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Abstract

This study replicates, and extends to Kra-Dai languages, earlier work on minimal wordlist

size needed to make a phonological profile of a language. Previous work on Australian lan-

guages recommended approximately 400 randomly sampled words to comprise a minimally

complete profile in terms of reliably capturing every phoneme, and with accurate distribu-

tion. We survey 55 Kra-Dai languages to show that a longer minimal list is necessary, which

we attribute to typological differences like larger consonant/vowel inventories. Given the

widespread use of short wordlists in fieldwork, these results hold significance for designing

language documentation surveys as well as projects that use legacy wordlist data.
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1

Introduction

Much language documentation, especially legacy documentation work, takes the form of

surveys of wordlists. These wordlists are often short because they use concepts list like the

Swadesh 100 (Swadesh 1955) or 207 (Swadesh 1952), or the 40 item ASJP list (Holman et al.

2008). And although linguistics as a field is moving towards stronger norms of participatory,

community-focused documentation, we still have a large number of limited lexicons available

for understudied languages as legacy data. This can be seen in large databases such as

the Automated Similarity Judgement Program (ASJP) database (Wichmann et al. 2022)

or the Rosetta stone project (Good & Hendryx-Parker 2006). They both include a large

number of languages within their databases, but the wordlist for most languages, especially

understudied ones, remains fairly short.

How do we decide whether a wordlist is minimally complete? If we want to be able to

use legacy wordlists as data in new studies, we want them to be a good representation of

the language we are studying. Baird et al. (2022) called this specific problem the ‘Bird-

Himmelmann problem’. This is derived from when Steven Bird in the Resource Network

for Linguistic Diversity mailing list questioned whether any documentation work for an

understudied language had met Himmelmann’s definition for documentation, which was ‘to

provide a comprehensive record of the linguistic practices characteristic of a given speech

community.’ It has become increasingly important to quantify this question and judge the

completeness of a wordlist because fieldwork can be an expensive and time-consuming task,

and both money and time are finite resources. However, many studies still rely on data that

was collected previously by someone else. This highlights the value and the importance for
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the party designing language documentation tasks to consider future research applications,

and try their best to compile wordlists that meet a definition of minimally complete. This

helps ensure that any conclusions that are drawn from the data won’t be undermined by

limitations of the initial data. This is also why the idea of quantifying a minimally complete

wordlist is useful and necessary.

One example of why it is desirable to have quality wordlists can be seen in the World

Atlas of Language Structures (WALS, Dryer & Haspelmath 2013). WALS is a database that

stores the different phonological, grammatical, and lexical properties of each language. They

draw from already published descriptive material such as reference grammars to compile

the different linguistic properties that the WALS database keeps track of. This means that

they rely on the original fieldwork studies to be accurate. WALS is a very useful resource

for linguists. Because it has data from so many languages, for example, it can tell you if

a language has a small, average, or large inventory. This can be very useful information

for many linguists and it relies on the accuracy of the initial data so that we can create

a fair comparison. Language documentation and fieldwork play a very important part in

linguists’ work, so questions such as those posed by the Bird-Himmelmann problem should

be considered seriously.

This paper extends the work done by Dockum & Bowern (2019), which showed that

for 36 Australian languages in the Chirila database (Bowern 2016) with lexicons ranging

from 2,000 to 10,000 items, approximately 400 randomly sampled words are needed to able

to reliably extract from any given wordlist a minimally complete phonological profile of

a language. They defined a minimally complete phonological profile as a lexicon with (1)

full coverage of every phoneme in that language, and (2) phonemic distribution that is

statistically comparable to that of the full lexicon.

A limitation of Dockum & Bowern (2019) is that only one region of the world was

studied, and many of the languages in the study have a similar typological profile. This

study replicates the findings of their study, expands upon the methodology, and extends

the results to languages in the Kra-Dai language family. One reason that the previous

conclusions might not generalize to all languages is that Australian languages on average
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have been shown to have a relatively small phonemic inventory compared with all the world

languages even though they exhibit more variation than is often been assumed (Gasser

& Bowern 2013). The World Atlas of Language Structures (WALS, Dryer & Haspelmath

2013) categorizes the world’s sound systems based on average numbers of sounds. Australian

Aboriginal languages tend to have smaller inventories of both consonants and vowels. For

example, a language such as Garrwa which is reported to have 4 vowels would be categorized

by WALS as having a ’small vowel inventory’. And a language such as Djabugay which is

reported to have 13 consonants would be categorized by WALS as having a ’small consonant

inventory’.

Therefore, it was unclear whether the results from Dockum & Bowern (2019) applied

more broadly around the world.
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2

Background

Currently, there has not been a large amount of research on minimal wordlists. But that is

slowly changing as our tools for aggregating and comparing data have improved. However,

there is still a limited amount of resources to spend on fieldwork. As previously mentioned,

there is the Dockum & Bowern (2019) study that this paper is building upon. Similar work

has also been done by Baird et al. (2022) which was briefly mentioned in the introduction

for introducing the idea of the Bird-Himmelmann problem.

