
SWARTHMORE COLLEGE
DEPARTMENT OF MATHEMATICS AND STATISTICS

2020 ALGEBRA HONORS EXAMINATION

Instructions: This exam contains nine problems. Try to solve six problems as completely
as possible. The exam is divided into three sections; please attempt to solve at least
one, ideally more than one, problem from each section. Once you are satisfied with your
responses to six problems, make a second pass through the exam and complete as many
parts of the remaining problems as possible. For problems with parts, you are allowed to
assume the truth of earlier parts when working on a later part. I am interested in your
thoughts on a problem and attempts at special cases even if you do not completely solve
the problem. Please justify your reasoning as fully as possible.

Section I.

1. The set Aut(G) consisting of all automorphisms of a group G (i.e. isomorphisms from
G to G) is a group under composition of functions. If ↵ 2 Aut(G) and x 2 G let x↵ denote
the image of x under ↵. (If ↵, � 2 Aut(G) then x

↵� = (x↵)� so apply ↵ first, � second.)

(a) Let H be a subgroup of G such that h
↵ 2 H whenever ↵ 2 Aut(G) and h 2 H.

Let AutH(G) be the set consisting of all ↵ 2 Aut(G) such that for every x 2 G we have
x
↵ = xh for some element h 2 H that depends on x. Prove that AutH(G) / Aut(G).

(b) For each g 2 G the automorphism 'g 2 Aut(G) is defined by x
'g = g

�1
xg for

all x 2 G. We call 'g the inner automorphism of G induced by g. It is known (do not
prove this) that the set Inn(G) = {'g | g 2 G } is a normal subgroup of Aut(G). Prove

that AutZ(G)(G) is equal to the set consisting of all those ↵ 2 Aut(G) that commute with
every inner automorphism of G. Here Z(G) denotes the center of G.

(c) For any subset S of G and any ↵ 2 Aut(G) we define the set S↵ = {x↵ |x 2 S }.
Let Cl(G) be the set whose members are the distinct conjugacy classes of elements of G.
Prove that K

↵ 2 Cl(G) whenever K 2 Cl(G) and ↵ 2 Aut(G). Then argue that each
↵ 2 Aut(G) permutes the members of Cl(G), so the group Aut(G) acts on the set Cl(G).

(d) For x 2 G let xG denote the conjugacy class of elements of G that contains x. An
automorphism ↵ 2 Aut(G) is said to be class-preserving if x↵ 2 x

G for all x 2 G. Let
Autc(G) be the set of all class-preserving automorphisms of G. Prove Autc(G) / Aut(G).

2. Prove that there does not exist a simple group of order 336. (Note 336 = 24 · 3 · 7.)
Hint: G acts via conjugation on the set Syl

p
(G) for any prime p dividing |G|. This yields

a map from G to a symmetric group Sn for a certain n.
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3. Let ⌦ = {1, . . . , n} with n > 1. We write i
↵ to denote the image of any i 2 ⌦ under

any permutation ↵ in the symmetric group Sn. (If ↵, � 2 Sn then i
↵� = (i↵)� so apply ↵

first, � second.) Let I be the set of all ordered pairs of integers (a, b) such that 0  b < n

and 1  a  n while a and n are relatively prime. For each (a, b) 2 I the “a�ne map”
⇡a,b : ⌦ ! ⌦ is defined by i 7! j where ai+ b ⌘ j (modn). Let A = {⇡a,b | (a, b) 2 I }.

(a) Prove that the map I ! A given by (a, b) 7! ⇡a,b is bijective. What is |A|?
(b) Prove that A is a subset of the symmetric group Sn.

(c) Let � denote the n-cycle permutation ( 1 2 · · · n ) in Sn. Prove that ↵�1
�↵ is

the n-cycle permutation ( 1↵ 2↵ · · · n
↵ ) for each ↵ 2 Sn.

(d) Let N denote the normalizer in Sn of the cyclic group h�i. Prove that A = N .
Hint: Begin by arguing directly that |A| = |N |.

Section II.

4. In this problem R always denotes a commutative ring with unity. Recall that if A and
B are ideals of R then each of the sets A\B, A+B, AB is an ideal of R. Recall that AB

is the set of all finite sums of the form a1b1 + · · · + anbn with ai 2 A and bi 2 B. Recall
that A+B is the set of all sums of the form a+ b with a 2 A and b 2 B.

