Part I — Real Analysis

- **I-1.** Give explicit examples of each of the following (no explanation needed), or explain why no example is possible.
 - (a) A nonempty bounded subset of \mathbb{R} that does not contain its supremum.
 - (b) An infinite subset of \mathbb{R} consisting entirely of isolated points. (If $S \subseteq \mathbb{R}$, a point x of S is isolated if there is an open interval $I \subseteq \mathbb{R}$ centered at x with the feature that $I \cap S = \{x\}$).
 - (c) A bounded and infinite subset of \mathbb{R} consisting entirely of isolated points.
 - (d) A closed, bounded, and infinite subset of \mathbb{R} consisting entirely of isolated points.
 - (e) A subset of \mathbb{R} that is both open and closed.
 - (f) A subset of \mathbb{R} that is neither open nor closed.
- **I-2.** Suppose that X is a metric space with metric d, and that $A \subseteq X$. Recall that p is called a *limit* point or a cluster point of A if, given any $\varepsilon > 0$, there is some point $a \in A$ for which

$$a \neq p$$
 but $d(p, a) < \varepsilon$.

(An equivalent formulation of this definition is the following: p is a limit point of A if there is a sequence (a_n) of points in $A \setminus \{p\}$ that converges to p.)

Note carefully that p does not have to belong to A to be a limit point of A.

Let L(A) be the set of limit points of A:

$$L(A) = \{ p \in X : p \text{ is a limit point of } A \}.$$

Prove that L(A) is a closed subset of X.

- **I-3.** Suppose that X is a metric space with metric d.
- (a) Choose and fix some point $p \in X$. Show that the function $f_p : X \to \mathbb{R}$ given by the formula

$$f_p(x) = d(p, x)$$

is continuous.

(b) Choose and fix a compact set $K \subseteq X$. Given any $x \in X$, let us define the "distance from x to K" as

$$D_K(x) = \min_{y \in K} d(x, y).$$

Show that the function $D_K: X \to \mathbb{R}$ is well-defined and continuous.

Remark: Part (a) tells us that, in some sense, "distance is continuous"; this is not surprising. It turns out that, if we use d to define a metric on the Cartesian product $X \times X$ in the standard way, then the metric d is in fact a continuous function from $X \times X$ to \mathbb{R} .

I-4. Let us define the function $f:[1,\infty)\to[1,\infty)$ by

$$f(x) = \frac{x+2}{x+1}.$$

(a) Show that, for any x > 1,

$$|f'(x)| \le \frac{1}{4}.$$

(b) Use part (a) to conclude that, given any two $x, y \in [1, \infty)$,

$$|f(x) - f(y)| \le \frac{|x - y|}{4}.$$

(c) Use part (b) to conclude that any sequence (a_n) of the form

$$a_0 = \text{ some number in } [1, \infty), \quad a_n = f(a_{n-1}) \text{ for all } n \in \mathbb{N}$$

converges to $\sqrt{2}$.

I-5. Suppose that $f: \mathbb{R} \to \mathbb{R}$ is a continuous function, and that $[a,b] \subseteq \mathbb{R}$ is an interval with a < b. Choose and fix $\delta > 0$, define the function $g_{\delta}: (a,b) \to \mathbb{R}$ by the formula

$$g_{\delta}(x) = \frac{1}{\delta} \int_{x}^{x+\delta} f(t) dt.$$

- (a) Show that g_{δ} is differentiable on (a, b).
- (b) Show that, given any $\varepsilon > 0$, δ can be chosen small enough that

$$|f(x) - g_{\delta}(x)| < \varepsilon$$
 for all $x \in (a, b)$.

Remark: The point here is that a continuous function can be approximated arbitrarily closely on a bounded interval by a differentiable function.

Part II — Complex Analysis

- **II-1.** (a) Show that the function f(z) = z is analytic everywhere. If possible, do this in at least two different ways.
- (b) Show that the function $g(z) = \overline{z}$ is not analytic on any open set. If possible, do this in at least two different ways.
- II-2. Find the power series for $f(z) = \frac{1}{z^2}$ centered at $z_0 = -1$. Then use this power series to calculate the sum of the series

$$\sum_{n=0}^{\infty} (n+1) \left(-\frac{1}{2}\right)^n$$

(be sure to explain, as part of your proof, how you know the series converges).

II-3. Show that, if C is any circle in the complex plane that does not pass through 0, then

$$\int_C \frac{ze^z - e^z}{z^2} \ dz = 0.$$

II-4. Let us write D(0,1) for the open unit disk, C(0,1) for the unit circle, and

$$\overline{D(0,1)} = D(0,1) \cup C(0,1).$$

Suppose that $U \subset \mathbb{C}$ is a domain containing $\overline{D(0,1)}$ and that $f: U \to \mathbb{C}$ is analytic. Suppose that f maps $\overline{D(0,1)}$ strictly into itself: that is,

$$|f(z)| < 1$$
 for all $|z| \le 1$.

Prove that f has a fixed point on D(0,1) — that is, there is some $p \in D(0,1)$ with the feature that f(p) = p.

Remark: This is a very special case of the *Brouwer fixed point theorem*, which says that any continuous self-mapping of a closed ball in \mathbb{R}^n has a fixed point.

II-5. Write D(0,1) for the open unit disk, and suppose that $(f_k : D \to \mathbb{C})$ is a sequence of analytic functions converging uniformly on D(0,1) to a function $f : D \to \mathbb{C}$. It is a fact that, in this situation, f is analytic.

Prove that the sequence (f'_k) converges normally to f' on D(0,1). (Recall that saying that (f'_k) converges normally to f' on D(0,1) means that (f'_k) converges to f uniformly on all closed disks contained in D(0,1).

Remark: The analogous result in the real case does not hold: even if a sequence of differentiable functions $(f_k : I \to \mathbb{R})$ converges uniformly to a differentiable $f : I \to \mathbb{R}$, where I is some interval, the sequence (f'_k) need not converge.