Baird et al. (2022) used translations of the story ‘North Wind and the Sun’ in 158

different languages to investigate at which point every phoneme in that language appears

at least once. The authors themselves described this as a very low bar but were surprised

to find that some of the languages in their study still failed to meet this standard. The

text was broken down into tokens with one phoneme per token, and then they investigated

at which token were all of the phonemes observed. For this study, vowel length was not

counted as two separate phonemes and neither were tones considered. The median number

of tokens needed to observe all phonemes was just over a thousand for both methods that

were investigated in the paper. If we conservatively approximate the number of phonemes

per word to be 5, then we would need around 200 words to find every phoneme at least once.

This was only done to provide a brief comparison to the Dockum & Bowern (2019) paper

where the final recommendation was a minimum of 400 words. The coverage metrics from

Dockum & Bowern (2019) and Baird et al. (2022) are the same where they are looking for

at least one instance of every phoneme. The key difference between the two papers that is
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relevant for this paper is that the 2019 paper also included an additional metric to measure

faithful phoneme distribution.

One important point of note here is that both of these papers suggest that minimally a

wordlist should be longer than many conventional survey wordlists that currently exist. One

of the most common wordlists is the Swadesh lists or similar regional adaptations (Bowern

2015:39). The original Swadesh list initially started as the Swadesh-200 list (Swadesh 1952)

which was then later compressed into the Swadesh-100 list (Swadesh 1955). An even shorter

version was also produced by Holman et al. (2008) for the ASJP database with only 40

concepts and will be discussed further later in the paper. The prevalence of these short

wordlists contrasts with the recommendations given by Baird et al. (2022) and Dockum &

Bowern (2019) who have both shown that for phonological analysis, it is best to have longer

wordlists. This doesn’t mean that shorter wordlists don’t have their place, but that it is

important to consider the match between task and dataset when working with legacy data

or data gathered by others.

2.1 Wordlist databases and their rationales

Although analysis of wordlists is not an abundantly common research topic currently, there

still exist many wordlists. Such as the Lexibank database by the Max Planck Institute

for Evolutionary Anthropology (List et al. 2022), the Comparative Bantu Online Dictio-

nary (CBOLD) by the University of California in Berkeley, or even the Contemporary and

Historical Reconstruction in the Indigenous Languages of Australia (CHIRILA) by Yale

University (Bowern 2016), which is the dataset used for Dockum & Bowern (2019). Each

of these wordlists was created to match their task and have their rationale for their length

and choice of items.

Another database for wordlists would be the Automated Similarity Judgement Program

(ASJP) database which currently holds 10,169 unique ISO codes. These wordlists only

contain 40 concepts which the authors of ASJP have said to be sufficient for their task. The

purpose of ASJP was to automatically classify wordlists into different language families.

They initially tested their program with the 100-word Swadesh lists and found good results
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(Brown et al. 2008). And in their subsequent paper, Holman et al. (2011), they further

reduced the number of concepts to 40 concepts. Their metric for this reduction was a

concept’s loan resistance. They found that by doing this, they were able to make their

language family classifications more accurate. This shows that their 40-word concept list

is more than sufficient for their purpose. However automatic language family classification

is only one type of task. So even though the ASJP concept list is very well suited to their

explicit purpose, this does not mean that this concept list is well suited to other linguistic

tasks. Dockum & Bowern (2019) have already shown in their 2019 paper that a randomly

selected wordlist of 50 words did not reliably find every phoneme in a language.

Meanwhile, the International Dictionary Series (IDS) is a collection of wordlists that

currently has a total of 215 languages. The purpose of these wordlists was to allow com-

parative linguistic studies to be done. In a paper by some of the creators of IDS (Key &

Comrie 2023), they explained the rationale behind their data collection guidelines. The IDS

has 1310 different concepts that they use as a guideline for data collection. While not every

language will have every single concept and may be left blank, the guidelines specified that

words may be added but never removed from the master list. This was to ensure that all IDS

wordlists were compatible for comparative studies. The authors acknowledge that gathering

enough data for an IDS wordlist is a time-consuming undertaking and they estimated one

wordlist should take about ‘one person-month of work’. This is in comparison to an ASJP

wordlist which was estimated would only take ‘less than a day’. A month of dedicated work

will be more expensive than a day’s worth of work and also be less suited for volunteer

work because of the high amount of commitment needed. As for why the IDS chose the

1310 concepts for their master list, the IDS creators adapted work done by Carl Buck from

1929 and 1949. There were no explicit criteria that Buck used when choosing his words

other than the goal, which was to ‘work out a tentative and skeleton dictionary covering a

limited number, perhaps a thousand, of representative groups of synonyms in the principal

IE languages’ (Key & Comrie 2023). So while no explicit criteria was laid out for how and

why which words should be used and how many, Buck was relying on his experience in do-

ing comparative studies in Indo-European to create a master list. While Dockum & Bowern
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(2019) suggested a minimal wordlist of 400 items, more data is never a detrimental thing

because it widens the scope of what is possible with the data. The creators and editors of

the IDS go to great lengths to ensure that the data is standardized and the wordlists are of

high quality. Not every project will have the luxury or capability to produce a high-quality

wordlist that is this long. So the question of how long is long enough still remains.

