Swarthmore College Department of Mathematics and Statistics Honors Examination: Algebra Spring 2015

Instructions: This exam contains nine problems. Try to solve six problems as completely as possible. Do not be concerned if some portions of the exam are unfamiliar; you have a number of choices so that you do not need to answer every question. Once you are satisfied with your responses to six problems, make a second pass through the exam and complete as many parts of the remaining problems as possible. I am interested in your thoughts on a problem even if you do not completely solve it. In particular, submit your solution even if you cannot do all the parts of a problem. When there are multiple parts, you are permitted to address a later part without solving all the earlier ones.

- **1.** Let \mathbb{Q} be the additive group of rational numbers and \mathbb{Z} its subgroup of integers.
 - (a) If n is a positive integer, show that \mathbb{Q}/\mathbb{Z} has an element of order n.
 - (b) If n is a positive integer, show that \mathbb{Q}/\mathbb{Z} has a unique subgroup of order n.
 - (c) Show that every finite subgroup of \mathbb{Q}/\mathbb{Z} is cyclic.
 - (d) Does \mathbb{Q}/\mathbb{Z} have a proper infinite subgroup that is cyclic? If so, provide an example. Otherwise, show that no such subgroup exists.
 - (e) Does \mathbb{Q}/\mathbb{Z} have a proper infinite subgroup that is not cyclic? If so, provide an example. Otherwise, show that no such subgroup exists.

2. For a prime integer p, denote the finite field with p elements by $\mathbb{F}_p = \{0, 1, \dots, p-1\}$. Addition and multiplication are defined modulo p. Note that $\mathbb{F}_p \cong \mathbb{Z}/(p)$.

- (a) Determine all monic polynomials $f(X) \in \mathbb{F}_3[X]$ of degree 2 that are irreducible over \mathbb{F}_3 .
- (b) Define \mathbb{F}_9 to be the quotient $\mathbb{F}_3[X]/\langle q(X) \rangle$ where $q(X) = X^2 + X + 2$. Note that there is a natural inclusion $\mathbb{F}_3 \hookrightarrow \mathbb{F}_9$. (You are not being asked to show this.) Let $\alpha \in \mathbb{F}_9$ be a root of the polynomial q(X). Prove that $\{1, \alpha\}$ forms a basis for \mathbb{F}_9 as a vector space over \mathbb{F}_3 .
- (c) Write α^5 as a \mathbb{F}_3 -linear combination of 1 and α .
- (d) Find $\operatorname{irr}(\alpha^5, \mathbb{F}_3)$, which is defined as the monic polynomial in $\mathbb{F}_3[X]$ of smallest degree that has α^5 as a root.

3. Let p be a prime integer, and let ζ be a primitive p-th root of unity. Let α be a root of $X^p - 2$, and let K be the splitting field of $X^p - 2$ over \mathbb{Q} .

- (a) Show that $X^p 2$ is irreducible over \mathbb{Q} .
- (b) Show that if $f(X) = 1 + X + \cdots + X^{p-2} + X^{p-1}$, then f(X+1) is irreducible over \mathbb{Q} . Why must f(X) also be irreducible over \mathbb{Q} ?
- (c) Let $\varphi \in \text{Gal}(K/\mathbb{Q})$. Prove that $\varphi(\alpha) = \zeta^{c(\varphi)}\alpha$ and $\varphi(\zeta) = \zeta^{d(\varphi)}$ for some $c(\varphi), d(\varphi) \in \mathbb{F}_p$ with $d(\varphi) \neq 0$.
- (d) Show that the function $\rho : \operatorname{Gal}(K/\mathbb{Q}) \to \operatorname{GL}_2(\mathbb{F}_p)$ given by

$$\rho(\varphi) = \left(\begin{array}{cc} 1 & 0 \\ c(\varphi) & d(\varphi) \end{array}\right)$$

is a homomorphism of groups whose image consists of all matrices of the form $\begin{pmatrix} 1 & 0 \\ c & d \end{pmatrix}$.

4. For any positive integer n, we represent the group of permutations on $\{1, \ldots, n\}$ by S_n . For any set S, we represent its cardinality by #S.

