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Part I — Real Analysis

I-1. Give explicit examples of each of the following (no explanation needed), or explain why no

example is possible.

(a) A nonempty bounded subset of R that does not contain its supremum.

(b) An infinite subset of R consisting entirely of isolated points. (If S ✓ R, a point x of S is

isolated if there is an open interval I ✓ R centered at x with the feature that I \ S = {x}).

(c) A bounded and infinite subset of R consisting entirely of isolated points.

(d) A closed, bounded, and infinite subset of R consisting entirely of isolated points.

(e) A subset of R that is both open and closed.

(f) A subset of R that is neither open nor closed.

I-2. Suppose that X is a metric space with metric d, and that A ✓ X. Recall that p is called a

limit point or a cluster point of A if, given any " > 0, there is some point a 2 A for which

a 6= p but d(p, a) < ".

(An equivalent formulation of this definition is the following: p is a limit point of A if there is a

sequence (an) of points in A \ {p} that converges to p.)

Note carefully that p does not have to belong to A to be a limit point of A.

Let L(A) be the set of limit points of A:

L(A) = {p 2 X : p is a limit point of A}.

Prove that L(A) is a closed subset of X.

I-3. Suppose that X is a metric space with metric d.

(a) Choose and fix some point p 2 X. Show that the function fp : X ! R given by the formula

fp(x) = d(p, x)

is continuous.

(b) Choose and fix a compact set K ✓ X. Given any x 2 X, let us define the “distance from x to

K” as

DK(x) = min
y2K

d(x, y).

Show that the function DK : X ! R is well-defined and continuous.

Remark: Part (a) tells us that, in some sense, “distance is continuous”; this is not surprising. It

turns out that, if we use d to define a metric on the Cartesian product X ⇥X in the standard way,

then the metric d is in fact a continuous function from X ⇥X to R.
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I-4. Let us define the function f : [1,1) ! [1,1) by

f(x) =
x+ 2

x+ 1
.

(a) Show that, for any x > 1,

|f 0
(x)|  1

4
.

(b) Use part (a) to conclude that, given any two x, y 2 [1,1),

|f(x)� f(y)|  |x� y|
4

.

(c) Use part (b) to conclude that any sequence (an) of the form

a0 = some number in [1,1), an = f(an�1) for all n 2 N

converges to
p
2.

I-5. Suppose that f : R ! R is a continuous function, and that [a, b] ✓ R is an interval with a < b.
Choose and fix � > 0, define the function g� : (a, b) ! R by the formula

g�(x) =
1

�

Z x+�

x
f(t) dt.

(a) Show that g� is di↵erentiable on (a, b).

(b) Show that, given any " > 0, � can be chosen small enough that

|f(x)� g�(x)| < " for all x 2 (a, b).

Remark: The point here is that a continuous function can be approximated arbitrarily closely on

a bounded interval by a di↵erentiable function.
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Part II — Real Analyis II

II-1. Prove that any linear transformation is its own derivative. More specifically, prove the

following: if T is an m⇥ n matrix, viewed as a linear transformation from Rn
to Rm

, and a is any

point in Rn
, then

DT (a) = T.

II-2. Let A ✓ R2
be an open set. Suppose that f : A ! R2

is a C1
function with the feature that

|D1f1(x)| <
1

2
, |D2f1(x)| <

1

2
, |D1f2(x)| <

1

2
, |D2f2(x)| <

1

2

for all x 2 A. (Here Difj(x) denotes the ith partial derivative of the jth component function of f
at the point x.)

Now consider the map F : A ! R2
given by the formula F (x) = x + f(x). (Intuitively, the idea

here is that F is a “perturbation” of the identity map.)

(a) Show that F is locally one-to-one — that is, given any x 2 A, there is some open set U ✓ A
containing x such that F is one-to-one on U .

(b) Now assume further that A is convex — that is, given any two points in A, the line segment

joining them lies entirely in A. Show that F is one-to-one on all of A.

II-3. Let S be the open square (0, 2)⇥ (0, 2) in R2
, and consider the function T : S ! R2

given by

T (x, y) =
�
(x� y), xy2

�
.

T (S) is pictured below.

x

y

(a) Assuming that T is one-to-one on S (which it is), find the area of T (S).

(b) Prove that T is one-to-one on S.
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II-4. A smooth function u : R2 ! R is called harmonic if

@2u

@x2
+

@2u

@y2
= 0

everywhere in R2
.

Suppose that u : R2 ! R is harmonic, let C be a circle of radius r about the point (x0, y0), and let

! be the 1-form

!(x, y) =
@u(x, y)

@x
dy � @u(x, y)

@y
dx.

(a) Compute d! (show the steps as explicitly as you can).

(b) Use either Green’s or Stokes’ theorem, together with the fact that u is harmonic, to show that

Z

C
! = 0.

(c) Consider the following parameterization of C:

p(t) : [0, 2⇡] ! R2, where p(t) = (x0 + r cos(t), y0 + r sin(t)).

Use this parameterization to write

Z

C
!

explicitly as an integral in t from 0 to 2⇡.

(d) Use the same parameterization as in part (c) to write

1

2⇡r

Z

C
u dV.

explicitly as an integral in t from 0 to 2⇡.

[Here we are using Munkres’ notation: this is the integral of u over C “with respect to one-

dimensional volume” or “with respect to arc length”, divided by the length of the circle. We

interpret this integral as the average value of u on C.]

(e) Drawing on your work in parts (b) and (c) and (d), show that

@

@r

⇣
1

2⇡r

Z

C
u dV

⌘
= 0.

[Hint: since everything in sight is smooth, you may and should move the @/@r under the integral

sign.]
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(f) Use part (e) and the observation that

lim
r!0+

1

2⇡r

Z

C
u dV = u(x0, y0)

to explain (in just a sentence or two) the following conclusion: the average value of u on any circle
is equal to the value of u at the center of the circle.

Remark: This compelling conclusion is sometimes called the circle-mean-value property for har-
monic functions, and provides some insight into why harmonic functions are used as models of

physical quantities that are in some sense “fully di↵used.”

II-5. Let U ⇢ Rn�1
be an open set, and ↵ : U ! Rn

a smooth coordinate patch (in particular, ↵
has rank n� 1 everywhere). Let W ⇢ Rn

be an open set such that

↵(U) = W \ g�1
(0)

for some smooth function g : Rn ! R.

Let f : Rn ! R be a smooth function, and suppose that the restriction of f to ↵(U) has a strict

maximum: that is, there is some p 2 U such that

f(↵(p)) > f(↵(q)) for all q 2 U \ p.

(a) Prove that Df(↵(p)) = �Dg(↵(p)) for some real number �. (Here Df(↵(p)) is the Jacobian of

f at ↵(p), not the Jacobian of f � ↵ at p! Similarly for Dg(↵(p)).)

(b) Use part (a) to find the maximum of the function f(x, y, z) = xyz on the set ↵(U), where

U = {(x, y) : 0 < x < 1 and 0 < y < 1 }

and

↵(x, y) =
⇣
x, y, 1� x

2
� y2

2

⌘
.

[Hint number 1: Take g(x, y, z) = z � (1 � x/2 � y2/2). Hint number 2: f certainly won’t be

maximized where either x or y is zero, so you may assume that x and y are nonzero.]

Remark: This is essentially the method of Lagrange multipliers.


