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This exam contains nine problems. Try to solve six problems as completely as possible.
Once you are satisfied with your responses to six problems, make a second pass through the
exam and complete as many parts of the remaining problems as possible. I am interested in
your thoughts on a problem and attempts at special cases, even if you do not completely solve
the problem. When there are multiple parts, you are permitted to address a later part without
solving all the earlier ones. Please submit your solution even if you cannot do all the parts of
a problem, or even if you cannot solve the problem in the full level of generality requested.

1. Let p be a prime, and define the Heisenberg group to be the set

H =
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 ∣∣∣∣∣∣ a, b, c ∈ Fp
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under the operation of matrix multiplication.

(a) Find the center Z(H) of H.

(b) Prove that H/Z(H) is abelian.

(c) All finite abelian groups are isomorphic a group of a certain familiar form. Which one
is H/Z(H)?

2. Choose one of the following two problems about the symmetric group Sn.

(a) State and prove a necessary and sufficient condition so that the n-cycle (1 2 · · · n)
and the transposition (a b) generate Sn. (Your condition will depend on a, b, and n.)

(b) Prove that every subgroup H of Sn such that [Sn : H] = n is isomorphic to Sn−1.

3. Let H and K be subgroups of a group G. Given x ∈ G, define the HK-double coset of x as

HxK = {hxk | h ∈ H, k ∈ K}.

Note that HxK is the orbit of xK under the action of H on G/K by left multiplication.

(a) Prove that the set of HK-double cosets partitions G.

(b) Prove that |HxK| = |K| · |H : H ∩ xKx−1|.
(c) Do all HK-double cosets have the same size? If yes, prove it; if no, provide an example.

4. Let Q = {±1,±i,±j,±k}, where i2 = j2 = k2 = −1, ij = −ji = k, jk = −kj = i, and
ki = −ik = j be the group of quaternions.

(a) Find a presentation for Q using only two generators.

(b) Find the character table for all irreducible complex representations of Q.

(c) Which (if any) among these representations are faithful?
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5. Define the complex vector space sl2(C) to be the set of 2× 2 trace zero matrices. Define a
linear operator T : sl2(C) −→ sl2(C) by T (A) = A + At, where At denotes the transpose.

(a) Find a basis for Im(T ) and Ker(T ).

(b) If you haven’t already in (a), now find a basis for sl2(C) consisting of eigenvectors.

(c) Write down the matrix for T corresponding to both your bases from (a) and (b), and
explain the relationship between these two matrices.

(d) Is sl2(C) ∼= Im(T )⊕Ker(T )? What does this mean geometrically?

6. An element a ∈ Z/nZ is nilpotent if there exists a nonnegative integer k such that ak = 0.

(a) Prove that the nilpotent elements of Z/nZ form a subring.

(b) Which elements of Z/nZ are nilpotent? Under what hypotheses does there exist a
nonzero nilpotent element in Z/nZ?

(c) Which elements of Z/mZ× Z/nZ are nilpotent?

7. Let R be the ring of rational numbers of the form
a

b
where b is odd.

(a) Prove that R is an integral domain.

(b) Denote by U(R) the group of units. Prove that

M = R\U(R) =
{a
b
∈ R

∣∣∣ a
b
/∈ U(R)

}
is a maximal ideal in R.

(c) Find all primes in R.

(d) Is R a PID and/or UFD?

8. Denote by F3 the finite field containing 3 elements. (Note that below we suppress the coset
notation and simply write x for x = x+ 〈f(x)〉; feel free to do the same as long as it’s clear
from context what you mean.)

(a) Is x2 + x + 1 a unit in F3[x]/〈x2 + 1〉?
(b) For which integers a is F3[x]/〈x3 + a〉 a field?

(c) Construct a finite field which contains all of the roots of the polynomial x3 + x + 1.

9. Consider the polynomial f(x) = x4 − x2 − 6.

(a) Find the splitting field K for f(x) over Q.

(b) Find the Galois group G = Gal(K/Q).

(c) Draw the subgroup lattice for G and the corresponding subfield lattice for K.

(d) Choose one intermediate subfield L of K and denote its corresponding subgroup by
H. According to the Fundamental Theorem of Galois Theory, H is the Galois group
of which field extension? Verify this fact in your chosen example.

(e) Choose one normal subgroup N of G and denote its corresponding subfield by F .
According to the Fundamental Theorem of Galois Theory, Gal(F/Q) is isomorphic to
which group? Verify this fact in your chosen example.