2.2 Doing computations on wordlists

In The Significance of Word Lists, Brett Kessler explores ways to compute different sta-

tistical metrics to compare two different wordlists (Kessler 1956). Kessler was interested

in an empirical way to show that two languages are historically connected. Most types of

evidence that were favored by historical linguists were described by Kessler as ‘intractable

. . . in the context of a statistical experiment,’ which meant that the method used for one

language often could not be applied to a different language. Kessler wanted a more uni-

form way of proving a historical connection between two languages so he introduced three

metrics and how to calculate them in this context and for any language. The metrics that

Kessler introduces are chi-squared, r-squared, and W. The W metric is a modified r-squared

calculation that Kessler created but Kessler admits that it does not perform better than the

other two. In the conclusion of the book, Kessler’s blanket recommendation is to use the

r-squared metric. While the methods in this book are not directly applicable to this paper,

the book highlights the many possible applications of wordlists. High-quality wordlists open

up many possibilities for future research. But there is a caveat here, which is that we need

to be confident that the data is complete so that the conclusions that are drawn are both

maximally accurate and can be applied generally.
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3

Methodology

The data for this paper are wordlists of 55 different Kra-dai languages (Dockum, 2024).

These have been aggregated from fieldwork done by other researchers, before being cleaned

and standardized to a large extent. Some of the transcriptions from older studies were done

in pseudo-IPA. For this study, variation between linguists in phonemic notation should not

pose a major problem for the research question. It should be reasonable to assume that each

author was internally consistent within each list. So we only account for known notation

variations in the scripts which will be described below. For this study, the calculation of

each metric only happens with data from one specific language at a time. This is why it is

fine for the datasets used in this study to have different phonemic notations.

A list of the languages can be found in the appendix. Each language had at least 2000

items which is the same lower threshold used in Dockum & Bowern (2019) to judge a lexicon

large enough to stand in for a "full" lexicon for purposes of this research question.

3.1 Subset sizes

Similar to Dockum & Bowern (2019), for each language, a random subset of words is se-

lected and then metrics are computed for that subset. This is done 1500 times for each

language so that the results can be averaged over (see 3.2 for justification of this number).

Then the wordlist sample subset size is increased and the whole process is repeated. The

subset sizes start at 50 and increase in increments of 50 up to 500. After that, then the

subset size increases in increments of 100 up to 1200, as well as subset sizes of 1500 and

2000. Thus the subset sizes tested are as follows:
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50, 100, 150, 200, 250, 300, 350, 400, 450, 500, 600, 700, 800, 900, 1000, 1100, 1200, 1500, 2000

More granularity was added to some parts of the chosen subset because these subset

sizes showed the most drastic change in results. Furthermore, early results showed that the

most likely candidate for a minimal wordlist size was in the 200-500 range which was why

the granularity of the subsets was increased to 50 in that range. This follows what Dockum

& Bowern (2019) did in their study which first included a preliminary run with a very wide

range of subset sizes before reducing their scope in subsequent runs.

3.2 Iterations

At each different subset sample size, we do the sampling 1500 times and take the average

of the results of those 1500 runs. We arrived at this number by plotting our metric values

against the number of iterations. An illustrative example of this can be seen in Figure 3.1

which shows how the average of each metric changes as more iterations are added to the

average calculation for one of the languages in the study, the Thai dialect of Nan province,

Thailand. The metrics have been normalized between 0 to 1 so that they can be easily

compared on the same graph. The lines in the graph are completely flat at around 1500

iterations which means they have stabilized and any additional iterations did not change the

results very much. There can be arguments made for choosing 1000 iterations or even 500

because the metrics in Figure 3.1 do look pretty stable already at that point. But for this

dataset, the computations are not very computationally expensive to run so we have chosen

to use a more generous number of iterations. But this threshold will change depending on

the dataset so it is wise to rerun these calculations every time when working with new

datasets.

