Swarthmore College Department of Mathematics and Statistics Honors Examination: Algebra

Curtis Greene, Haverford College

Spring 2013

Instructions: This exam consists of nine problems. Please try to do *six* of them as thoroughly as possible. Once you have done your best on those, make a second pass through the exam and do as many parts of the remaining problems as you can.

General hints and advice: If you get stuck, work out some examples or special cases. If it makes sense, formulate and solve an easier version of the problem. In general, I am interested in learning where your thoughts are going, even if you do not answer the question completely. In case you can relate a question to other material you have studied, not specifically addressed by the question, feel free to add additional commentary. When there are multiple parts to a problem, you may do them in any order. Please justify your reasoning as fully as possible.

- 1. (a) List as many non-isomorphic groups of order 12 as you can.
 - (b) For each one, indicate the number of Sylow *p*-subgroups, for p = 2 and p = 3, and describe each Sylow *p*-subgroup.
 - (c) For each one, describe the center and give its order.
 - (d) For each group, give reasons why it is not isomorphic to any of the other groups you have listed.
- 2. (a) Prove that a group G of order 30 always has a proper normal subgroup.
 - (b) Is it true that if G has order pqr, where p, q, and r are distinct primes, then G has a proper normal subgroup? If you need to assume additional conditions on p, q, and r, then state those conditions.
- 3. Let G be the group with presentation

$$\langle x,y,z \mid x^2y^2 = x^2z^2 = y^2z^2 = xyx^{-1}y^{-1} = xzx^{-1}z^{-1} = yzy^{-1}z^{-1} = 1 \rangle.$$

Compute the order of G and describe its structure.

- 4. Let $\mathbb{Z}[i]$ denote the Gaussian integers, and for $z \in \mathbb{Z}[i]$, let $\langle z \rangle$ denote the principal ideal generated by z. For each of the following z, describe the structure of the ring $R = \mathbb{Z}[i]/\langle z \rangle$.
 - (a) z = 1 + 2i
 - (b) z = 1 + 3i
 - (c) z = 5

You might want to answer questions such as: Is R a field? Is it an integral domain? What is |R|? Is R isomorphic to a direct sum of simpler rings?

- 5. Let $\alpha = \sqrt{3} + \sqrt{5} \in \mathbb{R}$. Let f(x) denote the irreducible polynomial of α over \mathbb{Q} .
 - (a) Compute f(x) and explain why it is irreducible.
 - (b) Show that f(x) is reducible mod p for every prime p.

- 6. A set S of $n \times n$ complex matrices is simultaneously diagonalizable over \mathbb{C} if there exists a single invertible complex matrix P such that $P^{-1}AP$ is diagonal, for every $A \in S$. Say whether the following statements are TRUE or FALSE, and justify your answer, e.g., by giving a brief argument or counterexample.
 - (a) If A and B are diagonalizable complex matrices, then A and B are simultaneously diagonalizable.
 - (b) If a finite set G of complex matrices forms a group, then every matrix in G is diagonalizable.
 - (c) If a finite set G of complex matrices forms an abelian group, then G is simultaneously diagonalizable.
 - (d) Any finite group of G of complex matrices is simultaneously diagonalizable.
- 7. For $n \in \mathbb{Z}$, let $\zeta_n = e^{2\pi i/n}$. For $\alpha \in \mathbb{C}$, let $\mathbb{Q}(\alpha)$ denote the smallest subfield of \mathbb{C} containing α .
 - (a) Is $\sqrt{3} \in \mathbb{Q}(\zeta_3)$?
 - (b) Is $\zeta_6 \in \mathbb{Q}(\zeta_3)$?
 - (c) Is $\zeta_3 \in \mathbb{Q}(\zeta_8)$?
 - (d) Is $\zeta_8 \in \mathbb{Q}(\zeta_{12})$?

Explain your reasoning fully in each case, stating any theorems that you are using.

- 8. If G is a permutation group acting on a finite set, let $\hat{\rho}$ denote the representation which maps every element of G onto the corresponding permutation matrix. The character of $\hat{\rho}$ is denoted $\hat{\chi}$, and is called the *permutation character of* G.
 - (a) What quantity associated with the permutation g is $\hat{\chi}(g)$ computing?
 - (b) Compute the character table of S_3 , the symmetric group on three letters, and express its permutation character $\hat{\chi}$ as a sum of irreducible characters.
 - (c) Let $G = \mathbb{Z}_4$, regarded as a permutation group on $\{1, 2, 3, 4\}$ arranged cyclically. Compute the character table of \mathbb{Z}_4 and express its permutation character $\hat{\chi}$ as a sum of irreducible characters.
 - (d) Suppose that G has a single orbit. Prove that the permutation character $\hat{\chi}$ contains the trivial character χ_0 with multiplicity 1.
- 9. Let $\alpha = \sqrt[3]{3} \in \mathbb{R}$ and $\omega = e^{2\pi i/3} \in \mathbb{C}$.
 - (a) Compute the degrees of each of the following fields over the rationals: (i) $\mathbb{Q}(\alpha)$, (ii) $\mathbb{Q}(\omega)$, (iii) $\mathbb{Q}(\alpha\omega)$, (iv) $\mathbb{Q}(\alpha+\omega)$, (v) $\mathbb{Q}(\alpha,\omega)$, (vi) $\mathbb{Q}(\alpha+\alpha^2)$.
 - (b) Are any of the fields in (a) equal to each other? Isomorphic to each other but unequal?
 - (c) Which of the fields in (a) are splitting fields over \mathbb{Q} ?
 - (d) Let G denote the Galois group of $\mathbb{Q}(\alpha, \omega)$ over \mathbb{Q} . Make sketches showing all of the intermediate fields $\mathbb{Q} \subseteq K \subseteq \mathbb{Q}(\alpha, \omega)$ and the corresponding subgroups of G. Indicate which of the subgroups are normal in G, and state any theorems you are using to determine this.