## Part I — Real Analysis

**I-1.** Give explicit examples of each of the following (no explanation needed), or explain why no example is possible.

- (a) A nonempty bounded subset of  $\mathbb{R}$  that does not contain its supremum.
- (b) An infinite subset of  $\mathbb{R}$  consisting entirely of isolated points. (If  $S \subseteq \mathbb{R}$ , a point x of S is *isolated* if there is an open interval  $I \subseteq \mathbb{R}$  centered at x with the feature that  $I \cap S = \{x\}$ ).
- (c) A bounded and infinite subset of  $\mathbb{R}$  consisting entirely of isolated points.
- (d) A closed, bounded, and infinite subset of  $\mathbb{R}$  consisting entirely of isolated points.
- (e) A subset of  $\mathbb{R}$  that is both open and closed.
- (f) A subset of  $\mathbb{R}$  that is neither open nor closed.

**I-2.** Suppose that X is a metric space with metric d, and that  $A \subseteq X$ . Recall that p is called a *limit point* or a *cluster point* of A if, given any  $\varepsilon > 0$ , there is some point  $a \in A$  for which

 $a \neq p$  but  $d(p, a) < \varepsilon$ .

(An equivalent formulation of this definition is the following: p is a limit point of A if there is a sequence  $(a_n)$  of points in  $A \setminus \{p\}$  that converges to p.)

Note carefully that p does not have to belong to A to be a limit point of A.

Let L(A) be the set of limit points of A:

 $L(A) = \{ p \in X : p \text{ is a limit point of } A \}.$ 

Prove that L(A) is a closed subset of X.

**I-3.** Suppose that X is a metric space with metric d.

(a) Choose and fix some point  $p \in X$ . Show that the function  $f_p : X \to \mathbb{R}$  given by the formula

$$f_p(x) = d(p, x)$$

is continuous.

(b) Choose and fix a compact set  $K \subseteq X$ . Given any  $x \in X$ , let us define the "distance from x to K" as

$$D_K(x) = \min_{y \in K} d(x, y).$$

Show that the function  $D_K: X \to \mathbb{R}$  is well-defined and continuous.

**Remark:** Part (a) tells us that, in some sense, "distance is continuous"; this is not surprising. It turns out that, if we use d to define a metric on the Cartesian product  $X \times X$  in the standard way, then the metric d is in fact a continuous function from  $X \times X$  to  $\mathbb{R}$ .

**I-4.** Let us define the function  $f : [1, \infty) \to [1, \infty)$  by

$$f(x) = \frac{x+2}{x+1}.$$

(a) Show that, for any x > 1,

$$|f'(x)| \le \frac{1}{4}.$$

(b) Use part (a) to conclude that, given any two  $x, y \in [1, \infty)$ ,

$$|f(x) - f(y)| \le \frac{|x - y|}{4}$$

(c) Use part (b) to conclude that any sequence  $(a_n)$  of the form

 $a_0 =$  some number in  $[1, \infty)$ ,  $a_n = f(a_{n-1})$  for all  $n \in \mathbb{N}$ 

converges to  $\sqrt{2}$ .

**I-5.** Suppose that  $f : \mathbb{R} \to \mathbb{R}$  is a continuous function, and that  $[a, b] \subseteq \mathbb{R}$  is an interval with a < b. Choose and fix  $\delta > 0$ , define the function  $g_{\delta} : (a, b) \to \mathbb{R}$  by the formula

$$g_{\delta}(x) = \frac{1}{\delta} \int_{x}^{x+\delta} f(t) dt.$$

- (a) Show that  $g_{\delta}$  is differentiable on (a, b).
- (b) Show that, given any  $\varepsilon > 0$ ,  $\delta$  can be chosen small enough that

 $|f(x) - g_{\delta}(x)| < \varepsilon$  for all  $x \in (a, b)$ .

**Remark:** The point here is that a continuous function can be approximated arbitrarily closely on a bounded interval by a differentiable function.

## Part II — Real Analyis II

**II-1.** Prove that any linear transformation is its own derivative. More specifically, prove the following: if T is an  $m \times n$  matrix, viewed as a linear transformation from  $\mathbb{R}^n$  to  $\mathbb{R}^m$ , and **a** is any point in  $\mathbb{R}^n$ , then

 $DT(\mathbf{a}) = T.$ 

**II-2.** Let  $A \subseteq \mathbb{R}^2$  be an open set. Suppose that  $f : A \to \mathbb{R}^2$  is a  $C^1$  function with the feature that  $|D_1 f_1(\mathbf{x})| < \frac{1}{2}, \ |D_2 f_1(\mathbf{x})| < \frac{1}{2}, \ |D_1 f_2(\mathbf{x})| < \frac{1}{2}, \ |D_2 f_2(\mathbf{x})| < \frac{1}{2}$ 

for all  $\mathbf{x} \in A$ . (Here  $D_i f_j(\mathbf{x})$  denotes the *i*th partial derivative of the *j*th component function of f at the point  $\mathbf{x}$ .)

