Swarthmore College Department of Mathematics and Statistics Honors Examinations in Topology 2020

Instructions: Do as many of the following problems as thoroughly as you can in the time you have. Include at least one problem from each of the four parts of the exam.

Part I: Point Set Topology

- 1) Let X be the set of all integers n > 1. For each n > 1, let $U_n \subseteq X$ be the subset of all divisors of n. Let τ be the smallest topology on X such that $U_n \in \tau$ for each n > 1.
 - a) Show that (X, τ) is not locally compact.
 - b) Show that (X, τ) is not Hausdorff.
 - c) Show that (X, τ) is path connected.
- 2) Consider the action of $G = \mathbb{Z} \times \mathbb{Z}$ on \mathbb{R}^2 defined by $(m, n)(x, y) = (x + m, (-1)^n y)$ for all $(m, n) \in G$ and $(x, y) \in \mathbb{R}^2$. Let $X = \mathbb{R}^2/G$ and let $p : \mathbb{R}^2 \to X$ be the quotient map.
 - a) Show that there exists $x \in \mathbb{R}^2$ such that for every neighborhood U of x and every $g_1, g_2 \in G$ the intersection $(g_1 \cdot U) \cap (g_2 \cdot U)$ is non-empty (i.e. prove that the action of G on \mathbb{R}^2 is not properly discontinuous).
 - b) Show that X is a non-compact topological surface with boundary.
 - c) Give an example of a non-compact subset Y of \mathbb{R}^2 such that p(Y) is compact.
- 3) Let ℓ^2 be the metric space of sequences $x = (x_1, x_2, ...)$ or real numbers such that $\sum_{i=1}^{\infty} x_i^2$ with distance

$$d(x,y) = \sqrt{\sum_{i=1}^{\infty} (x_i - y_i)^2}$$

for all $x, y \in \ell^2$.

- a) Show that d is indeed a metric on ℓ^2 and that (ℓ^2, d) is a complete metric space.
- b) Show that the subset

$$X = \left\{ x \in \ell^2 \, \middle| \, \sum_{n=1}^{\infty} n^2 x_n^2 \le 1 \right\}$$

is a compact subset of ℓ^2 .

c) Show that 0 is not in the interior of X.

Part II: Homotopy

- 4) Let X_1, \ldots, X_n be compact oriented connected topological surfaces of genus g_1, \ldots, g_n (respectively). For each $i \in \{1, \ldots, n\}$ let $f_i : \{1, \ldots, m\} \to X_i$ be arbitrary functions and functions. Let Z be the space obtained by quotienting the disjoint union $X_1 \sqcup X_2 \sqcup \cdots \sqcup X_n$ by the identification $f_i(N) \sim f_j(N)$ for all $N \in \{1, \ldots, m\}$ and for all $i, j \in \{1, \ldots, n\}$.
 - a) Show that Z is connected and calculate $\pi_1(Z)$.
 - b) Classify the spaces Z thus obtained up to homotopy.

- c) What happens if the orientability assumption is removed? What other generalizations can you make?
- 5) Calculate the fundamental group of the following spaces:
 - a) $X = \{(z, w) \in \mathbb{C}^2 \mid (z\bar{z} 1)(w\bar{w} 1) = 0\}$
 - b) $Y = \{(z_1, z_2, w) \in \mathbb{C}^3 \mid (z_1 \bar{z}_1 + z_2 \bar{z}_2 1)(w\bar{w} 1) = 0\}$
 - c) $Z = \{(z_1, z_2, w_1, w_2) \in \mathbb{C}^4 \mid (z_1 \bar{z}_1 + z_2 \bar{z}_2 1)(w_1 \bar{w}_1 + w_2 \bar{w}_2 1) = 0\}$
- 6) Let $X = \left\{ \begin{bmatrix} a & b \\ b & c \end{bmatrix} \mid ac b^2 \neq 0 \right\}$ viewed as a subspace of the space of all 2×2 matrices (with its standard euclidean topology).
 - a) Show that X is not connected.
 - b) Calculate the fundamental group of each connected component.
 - c) Show that X is homotopic to the space of configurations of two distinct straight lines in the plane.

Part III: Covering Spaces

- 7) Let $p_1: E_1 \to B_1$ and $p_2: E_2 \to B_2$ be covering maps.
 - a) Show that $p_1 \times p_2 : E_1 \times E_2 \to B_1 \times B_2$ defined by $p_1 \times p_2(x_1, x_2) = (p_1(x_1), p_2(x_2))$ for all $(x_1, x_2) \in E_1 \times E_2$ is a covering.
 - b) Given a covering map $p : E \to B$, we denote by $\mathcal{C}(E, p, B)$ the group of covering transformations i.e. all maps $f : E \to E$ such that $p \circ f = p$. Show that if B_1 and B_2 are connected, then $\mathcal{C}(E_1 \times E_2 \times, p_1 \times p_2, B_1 \times B_2) \cong \mathcal{C}(E_1, p_1, B_1) \times \mathcal{C}(E_2, p_2, B_2)$.
 - c) What happens if the connectedness assumption is removed?
- 8) Let $C_p \subseteq \mathbb{R}^2$ be the circle of radius 1 centered at (p, 0). Describe explicitly all the connected regular double covers of $C_{-2} \cup C_0 \cup C_2$.
- 9) Let $S^3 = \{(z_1, z_2) \in \mathbb{C}^2 \mid |z_1|^2 + |z_2|^2 = 1\}$ and let G be the subgroup of Aut (S^3) generated by f and g such that $f(z_1, z_2) = (z_2, z_1)$ and $g(z_1, z_2) = (\sqrt{-1}z_1, -\sqrt{-1}z_2)$. Show that S^3/G is compact and connected. Show that the quotient map is a covering. Classify the regular connected coverings of S^3/G .

Part IV: Essays

- 10) Write a short essay comparing the theory of metric spaces with the theory of topological spaces. Include at least one proof.
- 11) Write a short essay on the intuitive notion of connectedness and how it is axiomatized in topology. Include at least one proof and one non-trivial example.
- 12) Write a short essay on the role of the fundamental group in the theory of covering spaces. Include at least one proof.