3.3 Segmentation

Because of the nature of the languages in this dataset and the format they were in, certain

decisions need to be made about what counts as individual sounds, as lexical forms in this
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Figure 3.1: Effect of Iterations on Metric Stability in Nan Dialect

dataset are not pre-segmented. And because of the scale of the data, these decisions needed

to be able to be codified into the scripts, as hand-evaluating every form in the dataset is

not feasible. For this study, we decided to use maximal clusters. This means that a word

like /kl0a/, which means ‘salt’ in Thai, would have two sounds: /kl/ and /0a/. The first

two consonants are clustered together and considered one sound. This is because we would

not want to assume that a language has the /k/ and /l/ sounds just because they appear in

combination. Maybe /l/ solely appears following /k/. We then would not want to consider

a subset wordlist incomplete if we never find an /l/ in isolation. The same can be applied

to vowels and their off-glides. While some sounds will appear in diphthongs, they may not

necessarily appear on their own so we should count each diphthong or triphthong as one

sound.

The general guidelines for segmentation are as mentioned in the previous paragraph.

However, there are still some edge cases because the data in the Kra-Dai dataset has been

transcribed using varying IPA and pseudo-IPA conventions from different locations and
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points in time. These exceptions to the rules above are then just hard-coded into the proce-

dure. Also, each author favored different methods of analysis which resulted in differences

in transcription even for the same sounds so all possible combinations had to be considered

and accounted for.

For this study, we did take vowel length into account. If a short and long ‘a’ existed in

the full lexicon, we would need to see both a short ‘a’ and long ‘a’ within a subset to say that

the subset had full coverage. Because we are going for maximal clustering to decide what

counts as a sound, the length of the vowel is important because we are including off-glides

in vowel clusters.

On the other hand, lexical tone was not a factor that we took into account. So if we

found an ‘a’ with a first tone, we would not also need to see an ‘a’ with a second tone. Since

this seems like it would just straightforwardly increase the number of sounds in a language,

we decided not to focus on this aspect of the dataset for this study. However, this could be

a topic for future study.

Also as a way to exclude possible human errors such as typos from the dataset, we set

a marginal phoneme threshold. Similarly to Dockum & Bowern (2019), this study has set

the marginal phoneme threshold to be 0.5%. This means that if a sound only appears in

0.5% of words in the full lexicon, then we exclude it from our calculations as a phoneme to

look for. The reason for this is that if a phoneme appears too infrequently, then there is a

high chance that it is a mistake or typo in the data or a faulty transcription. Dockum &

Bowern (2019) used 0.5% as the threshold for marginal phonemes and this paper has seen

no compelling reason to change it so far.

3.4 Metrics

A wordlist is judged to be completed based on two criteria introduced by Dockum & Bowern

(2019). The first criteria is if we find every phoneme within the wordlists and the second is

if the frequency of every phoneme is statistically comparable to the full lexicon.
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3.4.1 Coverage

The first metric is pretty straightforward. If a wordlist observes every phoneme that is

present in the full lexicon, this is a wordlist with full coverage. Then we calculate the

coverage score of the language using this formula:

coverage = no. of random subsets with full coverage
total no. of random subsets

This will result in a number between 0 and 1 where are higher number is better. A higher

coverage number would indicate that more random subsets are finding every phoneme.

3.4.2 Mean Squared Error

Quantifying, if phoneme frequencies are statically comparable, is slightly harder than quan-

tifying coverage. This part of the methodology introduces new techniques that build upon

the techniques used by Dockum & Bowern (2019). In the 2019 paper, the authors used a

metric called Residual Sum of Squares or RSS. To calculate this, first, the difference between

the subset’s frequency of a phoneme and the full lexicon’s frequency was squared. This was

done for every phoneme in the language and then this was summed together as the RSS

for a language at a given subset size. This can be shown another way in this equation by

calculating the RSS for language X:

pf = phoneme frequency

X = language

RSSX =
X’s phonemes∑
p = phoneme

(pfsubset − pffull)2

In Dockum & Bowern (2019), the authors plotted coverage scores and RSS on a chart

and employed elbow finding to make a judgment to see at which subset size there stop being

significant improvements to the RSS score. The process of elbow finding will be described
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Figure 3.2: Coverage and RSS of the Chirila dataset

in more detail later in the section. This is how the 400-word recommendation mentioned

earlier was arrived at. The graph of the results of the 2019 paper can be seen in Figure 3.2.

For this paper, the method of calculating coverage has been kept the same as the 2019

paper. However, for the second criterion, we have decided to change the metric from RSS

to three new metrics which are Mean Squared Error (MSE), Mean Absolute Error (MAE),

and Max Absolute Error (MaxAE). MSE is very similar to RSS but instead of only adding

the squared of the difference together, we will also divide it by the number of phonemes.

MSE = RSS

no.ofphoneme

The reason we have decided to change RSS to MSE for this paper is so that we can

compare these values between languages. Because RSS does not take into account phoneme

inventory at all, a language with a larger phoneme inventory may have a larger RSS score

just because of this. Changing this is to MSE it allows us to do a more detailed comparison

of languages with this metric.

