{P}^{(m+1)(n+1)-1}(\mathbb{C})$ be the image of the Segre map. One may define a projection map $\pi_1 : S \to \mathbb{P}^m(\mathbb{C})$ by sending an $(m+1) \times (n+1)$ matrix to any of its nonzero columns. Prove that π_1 is well-defined (that is, its image does indeed lie in $\mathbb{P}^m(\mathbb{C})$ and the choice of a nonzero column doesn't matter).
- (b) Fix any point $\hat{\mathbf{q}} \in \mathbb{P}^n$. Define a map $\phi : \mathbb{P}^m(\mathbb{C}) \to \mathbb{P}^m(\mathbb{C})$ by

$$\phi(\mathbf{p}) = \pi_1 \circ \Sigma_{m,n}(\mathbf{p}, \hat{\mathbf{q}}).$$

Show that ϕ is the identity map.

- (8) Find all of the conics in $\mathbb{P}^2(\mathbb{C})$ which contain the points [1,0,0], [0,1,0], [0,0,1], [1,1,0], and [1,-1,0].
- (9) Consider the elliptic curve *E* over C described by the affine equation y² = x³ − 5x. Write ⊕ for the group law on this elliptic curve.
 - (a) Verify that P = (-1, -2) and Q = (0, 0) are points on *E*, and compute $P \oplus Q$.
 - (b) Let O be the identity element of the group law. Give an explicit description of O.
 - (c) Find a point *R* such that $P \oplus R = \mathcal{O}$.