Swarthmore College Department of Mathematics and Statistics Honors Examination: Algebra Spring 2006

Instructions: This exam contains eleven problems. Try to solve six problems as completely as possible. Do not be concerned if some problems are unfamiliar; you have a lot of choice so that one exam can cover several syllabi. Once you are satisfied with your answers to your six problems, make a second pass through the exam and complete as many parts of the remaining problems as possible. I am interested in your thoughts on a problem even if you do not completely solve it. In particular, turn in your solution even if you can't do all the parts of a multiple part problem. You might also formulate and solve special cases if you cannot solve a problem in the most general case. When there are multiple parts to a problem, you can answer a later part without solving all the earlier ones.

- 1. A commutative ring A is called a *local ring* if it has a unique maximal ideal \mathfrak{m} .
 - (a) Show that if A is a commutative ring in which all the non-invertible elements of A form an ideal, then A is a local ring.
 - (b) Suppose A is a local ring with unique maximal ideal \mathfrak{m} . Show that \mathfrak{m} consists of all the non-invertible elements of A.
 - (c) Which of the following are local rings?
 - (i) The ring \mathbb{Z} of integers.
 - (ii) The field \mathbb{C} of complex numbers.
 - (iii) The polynomial ring $\mathbb{C}[x]$.
- 2. Define $\alpha = \sqrt{2} + \sqrt{3}$.
 - (a) Show that $\mathbb{Q}(\alpha) = \mathbb{Q}(\sqrt{2}, \sqrt{3})$.
 - (b) Find the minimum polynomial of α over \mathbb{Q} .
 - (c) Show that the extension $\mathbb{Q}(\alpha)/\mathbb{Q}$ is normal.
 - (d) Compute the Galois group of $\mathbb{Q}(\alpha)$ over \mathbb{Q} .
- 3. For this exercise, define

$$R = \left\{ \left(\begin{array}{cc} a & b \\ -b & a \end{array} \right) \middle| \ a,b \in \mathbb{R} \right\} \right\}, \quad S = \left\{ \left(\begin{array}{cc} a + b\mathbf{i} & c + d\mathbf{i} \\ -c + d\mathbf{i} & a - b\mathbf{i} \end{array} \right) \middle| \ a,b,c,d \in \mathbb{R} \right\} \right\}.$$

- (a) Justify that R and S are rings with the usual matrix operations of addition and multiplication.
- (c) Show that R is a field isomorphic to the field of complex numbers.
- (b) Show that S is a division ring, meaning that each nonzero element of S has a multiplicative inverse.
- (d) Show that S is not a field.

- **4.** Let p be prime, n be a positive integer, and $q = p^n$.
 - (a) Show that if $f(x), g(x) \in \mathbb{F}_q[x]$ are distinct polynomials of degree at most q-1, then they are different as functions; i.e., there exists $\alpha \in \mathbb{F}_q$ such that $f(\alpha) \neq g(\alpha)$. [Hint: consider h(x) = f(x) g(x). Show that if h(x) is not the zero polynomial, then it cannot be the zero function.]
 - (b) How many distinct functions are there from \mathbb{F}_q to \mathbb{F}_q ? How many distinct polynomials are there of degree at most q-1 with coefficients in \mathbb{F}_q ? Conclude that every function from \mathbb{F}_q to \mathbb{F}_q can be represented as a polynomial of degree at most q-1 with coefficients in \mathbb{F}_q .
 - (c) Show that if ψ is an automorphism of a finite field \mathbb{F}_q , then ψ is of the form $\psi(x) = x^{p^k}$.
- 5. Let $\alpha \in S_5$ be the permutation (12)(34).
 - (a) Determine the conjugacy class of α in S_5
 - (b) Determine all the elements of S_5 that commute with α .
 - (c) Determine the conjugacy class of α in A_5 .
- **6.** Given a field k, $GL_n(k)$ denotes the group of all $n \times n$ invertible matrices with entries in k, and $SL_n(k)$ denotes the group of all $n \times n$ matrices with determinant 1. Define $PSL_n(k)$ to be the quotient of $SL_n(k)$ by its center.
 - (a) Prove that $SL_n(k)$ is a normal subgroup of $GL_n(k)$.
 - (b) Prove that the center of $GL_n(k)$ is the set of all matrices of the form λI_n where $\lambda \in k$.
 - (c) What is the the center of $SL_n(\mathbb{C})$?
 - (d) Prove that $PSL_2(\mathbb{F}_2) \cong S_3$.
- 7. Consider the partition of $\{1, \ldots, nm\}$ given by