3.4.3 Mean Absolute Error

In addition to this, we have also decided to include MAE as another metric. This is because

MSE will exaggerate larger differences so an alternative metric may capture different data

points that were overlooked by MSE. The formula that we used to calculate this is below.
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SumAE =
X’s phonemes∑
p = phoneme

|pfsubset − pffull|

MAE = SumAE

no.ofphoneme

3.4.4 Maximum Absolute Error

And finally, the last metric is MaxAE. To calculate this we want to find the phoneme with

the largest absolute difference between their frequency in the subset and their frequency in

the full lexicon.

MaxAE = max(|pfsubset − pffull|)

The reason for including this metric is to see if one phoneme is grossly under or over-

represented in the subset. When taking the average of the error of the phonemes in the two

previous metrics, this may hide the fact that one phoneme is under-represented compared to

the others. So to rule out this possibility, we have included this metric as one of the metrics

to test. The ideal situation is that the MaxAE is only slightly higher than the MAE. This

shows that most of the phonemes have similar levels of error instead of one phoneme being

responsible for a lot of that error.

The purpose of having more metrics is to make the minimal wordlist judgment more

robust. Each metric captures different types of errors which helps to highlight different

shortcomings of each wordlist. In Dockum & Bowern (2019), only one metric was used to

do elbow finding.

3.5 Elbow Finding

Elbow finding is the process of looking at how a dependent variable changes as we change

the independent variable and finding the point at which we have the most improvement for

the least amount of work or the elbow. In the context of this study, this would be finding the

point at which we can be sure that a subset is complete with the least amount of random
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words elicited. The word elbow comes from the fact that in graphs of this nature, like the

one in Figure 3.2, there is a sharp point where we see the gradient of change go from steep

to flat. This change in gradient indicates that this is the point where good results can be

obtained with the least amount of effort. However, elbow finding is subjective but with more

metrics, this allows us to see if the elbows align. By also checking if the elbows align, we

provide stronger evidence to validate our claims.
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4

Results and Analysis

4.1 Kra-Dai results

In this section, we will discuss the results of this study and some of their implications. In

Figures 4.1, 4.2, 4.3 and 4.4, you can see the results of all of the metrics average over every

language in the Kra-Dai dataset.

In Figure 4.1, the subset sizes are shown on the x-axis, and the coverage percentage

on the y-axis. How coverage is calculated for each subset can be found in the methodology

section. For this visualization, the coverage values of 1500 1 subsets in each subset sized

are averaged to give a number between 0 and 1. 0 means that none of the 1500 subsets

contained every phoneme from that language. 1 would mean that all of the 1500 subsets

contained every phoneme from that language. So the trend we are hoping to see is that the

coverage average increases as we increase the subset size which is shown along the button

of the graph. We expect this because the more words that are present within a subset, the

higher the possibility that those words will contain every phoneme. We can see that the

trend is as we expected and that the coverage average gets very close to 1 at around 700-800

words in a subset.

The next three graphs produced for the Kra-Dai data are the three metrics used to

measure distribution of a subset. Similar to the coverage graph, the subset sizes are listed

along the x-axis and the specific error metric is on the y-axis. As described in the method-

ology section, the error metrics used in this paper are Mean Squared Error (MSE), Mean

1Reference Section 3.2
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Figure 4.1: Aggregate Coverage of the
Kra-Dai dataset
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Figure 4.2: Aggregate MSE of the
Kra-Dai dataset
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Figure 4.3: Aggregate MAE of the
Kra-Dai dataset
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Figure 4.4: Aggregate MaxAE of the
Kra-Dai dataset

Absolute Error (MAE), and Max Absolute Error (MaxAE). For these metrics, a higher

number on a metric means there is more error within a subset. So for these three metrics,

we are looking for a value that is as close to 0 as possible. This means the trend we are

expecting to see is that the error metric decreases as the subset sizes increases. We expect

this to occur because as we increase the number of words in every subset, the frequency at

which phonemes appear should become more and more similar to their frequency in real-life

usage. As we can observe in Figure 4.2, 4.3, and 4.4, we can see that the trend matches our

expectations. All three error metric values decrease as the subset sizes increase.

The process of elbow finding has been explained in the methodology section and now we

have to apply the elbow finding principle to these graphs. A big problem with all but one
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of these four graphs is that there is not an immediately apparent elbow. Figure 4.2 would

be the only graph where we could make a convincing argument for placing the elbow at

around in the 300-450 range.

