
SWARTHMORE COLLEGE
DEPARTMENT OF MATHEMATICS AND STATISTICS

2019 ALGEBRA HONORS EXAMINATION

Instructions: This exam contains nine problems. Try to solve six problems as completely
a possible. The exam is divided into three sections; please attempt to solve at least
one, ideally more than one, problem from each section. Once you are satisfied with your
responses to six problems, make a second pass through the exam and complete as many
parts of the remaining problems as possible. For problems with parts, you are allowed to
assume the truth of earlier parts when working on a later part. I am interested in your
thoughts on a problem and attempts at special cases even if you do not completely solve
the problem. Please justify your reasoning as fully as possible.

Section I.

1. Let Ω = {1, 2, 3, 4, 5, 6}. For each i ∈ Ω the set {σ ∈ S6 |σ(i) = i } is a subgroup of the
symmetric group S6 that is isomorphic to S5 and has exactly two orbits on Ω, namely {i}
and Ω− {i} (do not prove this). The purpose of this problem is to prove that S6 contains
a subgroup K that is isomorphic to S5 and that has just one orbit on Ω.

(a) Prove that S5 contains exactly 6 Sylow 5-subgroups.

(b) Prove that S5 contains a subgroup N such that |S5 : N | = 6.

(c) Prove that the rule (Nα) · β = Nαβ defines a group action of S5 on the set ∆
consisting of the right cosets of N in S5. Prove that S5 has just one orbit on ∆.

(d) Prove that S6 contains a subgroup K that is isomorphic to S5 such that K has
exactly one orbit in its action on Ω.

2. Let G be a group whose identity element is denoted 1. For each x ∈ G the set
CG(x) = { y ∈ G |xy = yx } is a subgroup of G (do not prove this). We define a binary
relation ∼ on the set G∗ = G− {1} as follows. For x, y ∈ G∗ we write x ∼ y iff xy = yx.

(a) Prove that the relation ∼ is reflexive and symmetric.

(b) Suppose G is nonabelian and that its center Z(G) contains more than one element.
Prove that the relation ∼ is not transitive.

(c) Prove that ∼ is transitive if and only if CG(x) is abelian for every x ∈ G∗.
(d) Let G be a finite group for which ∼ is an equivalence relation (i.e. for which ∼ is

transitive) and let C1, . . . , Cr denote the distinct equivalence classes. Prove that for each
i ∈ {1, . . . , r} the set Ci∪{1} is a maximal abelian subgroup of G (i.e. an abelian subgroup
that is not contained inside any larger abelian subgroup of G).

(e) Find an example of a finite group for which ∼ is an equivalence relation.

1



3. Let G be a group acting on a finite set Ω with |Ω| > 1. Suppose this action is transitive,
which means that for each pair α, β ∈ Ω there exists g ∈ G such that α · g = β. Now let
G act on the Cartesian product Ω× Ω by (α, β) · g = (α · g, β · g). Fix an arbitrary point
δ ∈ Ω and consider the stabilizer subgroup Gδ = { g ∈ G | δ · g = δ }. Let n denote the
number of orbits in the action of Gδ on Ω.

(a) Let δ1, . . . , δn be representatives for the distinct orbits in the action of Gδ on Ω.
(We may assume δ1 = δ.) For i ∈ {1, . . . , n} let Oi denote the orbit that contains (δ, δi)
in the action of G on Ω× Ω. Prove that the sets Oi and Oj are distinct whenever i 6= j.

(b) Prove that G has exactly n orbits in its action on Ω× Ω.

(c) Suppose n = 2. Prove there does not exist any subgroup H such that Gδ < H < G.

Section II.

4. The ring of Gaussian integers Z[i] = { a + bi | a, b ∈ Z } is a subring of the complex
numbers C (do not prove this). Fix integers m, n such that n > 0 and let I denote the
principal ideal of Z[i] generated by m+ ni. Let R denote the quotient ring Z[i]/I.

(a) Prove that every element of R can be written in the form k+ ri+ I for some pair
of integers k, r such that 0 ≤ r < n.

(b) Prove that m2 + n2 + I = 0 + I.

(c) Prove that R is finite.

(d) Take m = −2 and n = 1. Prove that the element 1 + I in R has additive order 5
and then conclude that R is isomorphic to Z/5Z. (Be sure to provide sufficient detail.)

5. Let F be a field. Let R be a subring of F that contains the unity element of F . Suppose
that M is a maximal ideal of R. We define the sets

S =
{ a

b
| a ∈ R, b ∈ R−M

}
and J =

{ a

b
| a ∈M, b ∈ R−M

}
.

(a) Prove that S is a subring of F and that S contains R.

(b) Prove that J is an ideal of S.

(c) Prove that S contains the multiplicative inverse of every element in S − J .

(d) Prove that every proper ideal of S is contained in J .

6. Let A be an ideal of a commutative ring R. The nil radical of A is the set N(A)
consisting of all those elements r ∈ R such that rn ∈ A for some positive integer n that
depends on the element r.

(a) Prove that N(A) is an ideal of R.

(b) For the ring R = Z/100Z = {0, 1, . . . , 99}, describe or list all the elements of each
of the following ideals: N(〈0〉), N(〈2〉), N(〈4〉), N(〈10〉).

(c) An element x in a ring is said to be nilpotent in case xn = 0 for some positive
integer n. For an arbitrary commutative ring R, prove that the quotient ring R/N(〈0〉)
does not contain any nonzero nilpotent elements.
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Section III.

7. Let E denote the field Q(
√

2, 3
√

2, 4
√

2, 5
√

2, . . .) where Q is the field of rational numbers.

(a) Prove that E is not a finite extension of Q.

(b) Prove that E is an algebraic extension of Q. (It might be useful to argue that E
is equal to the union of an infinite sequence of fields, each contained in the next.)

(c) Prove that Q ⊆ Q( 3
√

2, 4
√

3) is a field extension of degree 12.

8. Let 21/4 be the positive real 4th root of 2. Let E denote the subfield Q(i, 21/4) of C.

(a) Write down all the zeros of the polynomial x4 − 2 in C.

(b) Prove that x4 − 2 is irreducible over Q(i).

(c) Write down a basis for the vector space E over Q(i).

(d) What are the possibilities for σ(21/4) if σ ∈ Gal(E/Q(i))?

(e) Suppose α ∈ Gal(E/Q(i)) satisfies the condition α(21/4) = i21/4. Consider the
subgroup H = 〈α2〉 of Gal(E/Q(i)). Determine the fixed field EH .

9. Let ω = e2πi/6 ∈ C. We define the matrices

a =

(
ω 0
0 ω−1

)
and b =

(
0 −1
1 0

)
.

We define the subgroups A = 〈a〉, B = 〈b〉, G = 〈a, b〉 of the general linear group GL(2,C).

(a) Prove that b−1aib = a−i for every positive integer i. Use this to argue that A/ G.

(b) Compute each of |A|, |B|, |A ∩B|, and |G|.
(c) Prove that G = A∪bA is a disjoint union. (Thus each element of G may be written

in the “standard form” biaj where i ∈ {0, 1} and j is an appropriate nonnegative integer.)

(d) List the elements of the commutator subgroup G′. Is G/G′ cyclic? (By definition
G′ is the subgroup generated by all the elements of the form x−1y−1xy where x, y ∈ G.)

(e) Determine the distinct conjugacy classes of elements of G.

(f) Compute the character table of G.
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