Now consider the map  $F : A \to \mathbb{R}^2$  given by the formula  $F(\mathbf{x}) = \mathbf{x} + f(\mathbf{x})$ . (Intuitively, the idea here is that F is a "perturbation" of the identity map.)

(a) Show that F is locally one-to-one — that is, given any  $\mathbf{x} \in A$ , there is some open set  $U \subseteq A$  containing  $\mathbf{x}$  such that F is one-to-one on U.

(b) Now assume further that A is convex — that is, given any two points in A, the line segment joining them lies entirely in A. Show that F is one-to-one on all of A.

**II-3.** Let S be the open square  $(0,2) \times (0,2)$  in  $\mathbb{R}^2$ , and consider the function  $T: S \to \mathbb{R}^2$  given by  $T(x,y) = ((x-y), xy^2)$ .

T(S) is pictured below.



- (a) Assuming that T is one-to-one on S (which it is), find the area of T(S).
- (b) Prove that T is one-to-one on S.

**II-4.** A smooth function  $u: \mathbb{R}^2 \to \mathbb{R}$  is called *harmonic* if

$$\frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial y^2} = 0$$

everywhere in  $\mathbb{R}^2$ .

Suppose that  $u : \mathbb{R}^2 \to \mathbb{R}$  is harmonic, let C be a circle of radius r about the point  $(x_0, y_0)$ , and let  $\omega$  be the 1-form

$$\omega(x,y) = \frac{\partial u(x,y)}{\partial x} \, dy - \frac{\partial u(x,y)}{\partial y} \, dx.$$

- (a) Compute  $d\omega$  (show the steps as explicitly as you can).
- (b) Use either Green's or Stokes' theorem, together with the fact that u is harmonic, to show that

$$\int_C \omega = 0.$$

(c) Consider the following parameterization of C:

$$p(t): [0, 2\pi] \to \mathbb{R}^2$$
, where  $p(t) = (x_0 + r\cos(t), y_0 + r\sin(t)).$ 

Use this parameterization to write

$$\int_C \omega$$

explicitly as an integral in t from 0 to  $2\pi$ .

(d) Use the same parameterization as in part (c) to write

$$\frac{1}{2\pi r} \int_C u \ dV.$$

explicitly as an integral in t from 0 to  $2\pi$ .

[Here we are using Munkres' notation: this is the integral of u over C "with respect to onedimensional volume" or "with respect to arc length", divided by the length of the circle. We interpret this integral as the *average value of* u on C.]

(e) Drawing on your work in parts (b) and (c) and (d), show that

$$\frac{\partial}{\partial r} \left( \frac{1}{2\pi r} \int_C u \ dV \right) = 0.$$

[Hint: since everything in sight is smooth, you may and should move the  $\partial/\partial r$  under the integral sign.]

(f) Use part (e) and the observation that

$$\lim_{r \to 0^+} \frac{1}{2\pi r} \int_C u \, dV = u(x_0, y_0)$$

to explain (in just a sentence or two) the following conclusion: the average value of u on any circle is equal to the value of u at the center of the circle.

**Remark:** This compelling conclusion is sometimes called the *circle-mean-value property for harmonic functions*, and provides some insight into why harmonic functions are used as models of physical quantities that are in some sense "fully diffused."

**II-5.** Let  $U \subset \mathbb{R}^{n-1}$  be an open set, and  $\alpha : U \to \mathbb{R}^n$  a smooth coordinate patch (in particular,  $\alpha$  has rank n-1 everywhere). Let  $W \subset \mathbb{R}^n$  be an open set such that

$$\alpha(U) = W \cap g^{-1}(0)$$

for some smooth function  $g: \mathbb{R}^n \to \mathbb{R}$ .

Let  $f : \mathbb{R}^n \to \mathbb{R}$  be a smooth function, and suppose that the restriction of f to  $\alpha(U)$  has a strict maximum: that is, there is some  $p \in U$  such that

$$f(\alpha(p)) > f(\alpha(q))$$
 for all  $q \in U \setminus p$ .

(a) Prove that  $Df(\alpha(p)) = \lambda Dg(\alpha(p))$  for some real number  $\lambda$ . (Here  $Df(\alpha(p))$  is the Jacobian of f at  $\alpha(p)$ , not the Jacobian of  $f \circ \alpha$  at p! Similarly for  $Dg(\alpha(p))$ .)

(b) Use part (a) to find the maximum of the function f(x, y, z) = xyz on the set  $\alpha(U)$ , where

$$U = \{ (x, y) : 0 < x < 1 \text{ and } 0 < y < 1 \}$$

and

$$\alpha(x,y) = \left(x, y, 1 - \frac{x}{2} - \frac{y^2}{2}\right).$$

[Hint number 1: Take  $g(x, y, z) = z - (1 - x/2 - y^2/2)$ . Hint number 2: f certainly won't be maximized where either x or y is zero, so you may assume that x and y are nonzero.]

**Remark**: This is essentially the method of *Lagrange multipliers*.