4.2 Alternative visualizations
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Figure 4.5: Percent change in coverage
in the Kra-Dai dataset

10
0
15

0
20

0
25

0
30

0
35

0
40

0
45

0
50

0
60

0
70

0
80

0
90

0
10

00
11

00
12

00
15

00
20

00

size

0

500

1000

1500

2000

2500

3000

3500

m
se

 p
er

ce
nt

 in
c

change in mse

Figure 4.6: Percent change in MSE
in the Kra-Dai dataset
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Figure 4.7: Percent change in MAE
in the Kra-Dai dataset
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Figure 4.8: Percent change in MaxAE
in the Kra-Dai dataset

Because the current graphs are not as clear cut as we would have hoped for, we then

produced alternative visualization to hopefully allow us to draw a more robust conclusion

from this data. Instead of just plotting the results on the y-axis, we will instead plot the

difference in a metric when moving from one subset size to the next subset size. These

graphs can be seen in Figure 4.5, 4.6, 4.7 and 4.8. These graphs better highlight the amount
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a metric changes as we increase the subset size. So at the point where we see little to no

improvement when increasing the subset size, it means that that is a good place to stop.

While having a very large wordlist size will increase the completeness of a wordlist, fieldwork

and language documentation can be very expensive in terms of time and money so we would

to find a place to stop that will be the least expensive in terms of resources but still yield

reliable results.

From these graphs, it becomes apparent that all of the distribution metrics (MSE, MAE,

MaxAE) have clear elbows and are around the 300-400 words mark. We can see that after

this point, increasing the size of the subset only yields very minuscule improvements which

are not worth doing if resources are limited. If we look at the raw values of the distribution

metric such as MAE, we will see that the improvements start to stagnate around MAE of

100. An MAE of 100 means that a phoneme is on average being over or underrepresented

by 100%. So to give an example scenario, say a phoneme should appear in 5% of words, in

the subset it may appear in 0% or words or 10% of words to get an MAE of 100. The key

point here is that it may appear in 0% of words in the subset. This simply means that we

are not seeing this phoneme at all which would lower our coverage scores.

It becomes more clear here that the limiting factor is the coverage number in Figure

4.5. As can be seen in the graph, it takes a lot longer for the change in coverage to get

close to zero which happens around the 700-800 range. This means that any increase in

wordlist size before that threshold will still cause significant improvements in the chance of

finding every phoneme in your language. Having shown that coverage is the limiting factor

in this experiment means that coverage will be the metric that carries the most weight when

deciding how long wordlists should be.

4.3 Chirila dataset results with new methodology

To provide a comparison to the results from the Kra-Dai data, the data from the Chirila

dataset used in the original Dockum & Bowern (2019) paper was run with the new method-

ology used in this study. The results can be seen in figures 4.9, 4.10, 4.11 and 4.12. The

most notable difference that can be observed in these graphs, in comparison to the ones
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Figure 4.9: Aggregate Coverage of the
Chirila dataset
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Figure 4.10: Aggregate MSE of the
Chirila dataset
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Figure 4.11: Aggregate MAE of the
Chirila dataset

5010
0
15

0
20

0
25

0
30

0
35

0
40

0
45

0
50

0
60

0
70

0
80

0
90

0
10

00
11

00
12

00
15

00
20

00

size

0

20

40

60

80

100

120

140

m
ax

aggr max

Figure 4.12: Aggregate MaxAE of the
Chirila dataset

generated from the Kra-Dai languages dataset, is that the graph showing average coverage

is much steeper in the first few subset sizes and reaches an average value of close to 1 much

quicker than shown in Figure 4.1. This comparison can be clearly shown in Table 4.1 which

compares the point at which each dataset crosses certain benchmarks. Because we have

shown earlier that coverage is the limiting factor, we will only be comparing the results

for coverage. As is shown in the table, if you randomly sample around 300 words from a

language in the Chirila dataset or a similar Australian language, 75% of the time you will

have a dataset that contains every phoneme in that language. Then you compare this to

a language in the Kra-Dai dataset or a similar language, you will need around 400 words

to reach to same level of confidence. This chart may also be used to inform decisions as

20



not every task requires phonologically complete wordlists, such as language family classifi-

cation done in Holman et al. (2008). It was shown that they were able to get good results

on wordlists as short as 40 words. Different tasks require varying degrees of confidence in

the wordlist being phonologically complete, so it is possible to use Table 4.1 as a rough

guideline.

Probability of having
full coverage

Number of Words for
Kra-Dai

Number of Words for
Chirila

75% 400 300
90% 600 400
95% 600 500
98% 800 600
99.5% 900 800

Table 4.1: Probability of full coverage

4.4 Language comparisons

The previous section showed graphs that are averaged over all the languages in the dataset.

So far, we have chosen to mainly focus on the aggregated data from every language because

we observed that most of the languages from the Kra-Dai dataset produced very similar

trends. However, there is still much that can be learned from examining the results of

individual languages.