- (a) Determine $\#\{\sigma \in S_8 \mid \sigma^{15} = \mathrm{id}\}.$
- (b) Determine $\#\{\sigma \in S_8 \mid \sigma^2 = (12345)(678)\}.$
- (c) Define $\rho = (12345)(678) \in S_8$ and let $\operatorname{Cl}(\rho)$ be the conjugacy class of ρ in S_8 . Determine the cardinality of $\operatorname{Cl}(\rho)$, the cardinality of its centralizer, and the cardinality of its normalizer; that is, determine $\#\operatorname{Cl}(\rho), \#C_{S_8}(\operatorname{Cl}(\rho))$, and $\#N_{S_8}(\operatorname{Cl}(\rho))$.
- (d) For any positive integer n, there is a natural inclusion $S_n \hookrightarrow S_{n+1}$, where we identify S_n with the subgroup of S_{n+1} consisting of all permutations that map the index "n + 1" to itself. (You are not being asked to prove this obvious statement.) Let $\sigma \in S_{n+1}$ such that $\sigma \notin S_n$. Show that $S_{n+1} = S_n \sigma S_n$.
- (e) Prove that S_n is a maximal subgroup of S_{n+1} (when identified as in part (d) above).
- **5.** Consider the ring $R = \mathbb{Z}[\sqrt{-7}]$.
 - (a) What are the units of R?
 - (b) Show that 2 is irreducible in R.
 - (c) Show that $1 + \sqrt{-7}$ is irreducible in R.
 - (d) Is R a unique factorization domain?
 - (e) Given a field K that is algebraic of finite degree over \mathbb{Q} , recall that the ring of integers of K is the collection of elements of K that are roots of monic polynomials in $\mathbb{Z}[X]$. What is the ring of integers of $\mathbb{Q}(\sqrt{-7})$?

- **6.** Let G be a group, N be a normal subgroup of G, and Z be the center of G.
 - (a) If G/Z is cyclic, does it follow that G is abelian? Prove your claim.
 - (b) If G/Z is abelian, does it follow that G is abelian? Prove your claim.
 - (c) Prove that if G is solvable, then N and G/N are solvable.
 - (d) Prove that if N and G/N are solvable, then G is also solvable.

7. Let A_4 be the alternating group of order 12; that is, A_4 consists precisely of all even permutations in S_4 .

- (a) Demonstrate that $A_4 \cong \langle a, b \mid a^3 = b^3 = abab = 1 \rangle$.
- (b) Using the matrices

$$\left(\begin{array}{rrr} 0 & 0 & 1 \\ 1 & 0 & 0 \\ 0 & 1 & 0 \end{array}\right) \text{ and } \left(\begin{array}{rrr} 0 & -1 & 0 \\ 0 & 0 & 1 \\ -1 & 0 & 0 \end{array}\right),$$

construct a representation of A_4 on \mathbb{R}^3 .

- 8. Let p be a prime integer.
 - (a) Let σ be an element of order p in $\operatorname{GL}_2(\mathbb{F}_p)$. Prove that σ is conjugate to a matrix of the form

$$\left(\begin{array}{cc}1&a\\0&1\end{array}\right),$$

where $a \neq 0$.

- (b) Determine the number of p-Sylow subgroups of $GL_2(\mathbb{F}_p)$.
- (c) What is the number of elements of order p in $GL_2(\mathbb{F}_p)$?

9. Let *R* be a commutative ring with unity. Recall that an ideal *P* is prime if it is properly contained in *R* such that for all $xy \in P$, either $x \in P$ or $y \in P$.

- (a) Let P_1, \ldots, P_n be prime ideals and I be an ideal such that $I \subseteq \bigcup_{i=1}^n P_i$. Prove that $I \subseteq P_i$ for some index i.
- (b) Let I_1, \ldots, I_n be ideals and let P be a prime ideal such that $\bigcap_{i=1}^n I_i \subseteq P$. Prove that $I_i \subseteq P$ for some i.
- (c) Prove that for any ideal I, the quotient R/I is an integral domain iff I is prime.