$$\mathcal{P}_1 = \{1, \dots, m\},\$$
 $\mathcal{P}_2 = \{m+1, \dots, 2m\},\$
 $\vdots : \vdots$
 $\mathcal{P}_n = \{m(n-1)+1, \dots, nm\}.$

Let W be the subgroup of S_{nm} consisting of all permutations that preserve this partition; that is, for all $\sigma \in W$, if $i, j \in \mathcal{P}_k$, then for some ℓ , we have $\sigma(i), \sigma(j) \in \mathcal{P}_{\ell}$.

- (a) Show that W acts transitively on $\{1, \ldots, nm\}$, meaning that for any $1 \le i, j \le nm$, there exists $\sigma \in W$ such that $\sigma(i) = j$.
- (b) Show that W has a normal subgroup N isomorphic to $S_m \times S_m \times \cdots \times S_m$ that fixes each \mathcal{P}_i .
- (c) Show that W/N is isomorphic to S_n .

- 8. For which values of n between 3 and 6 is it possible to construct the regular n-gon by straightedge and compass? As usual, justify all your answers.
- **9.** Let p be an odd prime and let e be an integer with $1 \le e \le p-2$ and $\gcd(p-1,e)=1$.
 - (a) Prove there exists a positive integer d such that $de \equiv 1 \pmod{p-1}$ and $1 \le d \le p-2$.
 - (b) The *Pohlig-Hellman Cryptosystem* consists of two functions from \mathbb{Z}_p to \mathbb{Z}_p : enciphering is accomplished by the map

$$\mathcal{E}(m) = m^e \pmod{p}$$

and deciphering is accomplished by the map

$$\mathcal{D}(m) = m^d \pmod{p}.$$

Show that \mathcal{E} and \mathcal{D} are inverse functions.

- 10. Let G be a group with 110 elements.
 - (a) Prove that G has exactly one Sylow 11-subgroup.
 - (b) Classify all the groups of order 110.
 - (c) Prove that G must contain a subgroup of order 10.
- 11. Let n be a positive integer, S_n the symmetric group on n characters, and V an n-dimensional vector space over a field k with basis $\{v_1, \ldots, v_n\}$. Define an action of S_n on V via

$$\sigma v_i = v_{\sigma(i)}.$$

If $\varphi: S_n \to GL_n(k)$ is the corresponding matrix representation, prove that

$$\det \varphi(\sigma) = \begin{cases} 1, & \text{if } \sigma \text{ is an even permutation;} \\ -1, & \text{if } \sigma \text{ is an odd permutation.} \end{cases}$$

- 12. Let $d \in \mathbb{Z}$ be square-free and $x, y \in \mathbb{Q}$.
 - (a) If $d \equiv 3 \pmod{4}$, then under what conditions is $x + y\sqrt{d}$ an algebraic integer?
 - (b) Show that $\mathbb{Z}[\sqrt{-5}]$ is integrally closed.
 - (c) Show that $\mathbb{Z}[\sqrt{-5}]$ is not a Unique Factorization Domain.
 - (d) If $d \equiv 1 \pmod{4}$, then under what conditions is $x + y\sqrt{d}$ an algebraic integer?
 - (e) Show that $Z[\sqrt{5}]$ is not integrally closed.
 - (f) Show that $\mathbb{Z}[\sqrt{5}]$ is a Unique Factorization Domain.