For example, in the Kra-Dai dataset, the language with the smallest phoneme inventory

is Yongbei Zhuang. Yongbei Zhuang has a total phoneme inventory of 32 with 13 consonants

and 19 vowels. The coverage graphs for this are shown in Figure 4.13. Because the distri-

bution metric graphs are very similar we am not including them here. The coverage graph

is notably more similar to the averaged coverage Chirila dataset graph in Figure 4.9 than

the aggregated graph for the Kra-Dai dataset in Figure 4.1. Australian languages are well

known for having comparatively small phoneme inventories. The language with the largest

inventory in the Chirila dataset is Wubuy with 25 consonants and 8 vowels for a total of

33 phonemes with is very close to Yongbei Zhuang’s 32 total phonemes. Wubuy’s coverage

graph can be seen in Figure 4.16. This shows that phoneme inventory size affects a wordlist
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size more than its language family. To illustrate this point, we will compare the subset size

needed to reach a 95% probability of having full coverage for the languages with the smallest

and largest phoneme inventory from the Kra-Dai and Chirila datasets. As stated earlier,

Yongbei Zhuang is the Kra-Dai language with the smallest phoneme inventory and Maonan

is the one with the highest. For the Chirila dataset, Miriwoong is the language with the

smallest phoneme inventory and Wubuy is the one with the highest. The coverage graphs

of Miriwoong and Maonan are figures 4.15 and 4.14 respectively.
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Figure 4.13: Coverage of Yongbei Zhuang
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Figure 4.14: Coverage of Maonan

5010
0
15

0
20

0
25

0
30

0
35

0
40

0
45

0
50

0
60

0
70

0
80

0
90

0
10

00
11

00
12

00
15

00
20

00

size

0.0

0.2

0.4

0.6

0.8

1.0

co
ve

ra
ge

Miriwoong coverage

Figure 4.15: Coverage of Miriwoong
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Figure 4.16: Coverage of Wubuy

So Table 4.2 shows the statistics of these four languages and how they compare against

one another. One interesting point about this comparison is that even though both Yongbei

Zhuang and Wubuy have very similar phoneme inventories, Wubuy requires a much longer

wordlist to reach the same confidence level as Yongbei Zhuang. So this shows that there are
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other factors than just phoneme inventory size that can affect the wordlist size required for

a phonologically complete wordlist.

Miriwoong Yongbei Zhuang Wubuy Maonan
Total phonemes 18 32 33 64
Consonants 14 13 25 43
Vowels 4 19 8 21
Subset size for 95%
confidence level

100 300 800 800

Table 4.2: Comparison of different languages coverage

4.5 Correlation of phoneme inventory and subset sizes

The take this idea further, we created a new visualization to show the correlation between

phoneme inventory and subset size required for a minimally complete wordlist.
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Figure 4.17: Correlation of total phoneme inventory to coverage at 95% confidence

Figure 4.17 shows all the languages from both the Kra-Dai and Chirila datasets plotted

on one graph, with the Chirila dataset being the green dots and the Kra-Dai being the
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purple dots. The x-axis is the total phoneme inventory of each language and the y-axis

is the subset size at which the language at ehich full phoneme coverage was achieved for

that language in at least 95% of the 1500 runs in our tests. We can see that the Kra-Dai

language on average has much larger phoneme inventories compared to the languages from

the Chirila dataset. To show the correlation, we have drawn a line of best fit using Ordinary

Least Squares (OLS). OLS creates a regression line that minimizes the distance of all the

points given to that line. The OLS formula produced this equation for the line of best fit:

y = 11.30x + 70.66 (1)

r2 = 0.624

We have a positive x coefficient which shows that as the x variable gets larger so does

the y variable which matches our expectations of larger phoneme inventories needing larger

wordlist sizes. The r2 value of 0.624 shows that around 60% of the variance in the y variable

(wordlist size) can be explained by the x variable (phoneme inventory size). This shows us

that there is very strong evidence to suggest that these variables are correlated and that

there is a clear trend. Because OLS provides an equation for the line of best fit, it is then

possible to extrapolate these results to other languages. One problem with this is that if no

fieldwork has been done yet, how do we know the phoneme inventory of a language? But if

we did know, for example, the language family ahead of time, it should be possible to use

this equation to give a more accurate recommendation for the wordlist size that is desired.

However, this equation was made with limited data from only two datasets so these results

should be used with that in mind.
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5

Recommendations and Conclusion

Drawing from these results, we can recommend new takeaways to help inform language doc-

umentation planning. Building upon the conclusions from Dockum & Bowern (2019) which

also looked at coverage and distribution metrics is that between these two metrics, coverage

is the limiting factor. The distribution metrics, MAE, MSE, and MaxAE, becomes more

important when we are consistently getting high coverage. However because most wordlists

already struggle to achieve full coverage, the distribution metrics become less important.

This is because if a phoneme is missing from a wordlist, then it will also negatively affect the

distribution metrics. So when using this work to help with fieldwork logistics, the coverage

metric is the most important metric to consider when making those decisions. But this does

create a little bit of a chicken and egg situation where to know how long a wordlist should

be, you want to know how many phonemes exist in a language. If this is a language that

has not been documented before, how do you know how many phonemes it has?

