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VOWEL HARMONY1 
STATISTICAL METHODS FOR LINGUISTIC ANALYSIS 

 
ABSTRACT 
 Vowel harmony, a phonological pattern in which vowels within a given domain are 
required to agree in properties such as tongue position or lip rounding, is a fascinating 
and fairly widespread phenomenon in the world’s languages.  Languages vary in their 
vowel harmony typologies, as well as the extent to which vowel harmony as a 
phonological constraint is violable.  Simple statistical methods can capture interesting 
facets of vowel harmony systems, as well as provide a way of quantifying vowel 
harmony so that harmonic systems can be compared.  This thesis aims to compare a 
number of statistical machine learning and natural language processing methods for 
vowel harmony, culminating in the presentation of a unified tool for visualizing and 
“diagnosing” vowel harmony systems from data in an unsupervised manner. 

 
 

 

1 INTRODUCTION 

This thesis explores statistical models and related visualization tools for understanding 

vowel harmony.  While vowel harmony is attested in many languages, it varies by language with 

respect to which phonological features are shared within words as well as the extent to which 

disharmony (deviations from the constraint) occurs.  These features make it an excellent candidate 

for statistical natural language processing and machine learning approaches. 

 The ability to quantify vowel harmony opens up a number of opportunities for research, 

including the ability (given the necessary corpora) to trace change in a language’s vowel harmony 

system diachronically or to explore or even discover small but statistically significant levels of 

harmony.  Unsupervised models in particular offer useful ways of quickly communicating 

information about vowel harmony systems while requiring minimal knowledge about the language 

in question. 

                                                             
1 Thanks to my thesis advisor, Nathan Sanders, for his support and feedback and to my Linguistics major 
advisor, K. David Harrison, for introducing me to such an interesting topic.  Thanks to my second faculty 
reader, Kevin Ross, for his questions and comments.  Thanks to my fellow NLP enthusiasts and members of 
the NLP/CL first reader triangle – Kristen Allen and Jon Gluck – for good ideas and camaraderie.  Thanks to 
my second student reader Andrew Cheng for providing a fresh perspective.  To all my family, friends, 
teachers, and professors who helped along the way – thank you!  
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 I begin with an introduction to vowel harmony, discuss important features of relevant data 

and computational methods, and describe methods for statistically modeling and quantifying vowel 

harmony.  Additionally, I introduce a simple model closely related to Hidden Markov Models as well 

as a visualization tool that can be used for the output of both the newly introduced model and 

Hidden Markov Models.  The thesis culminates with results of experiments on six languages, a 

comparison of two models, and a discussion of future work. 

2 VOWEL HARMONY 

 Vowel harmony is a phonological pattern in which vowels within some domain – typically 

the word – share one or more phonological features, like lip rounding or tongue position (Katamba, 

1989: 211).  This is considered a long-distance process, since vowels can harmonize across 

intervening consonants and even certain non-harmonizing vowels.  Presented below are the main 

features of vowel harmony systems, with examples from several languages.  I examine basic 

harmony systems, the different roles vowels can play in harmony, and some particular theoretical 

concerns that relate directly to the use of computational methods. 

2.1 INTRODUCTION TO VOWEL HARMONY SYSTEMS 

 A good place to begin is with the case of Finnish, a Uralic language known to be harmonic.  

The vowel inventory for Finnish contains eight vowels (Table 1). 

Table 1: Finnish Vowels 

Front Back 
 

Unrounded Rounded Unrounded Rounded 
i y  u High 
e ö  o Mid 
ä  a  Low 

  
Orthographic <ä> and <ö> correspond to IPA /æ/ and /ø/, respectively.  Since there is a close 

correspondence between Finnish orthography and pronunciation, the orthography can be used 

here without the loss of significant phonological information. 
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Finnish exhibits palatal harmony, dividing words into two classes in terms of the backness 

of their vowels.  That is, all of the vowels in a given word are expected to be either front or back.  

Onewould expect to see words like pöytä ’table’, in which all the vowels are front vowels, or words 

like pouta ‘fine weather’, in which all the vowels are back vowels, but not a word that contained 

both <o> and <ä>.  This phenomenon extends to suffixes as well, which have front and back 

allomorphs that are selected to match the vowels in the word stem.  For example, the suffix -sta/-stä 

varies in accordance with the backness of the word, taking on the form -stä with front words and 

the form -sta with back words (Table 2).     

Table 2: Palatal Harmony in Finnish 

Front words Back words 
väkkärä ‘pinwheel’ makkara ‘sausage’ 

pöytä ‘table’ pouta ‘fine weather’ 
käyrä ‘curve’ kaura ‘oats’ 

tyhmä-stä ‘stupid’ (ill.) tuhma-sta ‘naughty’ (ill.) 
(Hulst and Weijer, 1995: 498) 

Palatal harmony is not the only type of harmony that can be observed in the world’s 

languages.  Swahili, along with other Bantu languages, exhibits vowel harmony with respect to 

height.  It has a vowel inventory consisting of five vowels (Table 3) whose orthographic 

representations correspond to their representations in IPA (Ladefoged, 2005:26).   

Table 3: Swahili Vowels 

Front  Back  
i  u High 
e  o Mid 
 a  Low 

While languages with palatal harmony divide the vowels into classes based on their 

backness, languages with height harmony do so based on vowel height (Table 4).  Thus in a 

language like Swahili, it is unsurprising to see vowel pairs like <u> and <i> or <o> and <i> co-occur. 

