
ALGEBRA EXAM

SPRING 2021

This exam consists of 9 problems. You are not expected to solve them all, but rather
should work on the ones you find interesting and approachable.

I am interested in seeing how you approach the various problems, so please turn in
your solutions to a problem even if you can only make progress on some of the individual
parts. If you find it useful, you may assume an earlier part of a problem when working on
the later parts even if you haven’t been able to solve it. However, please bear in mind that
I would rather see substantial progress on a few problems than a handful of computations
for every problem.

(1) Let G = Z/24Z, let H = Z/4Z ⊕ Z/6Z, and let J = Z/8Z ⊕ Z/3Z. View G, H , and
J as groups with the operation +.
(a) Find a finite field F such that the group of units F ∗ of F is isomorphic to G.

Explain your reasoning.
(b) Find a primitive element of F ∗. Use this element to describe an isomorphism

between F ∗ and G.
(c) Can you construct a finite field with group of units isomorphic to H? Why or

why not?
(d) Can you construct a finite field with group of units isomorphic to J? Why or

why not?

(2) Let GL(3,R) be the group of invertible 3× 3 real matrices and let T be the tetrahe-
dron with vertices (1, 0, 0), (0, 1, 0), (0, 0, 1) and (−1,−1,−1).
(a) Let G be the subgroup of GL(3,R) that maps T to itself. Show that elements

of G are matrices with determinant ±1. (Hint: vertices must map to vertices.)
(b) Show that G is a finite group. Can you describe G using an isomorphism to a

well-known group? What is its order?
(c) Let H be the subgroup of G consisting of matrices with determinant 1. We call

H the rotational symmetries of T . Can you describe H using an isomorphism to
a well-known group? What is its order?

(d) What is the order of the smallest nontrivial subgroup of H? What does this
observation tell us about rotations of the tetrahedron?

(3) Let p be a prime number. Let G be the group of 3 × 3 upper triangular matrices
over Z/pZ with 1s on the diagonal. That is,

G =

1 ∗ ∗
0 1 ∗
0 0 1

 .

(a) Show that G is a non-abelian group of order p3.
(b) Show that if p 6= 2, then xp is the identity matrix for all x ∈ G.
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(c) There are two non-abelian groups of order 8, the dihedral group and the
quaternion group. When p = 2, which of these groups is G isomorphic to?
Explain your answer.

(4) The smallest nonabelian simple group is A5, the alternating group of degree 5. Let
G be the second-smallest nonabelian simple group. This group has 168 elements.
(It may be constructed as a quotient of SL(2, 7), the group of 2 × 2 matrices with
entries in Z/7Z and determinant 1.)
(a) Show that G has at least 6 elements of order 7.
(b) How many elements of order 7 does G have?

(5) Let H and K be subgroups of a finite group G and let H×K act on G by (h, k) ·x =
hxk−1 for all h ∈ H , k ∈ K, and x ∈ G.
(a) Show that the mapping described above is a group action.
(b) Show that the orbit of x ∈ G is the double coset

HxK = {hxk | h ∈ H, k ∈ K}.
(c) Show that the stabilizer S(x) satisfies

|S(x)| = |H ∩ xKx−1| = |x−1Hx ∩K|.
(d) Prove Frobenius’ Theorem: If Hx1K, Hx2K, . . . , HxnK are the distinct double

cosets of G, then

|G| =
n∑

i=1

|H||K|
x−1i Hxi ∩K

.

(6) Consider the real trigonometric polynomials of the form

a0 +
k∑

n=1

(an cos(nt) + bn sin(nt)),

where a0, . . . , ak and b1, . . . , bk are real numbers. The degree of a nonzero trigono-
metric polynomial is the largest integer n such that an and bn are not both zero.
Using standard trigonometric identities, one may prove the following fact:

The product of a trigonometric polynomial of degree m and a trigonometric polynomial
of degree n is a trigonometric polynomial of degree m+ n.

(You do not need to prove this fact.)
(a) Explain why the trigonometric polynomials form a commutative ring. What

is the additive identity? What is the multiplicative identity?
(b) Show that the trigonometric polynomials are an integral domain. What are

the units?
(c) Show that trigonometric polynomials of degree 1 are irreducible.
(d) Show that the trigonometric polynomials are not a unique factorization do-

main. (Hint: you may use the familiar identity sin2 t = 1− cos2 t.)

(7) Let p be a prime, let f(x) = xp− x− 1, and let u be a root of f(x) in a splitting field
E of f(x) over Zp.
(a) Show that u+ a is a root of f(x) for any a ∈ Zp.
(b) Show that E = Zp(u).

2



(c) Show that f(x) is irreducible over Zp. (Hint: suppose p(x) is a factor of f(x) of
degree d. What do you know about the coefficient of xd−1 in p(x)?)

(d) What is the order of E?

(8) Let E be the splitting field of the polynomial x3 + 7 over Q. Let G be the Galois
group Gal(E : Q).
(a) What group is G? (Hint: you may want to use the fact that (1

2
− i

√
3
2
)3 = −1.)

(b) Show that E is a Galois extension of Q.
(c) Find the lattice of subgroups of G.
(d) Describe the corresponding lattice of subfields. (Your explanation should al-

low me to identify what elements are in each subfield.)
(e) Find a nontrivial normal subgroup H of G, and let K be the corresponding

field. Compute Gal(E : K) and Gal(K : F ).

(9) Let G be a finite group, let V be a finitely generated vector space, and let φ : G →
GL(V ) be a representation of G. The centralizer of φ is defined to be the set of all
linear transformations A : V → V such that Aφ(G) = φ(g)A for all g ∈ G (i.e., the
linear transformations of V which commute with all the φ(g).)
(a) Prove that a linear transformation A from V to V is in the centralizer of φ if

and only if it is an FG-module homomorphism from V to itself.
(b) Explain why the centralizer of φ is a ring.
(c) Show that if z is in the center of G then φ(z) is in the centralizer of φ.
(d) Let C4 be the cyclic group with four elements and let G = C4 × C4. Construct

two distinct representations of G and describe the centralizer in each case.
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