The best recommendation we can make based on the results of this study is to first

reference Table 4.1 and pick a level of confidence that is appropriate for the intended use

of the wordlist. Next, insofar as possible, estimate an expected phoneme inventory size in

a language, given information already known about it (e.g. typological profile, language

family, geographic region). Then use Equation (1) (or equivalent equation based on the

level of confidence needed) to make a statistically well-motivated estimate of how large the

minimal wordlist for each language under study will need to be.

In sum, the findings of this paper support the findings of Dockum & Bowern (2019) and

Baird et al. (2022), and we also conclude that wordlists should be longer than has often been
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common practice for survey-style documentation work. The recommendation in Dockum &

Bowern (2019) of 400 words for a wordlist may be an overly simplified rule of thumb, but

is still a reasonable and actionable recommendation that is backed up by the findings from

this paper and is still a good baseline if it is not possible to use any of the more nuanced

methods suggested by this paper.

There will inevitably be limitations to the conclusions drawn in this paper. This paper

does not fully answer all of the questions posed at the start of this paper. However, the

most important conclusion from this paper is still that wordlists should be longer than

they have often traditionally been, if we want to accurately glean from them an accurate

phonological profile of a language variety. The results from this study also strongly advocate

for a data-driven, procedural approach to both logistical planning of survey-style fieldwork,

and to research design for studies that plan to work with legacy field data. While additional

research is needed to further advance this discussion of wordlist evaluation, nonetheless,

this paper has introduced additional findings and measures to move this topic forward.
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Appendix A

Languages of wordlists used in this study

Contact the author if interested in additional details.

1. Ai-Cham (Yang 2000)
2. Biao (Liang & Zhang 2002)
3. Black Tai (Hudak & Gedney 1994)
4. Bouyei (ILCRD & Kam-Tai Institute 2001)
5. Buyi (Zhou & Burusphat 1996)
6. Central Thai (Bangkok) (Zhou & Burusphat 1996)
7. Chadong (Li 2006)
8. Dai (Dehong) (Zhou & Burusphat 1996)
9. Dai (Xishuang Banna) (Zhou & Burusphat 1996)

10. Dehong (Luo 1999)
11. Dong (Zhou & Burusphat 1996)
12. E (Luo 2008)
13. Guibei Zhuang (Hawyiengz) (Burusphat & Qin 2006)
14. Guibei Zhuang (Luo 2008)
15. Hlai (Burusphat et al. 2003)
16. Hsi Paw Shan (Hudak & Gedney 1994)
17. Kaloeng (Tisapong 1985)
18. Keng Tung Shan (Hudak & Gedney 1994)
19. Lakkia (Luo 2008)
20. Li (Baoding) (Zhou & Burusphat 1996)
21. Lianshan Zhuang (Luo 2008)
22. LinGao (Zhou & Burusphat 1996)
23. Liujiang Zhuang (Luo 2008)
24. Lue (Zhou & Luo 2001)
25. Mak (Fangcun) (Yang 2000)
26. Mak (Laliu) (Yang 2000)
27. Maonan (Luo 2008)
28. Maonan (Xianan) (Zhou & Burusphat 1996)
29. Mulam (Luo 2008)
30. Mulam (Shangnan’an) (Zhou & Burusphat 1996)
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31. Nan dialect (Chotecheun 1986)
32. Northeastern Thai (Roi-Et) (Zhou & Burusphat 1996)
33. Phu Tai of Thamcharoen, Phisai, Bueng Kan Province (Chummalee 2010)
34. Red Tai I (Hudak & Gedney 1994)
35. Saek (Hudak & Gedney 2010)
36. Shui (Zhou & Burusphat 1996)
37. Southern Dong (Luo 2008)
38. Southern Kam (Burusphat et al. 2000)
39. Southern Thai of displaced Muslim Thais in Ranong and Phang-nga (Suppasin 2011)
40. Southern Thai of displaced Thais in Prachuapkhirikhan, Chumpon, and Krabury Dis-

trict, Ranong (Suppasin 2011)
41. Southern Thai of displaced Thais in Ranong (Suppasin 2011)
42. Southern Thai of Phithen (Junlawan 2011)
43. Sui (Luo 2008)
44. Sui (Sandong) (Burusphat & Wei 2003)
45. Tai of Ping Siang (Hudak & Gedney 1995)
46. Tai of Surat (Hudak & Gedney 1997)
47. Tai of Vientiane (2) (Hudak & Gedney 1997)
48. Traat dialect of Thai (Subcharoen 1989)
49. White Tai (Hudak & Gedney 1994)
50. Yang Zhuang (Luo 2008)
51. Yongbei Zhuang (Binyang) (Luo 2008)
52. Yongbei Zhuang (Pingguo) (Luo 2008)
53. Yongbei Zhuang (Wuming) (Luo 2008)
54. Zhuang (Zhou & Burusphat 1996)
55. Zuojiang Zhuang (Luo 2008)
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