Real Analysis Honors Exam Spring, 2020

Note: Integration refers to Riemann integration, either on closed intervals, $[a, b] \subset \mathbb{R}$, or its extension to improper integrals on closed half-lines, $[a, \infty)$.

- 1. Let $n \in \mathbb{N}$ be odd and $p(x) = a_n x^n + a_{n-1} x^{n-1} + \dots + a_1 x + a_0, a_n \neq 0$, an *n*th degree polynomial with real coefficients. Prove that $p : \mathbb{R} \to \mathbb{R}$ is surjective (onto).
- 2. Let $\{f_n\}_{n=1}^{\infty}$ be a sequence of continuous functions on an interval $[a,b] \subset \mathbb{R}$. Suppose that $\{f_n\}$ converges uniformly on [a,b] as $n \to \infty$. Prove that $\lim_{n\to\infty} \int_a^b f_n(x) dx$ exists.
- 3. Let $\phi : \mathbb{Z} \to [0,\infty)$, and define a function $d : \mathbb{Z} \times \mathbb{Z} \to [0,\infty)$ by $d(n,m) = \phi(n-m), \forall n, m \in \mathbb{Z}.$

(i) Find nontrivial condition(s) on ϕ implying that d is a metric on \mathbb{Z} .

(ii) For ϕ satisfying the condition(s) from (i), find additional nontrivial condition(s) implying that (\mathbb{Z}, d) is a complete metric space.

4. The space of continuous functions C[a, b] on a closed, bounded interval $[a, b] \subset \mathbb{R}$ is known to be a complete metric space with respect to

$$\rho(f,g) = \sup_{a \le x \le b} |f(x) - g(x)|.$$

Let $[a, b] \times [a, b] = \{(x, y) \mid x, y \in [a, b]\} \subset \mathbb{R}^2$, and suppose Suppose that $K \in C([a, b] \times [a, b])$ is a continuous, \mathbb{R} -valued function. Show that the mapping T defined by $(Tf)(x) = \int_a^b K(x, y)f(y) \, dy$ is well defined, $T: C[a, b] \to C[a, b]$, and, with respect to the metric space topology on $(C[a, b], \rho)$, is a continuous mapping, $T: C[a, b] \to C[a, b]$.

5. A function $H : \mathbb{R}^n \to \mathbb{R}$ is **Lipschitz continuous** if $\exists M$ such that $|H(t) - H(s)| \leq M|t - s|$, for all $t, s \in \mathbb{R}^n$, $|t - s| \leq 1$. Let $f_1, f_2 \in C[a, b]$ as above, and define

$$H(t_1, t_2) = \sup_{a \le x \le b} |t_1 f_1(x) + t_2 f_2(x)|.$$

Prove that $H: \mathbb{R}^2 \to \mathbb{R}$ is Lipschitz continuous.

- 6. Suppose that $\gamma : [a, b] \to \mathbb{R}^3$ be an embedded smooth curve with image Γ , i.e., γ is 1-to-1, smooth (C^{∞}) and $\dot{\gamma}(t) \neq 0$, $\forall t \in [a, b]$, and $\Gamma = \gamma([a, b])$. Let $f : \mathbb{R}^3 \to \mathbb{R}$ be a smooth function whose gradient $\nabla f(x)$ is perpendicular to the tangent line of Γ at each point $x \in \Gamma$. Prove that f is constant on Γ .
- 7. Suppose M is an n-dimensional smooth (i.e., C^{∞}) manifold and ω is a smooth differential k-form on M.
 - (i) Prove that if k > n, then $\omega = 0$.

(ii) Suppose that n = 2m and ω is a 2-form such that $\omega^n := \omega \wedge \omega \wedge \cdots \wedge \omega$ (*m* times) has the property that $\int_U \omega^n > 0$ for all open sets $U \subseteq M$. Prove that for every $x \in M$, $\omega|_{T_xM}$ is a nondegenerate bilinear form, i.e., for every $x \in M$ and every $v \in T_xM$, there exists a $u \in T_xM$ such that $\omega(u, v) \neq 0$.

(continued)

8. Let Γ be a smooth embedded curve in \mathbb{R}^2 which is closed, i.e., such that $\gamma(a) = \gamma(b)$. (See problem 6 for the notation.) Prove that there exists a smooth function $F : \mathbb{R}^2 \to \mathbb{R}$ such that $\{x \in \mathbb{R}^2 : F(x) = 0\} = \Gamma$.