Swarthmore College Department of Mathematics & Statistics Algebra Honors Examination Spring 2018

This exam contains nine problems. Try to solve *six* problems as completely as possible. Once you are satisfied with your responses to six problems, make a second pass through the exam and complete as many parts of the remaining problems as possible. I am interested in your thoughts on a problem and attempts at special cases, even if you do not completely solve the problem. When there are multiple parts, you are permitted to address a later part without solving all the earlier ones. Please submit your solution even if you cannot do all the parts of a problem, or even if you cannot solve the problem in the full level of generality requested.

1. Let p be a prime, and define the *Heisenberg group* to be the set

$$H = \left\{ \begin{pmatrix} 1 & a & b \\ 0 & 1 & c \\ 0 & 0 & 1 \end{pmatrix} \middle| a, b, c \in \mathbb{F}_p \right\}$$

under the operation of matrix multiplication.

- (a) Find the center Z(H) of H.
- (b) Prove that H/Z(H) is abelian.
- (c) All finite abelian groups are isomorphic a group of a certain familiar form. Which one is H/Z(H)?
- **2.** Choose <u>one</u> of the following two problems about the symmetric group S_n .
 - (a) State and prove a necessary and sufficient condition so that the *n*-cycle $(1 \ 2 \ \cdots \ n)$ and the transposition $(a \ b)$ generate S_n . (Your condition will depend on a, b, and n.)
 - (b) Prove that every subgroup H of S_n such that $[S_n : H] = n$ is isomorphic to S_{n-1} .
- **3.** Let H and K be subgroups of a group G. Given $x \in G$, define the HK-double coset of x as

$$HxK = \{hxk \mid h \in H, k \in K\}.$$

Note that HxK is the orbit of xK under the action of H on G/K by left multiplication.

- (a) Prove that the set of HK-double cosets partitions G.
- (b) Prove that $|HxK| = |K| \cdot |H : H \cap xKx^{-1}|$.
- (c) Do all *HK*-double cosets have the same size? If yes, prove it; if no, provide an example.
- **4.** Let $Q = \{\pm 1, \pm i, \pm j, \pm k\}$, where $i^2 = j^2 = k^2 = -1$, ij = -ji = k, jk = -kj = i, and ki = -ik = j be the group of *quaternions*.
 - (a) Find a presentation for Q using only two generators.
 - (b) Find the character table for all irreducible complex representations of Q.
 - (c) Which (if any) among these representations are faithful?

- 5. Define the complex vector space $\mathfrak{sl}_2(\mathbb{C})$ to be the set of 2×2 trace zero matrices. Define a linear operator $T : \mathfrak{sl}_2(\mathbb{C}) \longrightarrow \mathfrak{sl}_2(\mathbb{C})$ by $T(A) = A + A^t$, where A^t denotes the transpose.
 - (a) Find a basis for Im(T) and Ker(T).
 - (b) If you haven't already in (a), now find a basis for $\mathfrak{sl}_2(\mathbb{C})$ consisting of eigenvectors.
 - (c) Write down the matrix for T corresponding to both your bases from (a) and (b), and explain the relationship between these two matrices.
 - (d) Is $\mathfrak{sl}_2(\mathbb{C}) \cong \operatorname{Im}(T) \oplus \operatorname{Ker}(T)$? What does this mean geometrically?
- **6.** An element $a \in \mathbb{Z}/n\mathbb{Z}$ is *nilpotent* if there exists a nonnegative integer k such that $a^k = 0$.
 - (a) Prove that the nilpotent elements of $\mathbb{Z}/n\mathbb{Z}$ form a subring.
 - (b) Which elements of $\mathbb{Z}/n\mathbb{Z}$ are nilpotent? Under what hypotheses does there exist a *nonzero* nilpotent element in $\mathbb{Z}/n\mathbb{Z}$?
 - (c) Which elements of $\mathbb{Z}/m\mathbb{Z} \times \mathbb{Z}/n\mathbb{Z}$ are nilpotent?
- 7. Let R be the ring of rational numbers of the form $\frac{a}{b}$ where b is odd.
 - (a) Prove that R is an integral domain.
 - (b) Denote by U(R) the group of units. Prove that

$$M = R \backslash U(R) = \left\{ \frac{a}{b} \in R \mid \frac{a}{b} \notin U(R) \right\}$$

is a maximal ideal in R.

- (c) Find all primes in R.
- (d) Is R a PID and/or UFD?
- 8. Denote by \mathbb{F}_3 the finite field containing 3 elements. (Note that below we suppress the coset notation and simply write x for $\overline{x} = x + \langle f(x) \rangle$; feel free to do the same as long as it's clear from context what you mean.)
 - (a) Is $x^2 + x + 1$ a unit in $\mathbb{F}_3[x]/\langle x^2 + 1\rangle$?
 - (b) For which integers a is $\mathbb{F}_3[x]/\langle x^3 + a \rangle$ a field?
 - (c) Construct a finite field which contains all of the roots of the polynomial $x^3 + x + 1$.
- **9.** Consider the polynomial $f(x) = x^4 x^2 6$.
 - (a) Find the splitting field K for f(x) over \mathbb{Q} .
 - (b) Find the Galois group $G = \text{Gal}(K/\mathbb{Q})$.
 - (c) Draw the subgroup lattice for G and the corresponding subfield lattice for K.
 - (d) Choose one intermediate subfield L of K and denote its corresponding subgroup by H. According to the Fundamental Theorem of Galois Theory, H is the Galois group of which field extension? Verify this fact in your chosen example.
 - (e) Choose one normal subgroup N of G and denote its corresponding subfield by F. According to the Fundamental Theorem of Galois Theory, $\operatorname{Gal}(F/\mathbb{Q})$ is isomorphic to which group? Verify this fact in your chosen example.