Swarthmore College Department of Mathematics and Statistics Honors Examination: Algebra-B

Spring 2003

Instructions: This exam contains 9 problems. Try to solve *six* problems as completely as possible. Beyond that, turn in any solutions or partial solutions that you can get done.

Advice: I am interested in your thoughts on the problem even if they do not completely solve it. In particular, turn in your solution even if you can't do all the parts of a multiple part problem. You might also formulate and solve special cases that you can think of. Where there are multiple parts to a problem, you might be able to answer a later part without solving all the earlier ones.

- 1. Let $\phi: G \to H$ be a group homomorphism. Let $x, y \in H$ be in the image of ϕ . Find a bijection between the sets $\phi^{-1}(x)$ and $\phi^{-1}(y)$. Justify your answer.
- 2. (a) Let σ be an automorphism of a group G (an isomorphism from G onto G). Prove that σ permutes the conjugacy classes of G. That is if \mathcal{K} is a conjugacy class of G, then $\sigma(\mathcal{K})$ is a conjugacy class of G. (Recall that \mathcal{K} is a conjugacy class means that for some $h \in G$, $\mathcal{K} = \{g^{-1}hg|g \in G\}$.)
 - (b) Prove that any automorphism of the symmetric group S_5 sends transpositions to transpositions. Hint: think about the sizes of the conjugacy classes of elements of order two.
- 3. Let G be a finite group. Cayley's theorem says that G is isomorphic to a subgroup of $\operatorname{Perm}(G)$, where $\operatorname{Perm}(G)$ is the group of all permutations of G. Let $\pi: G \to \operatorname{Perm}(G)$ be the homomorphism from G into $\operatorname{Perm}(G)$.
 - (a) Let |G| = n and let $x \in G$ with |x| = m. Describe the cycle structure of the permutation $\pi(x)$. (Here |x| denotes the order of the element x).
 - (b) Prove that $\pi(x)$ is an odd permutation if and only if |x| is even and |G|/|x| is odd.
 - (c) Prove that if G contains an element x with |x| even and |G|/|x| odd, then G has a subgroup of index 2 and, thus, G is not simple.
- 4. Let $a = \sqrt{2}\omega \in \mathbb{C}$, where $\omega = e^{2\pi i/3}$.
 - (a) Find the minimal polynomial for a over Q.
 - (b) Find a basis for $\mathbb{Q}(a)$ over \mathbb{Q} (justify your answer).
- 5. Let $F \subseteq E$, where E is a field extension of F and $|F| = q < \infty$. Show that $F = \{\alpha \in E \mid \alpha^q = \alpha\}$. Hint: To show " \subseteq ," use the fact that $F \setminus \{0\}$ is a finite group, and to show " \supseteq ," count.
- 6. Let G be a group. Two subgroups H and J of G are conjugate in G if $gHg^{-1} = J$ for some $g \in G$. Let $F \subseteq E$ be a finite field extension. Two intermediate fields $F \subseteq K \subseteq E$ and $F \subseteq L \subseteq E$ are F-isomorphic if $\alpha(K) = L$ for some α in the Galois group G(E/F).
 - Let $F \subseteq E$ be a finite Galois extension. Let $F \subseteq K \subseteq E$ and $F \subseteq L \subseteq E$ be intermediate fields. Prove that K and L are F-isomorphic if and only if G(E/K) and G(E/L) are conjugate in G(E/F).

7. Let R be a commutative ring with unity 1, and let $G = \{g_1, g_2, \dots, g_n\}$ be a finite group. Define R[G] as

$$R[G] = \left\{ \sum_{i=1}^{n} x_i g_i \mid x_i \in R \right\}$$

with addition and multiplication given (like polynomials) by

$$\left(\sum_{i=1}^{n} x_i g_i\right) + \left(\sum_{i=1}^{n} y_i g_i\right) = \sum_{i=1}^{n} (x_i + y_i) g_i.$$

$$\left(\sum_{i=1}^{n} x_i g_i\right) \cdot \left(\sum_{i=1}^{n} y_i g_i\right) = \sum_{i=1}^{n} \sum_{j=1}^{n} x_i y_j (g_i g_j).$$

You do not have to check the properties, but R[G] forms a ring (called a group ring).

- (a) Show that R[G] contains an isomorphic copy of G and an isomorphic copy of R.
- (b) The center of a ring A is the set $\{z \in A \mid za = az \text{ for all } a \in A\}$. Show that $\bar{g} = g_1 + g_2 + \cdots + g_n$ is in the center of R[G]
- (c) Define $\phi: R[G] \to R$ by $\phi(\sum_{i=1}^n x_i g_i) = \sum_{i=1}^n x_i$. Show that ϕ is a ring homomorphism.
- (d) Describe the factor ring $R[G]/\ker(\phi)$.
- 8. Let $V = \mathbb{C}^n$ with basis v_1, \ldots, v_n be the permutation representation of the symmetric group S_n . That is $\sigma(v_i) = v_{\sigma(i)}$ for $\sigma \in S_n$. Let the subspace W be defined by

$$W = \left\{ \sum_{i=1}^{n} \alpha_i v_i \mid \alpha_1 + \alpha_2 + \dots + \alpha_n = 0 \right\}$$

- (a) Show that W is an S_n -submodule.
- (b) Determine how to compute the character $\chi_W(\sigma)$ simply in terms of the permutation σ .
- (c) Now view $S_{n-1} \subseteq S_n$ as the permutations which fix n. Then the elements of S_{n-1} act on W (since they are in S_n and S_n acts on W). This is the restriction of the representation W from S_n to S_{n-1} (you do not need to prove that it is a representation). Show that W is the permutation representation of S_{n-1} .
- 9. Suppose that K is a normal subgroup of a finite group G and that S is a Sylow p-subgroup of G. Prove that $K \cap S$ is a Sylow p-subgroup of K.