(a) Give an example of a ring R and a pair of nonzero proper ideals A, B of R such
that A \B 6= AB.

(b) Let A and B be ideals of R such that A+B = R. Prove that A \B = AB.

(c) Let M1, M2, . . . , Mr be distinct maximal ideals of R. Prove that M1M2 · · ·Mr =
M1 \M2 \ · · · \Mr.

5. Let T be a ring with unity. Let S = Mn(T ) be the ring of all n⇥ n matrices over T .

(a) If J is an ideal of S, prove that J = Mn(I) for some ideal I of T . Hint: Use
matrices of the form epq whose entry in row p, column q is 1 while all other entries are 0.

(b) A ring element x is said to be nilpotent if xn = 0 for some positive integer n. The
trace of a matrix s 2 S is defined as the sum of all its diagonal entries and is denoted by
tr(s). If T is a field and s 2 S is nilpotent, prove that tr(s) = 0.

(c) Suppose T is a field. Suppose R is a ring such that ✓ : R ! S is a surjective
homomorphism. Let I be an ideal of R with the property that every element of I is a sum
of nilpotent elements of R. Prove that ✓(x) is the zero matrix for every x 2 I.
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6. Let � be a character of degree n of a finite group G. Recall that there may be many
distinct representations of G whose character is �. Choose one such representation and
denote it by X. Let � : G ! C be the homomorphism (linear character) defined by
�(g) = det(X(g)), the determinant of the matrix X(g).

(a) We say that � is the determinant of � and write � = det(�). Show that this is
well-defined. In other words, show that � is independent of the choice of X.

(b) For the restriction of � to an abelian subgroup A of G we write �A = µ1+ · · ·+µn

where each µi is a linear character of A. Prove that �A is equal to the product µ1µ2 · · ·µn.

(c) Let z 2 Z(G) be an element of order m. Z(G) denotes the center of G. Suppose
� is irreducible and that the homomorphism X : G ! GLn(C) is injective. Prove that
X(z) = "I where I is the identity matrix and " is a primitive complex mth root of unity.

(d) Prove that m divides n if we further assume z 2 G
0 in the situation of part (c). G0

is the subgroup of G generated by all the elements of the form x
�1

y
�1

xy where x, y 2 G.

(e) Let t 2 G be an element of order 2. Prove that �(t) 2 Z and �(t) ⌘ n (mod 2).

(f) Prove that �(t) ⌘ n (mod 4) if we further assume t 2 G
0 in the situation of part (e).

Section III.

7. Let L be a splitting field of the polynomial x4 + 8 over Q.

(a) Show that x4 + 8 is irreducible over Q.

(b) Find |L : Q|.
(c) Describe the Galois group Gal(L/Q) by stating it is isomorphic to a familiar group.

8. Show that there exists a Galois extension L of Q such that the Galois group Gal(L/Q) is
noncyclic of order 9. Hint: If ! is a complex primitive 7th root of unity then Q(!) contains
a field which is Galois over Q for which the Galois group has order 3. This doesn’t do it
but you can find a subfield of a suitable cyclotomic field that does.

9. Let E = Q(!) where ! = e
2⇡i/p 2 C for some odd prime p. Consider the group

U(p) = {1, 2, . . . , p� 1} under multiplication modulo p. Fix an element 1 6= k 2 U(p) and
let H be the cyclic subgroup generated by k. Let ↵ be the unique automorphism in the
Galois group Gal(E/Q) that satisfies ↵(!) = !

k. Note that L = { c 2 E |↵(c) = c } is the
fixed field for the subgroup h↵i of Gal(E/Q). Thus we have Q ✓ L ✓ E.

(a) Show that the cyclic groups h↵i and H have the same order.

(b) For each subset S of U(p) we define the complex number �(S) by letting

�(S) =
X

i2S

!
i
.

Let T be a set of representatives for the cosets of H in U(p). Let B = {�(tH) | t 2 T }. In
the special case p = 13 and k = 3 write down the members of B explicity, then verify by
direct calculation that ↵(b) = b for each b 2 B, and then conclude that B ✓ L.

(c) Prove that B ✓ L in the general situation where p and k are arbitrary.

(d) For arbitrary p and k, prove that B is a basis for the vector space L over Q.
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