Swarthmore College Department of Mathematics and Statistics Honors Examination: Algebra-C

Spring 2003

Instructions: This exam that contains 9 problems. Try to solve *six* problems as completely as possible. Beyond that, turn in any solutions or partial solutions that you can get done.

Advice: I am interested in your thoughts on the problem even if they do not completely solve it. In particular, turn in your solution even if you can't do all the parts of a multiple part problem. You might also formulate and solve special cases that you can think of. Where there are multiple parts to a problem, you might be able to answer a later part without solving all the earlier ones.

- 1. Let $\phi: G \to H$ be a group homomorphism. Let $x, y \in H$ be in the image of ϕ . Find a bijection between the sets $\phi^{-1}(x)$ and $\phi^{-1}(y)$. Justify your answer.
- 2. (a) Let σ be an automorphism of a group G (an isomorphism from G onto G). Prove that σ permutes the conjugacy classes of G. That is if K is a conjugacy class of G, then $\sigma(K)$ is a conjugacy class of G. (Recall that K is a conjugacy class means that for some $h \in G$, $K = \{g^{-1}hg|g \in G\}$.)
 - (b) Prove that any automorphism of the symmetric group S_5 sends transpositions to transpositions. Hint: think about the sizes of the conjugacy classes of elements of order two.
- 3. Let G be a finite group. Cayley's theorem says that G is isomorphic to a subgroup of $\operatorname{Perm}(G)$, where $\operatorname{Perm}(G)$ is the group of all permutations of G. Let $\pi:G\to\operatorname{Perm}(G)$ be the homomorphism from G into $\operatorname{Perm}(G)$.
 - (a) Let |G| = n and let $x \in G$ with |x| = m. Describe the cycle structure of the permutation $\pi(x)$. (Here |x| denotes the order of the element x).
 - (b) Prove that $\pi(x)$ is an odd permutation if and only if |x| is even and |G|/|x| is odd.
 - (c) Prove that if G contains an element x with |x| even and |G|/|x| odd, then G has a subgroup of index 2 and, thus, G is not simple.
- 4. Let $a = \sqrt{2\omega} \in \mathbb{C}$, where $\omega = e^{2\pi i/3}$.
 - (a) Find the minimal polynomial for a over \mathbb{Q} .
 - (b) Find a basis for $\mathbb{Q}(a)$ over \mathbb{Q} (justify your answer).
- 5. Let φ denote the Euler φ function.
 - (a) Prove: $\sum_{d|n} \varphi(d) = n$. (Consider the orders of elements in \mathbb{Z}_n).
 - (b) Let p be a prime and find an element of order n in the multiplicative group $\mathbb{Z}_{p^n-1}^*$. Prove that $n|\varphi(p^n-1)$.
 - (c) Prove Euler's Theorem: if (a, n) = 1 then $a^{\varphi(n)} \equiv 1 \mod n$.
 - (d) Determine the last two digits of 3400.

- 6. (a) Find an ideal I of $\mathbb{Z}_8[x]$ such that $\mathbb{Z}_8[x]/I$ is a field
 - (b) Find an ideal I of $\mathbb{Z}_8[x]$ such that $\mathbb{Z}_8[x]/I$ is an integral domain but not a field.
- 7. Let R be a commutative ring with unity 1, and let $G = \{g_1, g_2, \dots, g_n\}$ be a finite group. Define R[G] as

$$R[G] = \left\{ \left. \sum_{i=1}^{n} x_{i} g_{i} \mid x_{i} \in R \right. \right\}$$

with addition and multiplication given (like polynomials) by

$$\left(\sum_{i=1}^{n} x_{i} g_{i}\right) + \left(\sum_{i=1}^{n} y_{i} g_{i}\right) = \sum_{i=1}^{n} (x_{i} + y_{i}) g_{i}.$$

$$\left(\sum_{i=1}^{n} x_{i} g_{i}\right) \cdot \left(\sum_{i=1}^{n} y_{i} g_{i}\right) = \sum_{i=1}^{n} \sum_{j=1}^{n} x_{i} y_{j} (g_{i} g_{j}).$$

You do not have to check the properties, but R[G] forms a ring (called a group ring).

- (a) Show that R[G] contains an isomorphic copy of G and an isomorphic copy of R.
- (b) The center of a ring A is the set $\{z \in A \mid za = az \text{ for all } a \in A\}$. Show that $\bar{g} = g_1 + g_2 + \cdots + g_n$ is in the center of R[G]
- (c) Define $\phi: R[G] \to R$ by $\phi(\sum_{i=1}^n x_i g_i) = \sum_{i=1}^n x_i$. Show that ϕ is a ring homomorphism.
- (d) Describe the factor ring $R[G]/\ker(\phi)$
- 8. Let $\gamma = (1 + \sqrt{5})/2$ (the golden ratio).
 - (a) Find an infinite continued fraction for γ .
 - (b) Hurwitz proved that for any irrational number ξ , there are always infinitely many convergents h_n/k_n to ξ such that

$$\left| \xi - \frac{h_n}{k_n} \right| < \frac{1}{k_n^2 \sqrt{5}}$$

Find (with proof) an infinite set of convergents h_n/k_n that satisfy the inequality for the golden ratio γ .

(c) Show that $\sqrt{5}$ in the previous inequality is the best possible in the sense that if $c > \sqrt{5}$, then there are at most finitely many h_n/k_n for which

$$\left|\xi - \frac{h_n}{k_n}\right| < \frac{1}{k_n^2 c}.$$

9. Let D be an integer that is not a perfect square in \mathbb{Z} . Define the following subring of \mathbb{C} ,

$$\mathbb{Z}[\sqrt{D}] = \left\{ a + b\sqrt{D} \mid a, b \in \mathbb{Z} \right\}.$$

Define $N: \mathbb{Z}[\sqrt{D}] \to \mathbb{Z}$ by $N(a + b\sqrt{D}) = a^2 - Db^2$.

- (a) Show that N(xy) = N(x)N(y).
- (b) Show that u is a unit in $\mathbb{Z}[\sqrt{D}]$ if and only if $N(u) = \pm 1$ (Hint: for one direction find $u^{-1} \in \mathbb{C}$).
- (c) Find all the units in $\mathbb{Z}[\sqrt{-1}]$.
- (d) Show that $\mathbb{Z}[\sqrt{2}]$ has an infinite number of units (Hint: if u is a unit, consider u^n).