Swarthmore College Department of Mathematics and Statistics Honors Examination: Algebra-A

Spring 2003

Instructions: This exam contains 9 problems. Try to solve *six* problems as completely as possible. Beyond that, turn in any solutions or partial solutions that you can get done.

Advice: I am interested in your thoughts on the problem even if they do not completely solve it. In particular, turn in your solution even if you can't do all the parts of a multiple part problem. You might also formulate and solve special cases that you can think of. Where there are multiple parts to a problem, you might be able to answer a later part without solving all the earlier ones.

- 1. Let $\phi: G \to H$ be a group homomorphism. Let $x, y \in H$ be in the image of ϕ . Find a bijection between the sets $\phi^{-1}(x)$ and $\phi^{-1}(y)$. Justify your answer.
- 2. (a) Let σ be an automorphism of a group G (an isomorphism from G onto G). Prove that σ permutes the conjugacy classes of G. That is if \mathcal{K} is a conjugacy class of G, then $\sigma(\mathcal{K})$ is a conjugacy class of G. (Recall that \mathcal{K} is a conjugacy class means that for some $h \in G$, $\mathcal{K} = \{g^{-1}hg|g \in G\}$.)
 - (b) Prove that any automorphism of the symmetric group S_5 sends transpositions to transpositions. Hint: think about the sizes of the conjugacy classes of elements of order two.
- 3. Let G be a finite group. Cayley's theorem says that G is isomorphic to a subgroup of $\operatorname{Perm}(G)$, where $\operatorname{Perm}(G)$ is the group of all permutations of G. Let $\pi: G \to \operatorname{Perm}(G)$ be the homomorphism from G into $\operatorname{Perm}(G)$.
 - (a) Let |G| = n and let $x \in G$ with |x| = m. Describe the cycle structure of the permutation $\pi(x)$. (Here |x| denotes the order of the element x).
 - (b) Prove that $\pi(x)$ is an odd permutation if and only if |x| is even and |G|/|x| is odd.
 - (c) Prove that if G contains an element x with |x| even and |G|/|x| odd, then G has a subgroup of index 2 and, thus, G is not simple.
- 4. Let $a = \sqrt{2}\omega \in \mathbb{C}$, where $\omega = e^{2\pi i/3}$.
 - (a) Find the minimal polynomial for a over \mathbb{Q} .
 - (b) Find a basis for $\mathbb{Q}(a)$ over \mathbb{Q} (justify your answer).
- 5. Let $F \subseteq E$, where E is a field extension of F and $|F| = q < \infty$. Show that $F = \{\alpha \in E \mid \alpha^q = \alpha\}$. Hint: To show " \subseteq ," use the fact that $F \setminus \{0\}$ is a finite group, and to show " \supseteq ," count.

- 6. Let $F \subseteq E$ be a field extension with |E:F| finite, and let $\alpha \in E$.
 - (a) Recall that E is a vector space over F. Define $T_{\alpha}: E \to E$ by $T_{\alpha}(x) = \alpha x$ (multiplication by α). Show that T_{α} is a linear transformation (the scalars are from F so it is an F-linear transformation).
 - (b) Show that α is a root of the characteristic polynomial of T_{α} . (Recall that the characteristic polynomial of a matrix M is $\det(\lambda I M)$).
 - (c) Given that $\{1, \sqrt[3]{2}, \sqrt[3]{4}\}$ is a basis for $\mathbb{Q}(1 + \sqrt[3]{2} + \sqrt[3]{4})$ over \mathbb{Q} , use this method to find a polynomial of degree 3 satisfied by $1 + \sqrt[3]{2} + \sqrt[3]{4}$.
- 7. An element m of the R-module M is a torsion element if rm = 0 for some nonzero element $r \in R$. The set of torsion elements is denoted

$$Tor(M) = \{ m \in M \mid rm = 0 \text{ for some nonzero } r \in R \}$$

- (a) Prove that if R is an integral domain, then Tor(M) is a submodule of M.
- (b) Give an example of a ring R and an R-module M such that Tor(M) is not a submodule.
- (c) Show that if R has zero divisors, then every nonzero R-module has torsion elements.
- 8. Suppose that K is a normal subgroup of a finite group G and that S is a Sylow p-subgroup of G. Prove that $K \cap S$ is a Sylow p-subgroup of K.
- 9. Let G be a group. Two subgroups H and J of G are conjugate in G if $gHg^{-1} = J$ for some $g \in G$. Let $F \subseteq E$ be a finite field extension. Two intermediate fields $F \subseteq K \subseteq E$ and $F \subseteq L \subseteq E$ are F-isomorphic if $\alpha(K) = L$ for some α in the Galois group G(E/F).
 - Let $F \subseteq E$ be a finite Galois extension. Let $F \subseteq K \subseteq E$ and $F \subseteq L \subseteq E$ be intermediate fields. Prove that K and L are F-isomorphic if and only if G(E/K) and G(E/L) are conjugate in G(E/F).