Table 4: Height Harmony in Swahili 

 Verb Root  Suffixed Form  

High 
-ruk- ‘jump, fly’ -ruki- ‘jump at, fly at’ 

-andik- ‘write’ -andiki- ‘write for’ 

Non-high 
-som- ‘study’ -some- ‘study for’ 
-end- ‘go’ -ende- ‘go for/to/toward’ 

(Childs, 2003: 70) 
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It may be noted that not all the roots in Table 4 harmonize fully, as demonstrated by the 

disharmony in -andik- ‘write’; since  <a> is a low vowel and <i> is a high vowel, their presence 

together in one verb root appears to violate the height harmony pattern that Swahili is known to 

exhibit.  This is due to a feature of harmony discussed (with Finnish data) in Section 2.3. 

2.2 DISHARMONY 

 I return to the examples from Finnish in order to discuss the problem of the violability of 

vowel harmony constraints.  While most Finnish words exhibit whole-word harmony, not all do.  

Disharmonic words – words that violate harmony constraints – can appear in otherwise harmonic 

languages for several reasons.  Loanwords can be a source of disharmony in harmonic languages.  

This is the case for some loanwords in Finnish (Table 5), like tyranny ‘tyrant’, which contains front 

vowels <y> and <i> and the back vowel <a>, making it disharmonic with respect to backness. 

Table 5: Finnish Loanwords 

Loanword  
vúlgääri ‘vulgar’ 
týranni ‘tyrant’ 

(Ringen and Heinämäki, 1999: 306) 

Words from the lexicon can also be disharmonic for other reasons such as consonant blocking 

(discussed in Section 2.7), but in harmonic languages, such words are naturally an exception.  For 

more examples of Finnish disharmony and analysis thereof, see Ringen and Heinämäki (1999). 

 Turkish – which exhibits palatal harmony as well as roundness harmony (see Section 2.4) – 

is a language known to have a number of disharmonic roots (Table 6), despite being a commonly 

used example of a language with vowel harmony.  An example of this is the word muzip 

‘mischievous’, which has the back vowel <u> and the front vowel <i>.  Clements and Sezer discuss 

the theoretical implications of disharmony, noting that choosing to consider loanwords exceptions 

to harmony based on their being nonnative is problematic due the fact that loanwords commonly 

adapt to the phonological rules of the language into which they have been borrowed (1982: 226).   
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Table 6: Disharmonic Words in Turkish 

Disharmonic Word2  
muzip ‘mischievous’ 
anne ‘mother’ 

peron ‘railway platform’ 
hani ‘where is’ 

(Clements and Sezer, 1982: 222) 

As seen in both Finnish and Swahili, some affixes alternate in order to harmonize with stems.  While 

this is also the case with many suffixes in Turkish, Turkish also exhibits disharmony due to some 

disharmonic suffixes.  These are suffixes, like -edur/-adur ‘verb-forming’ in which one or more of 

the vowels in the suffix does not alternate in accordance with the harmony rules.  In the case 

of -edur/-adur, the first vowel harmonizes, but the second does not.  Comparing gid-edur-sun ‘let 

him keep going’ and bak-adur-sun ‘let him keep looking’ shows that the final vowel <u> of the suffix 

does not harmonize, but the initial vowel <a> or <e> alternates in accordance with the backness of 

the backness of the word (Table 7). 

Table 7: Disharmonic Suffixes in Turkish 

Disharmonic Word  
gid-edur-sun ‘let him keep going’ 
bak-adur-sun ‘let him keep looking’ 

(Clements and Sezer, 1982: 231) 

Whether disharmonic words in Turkish are disharmonic due to loanword status, 

disharmonic affixes, or to other intricacies of the rules governing harmony, the concern in taking a 

computational approach to vowel harmony is simply that they exist even in languages considered 

to be harmonic.  Thus the methods used must be flexible enough to take that into account. 

2.3 NEUTRAL VOWELS 

Not every word that appears disharmonic at first glance should be considered disharmonic.  

Some words that look to be disharmonic in Finnish (Table 8) actually display an important feature 

of the language’s vowel harmony: the neutral vowels /e/ and /i/. 

  

                                                             
2 The vowels here correspond to the Finnish vowels introduced in Section 2.1. 
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Table 8: Neutral Vowels in Finnish 

Front words Back words 
värttinä ‘spinning wheel’ palttina ‘linen cloth’ 
kesy ‘tame’ verho ‘curtain’ 

(Hulst and Weijer, 1995: 498) 

They are referred to as neutral vowels because they have no corresponding back unrounded vowels 

in the language’s vowel inventory.  More specifically, this type of neutral vowel is called 

transparent, meaning that the harmonic features spread through these vowels.  Very simply 

speaking, this means that the harmonic feature (e.g. backness) of the vowels on either side of a 

transparent vowel should match those of the vowels in the word, ignoring the transparent vowel 

between them.  In the Finnish example, the transparent neutral vowels /e/ and /i/ occur in both 

front words (like värttinä ‘spinning wheel’) and back words (like palttina ‘linen cloth’) without 

playing a role in harmony.  The transparent vowels should be considered separate from the 

harmonic system, and are essentially ignored – their appearance in a word does not render it 

disharmonic even if their features would typically cause that to be the case. 

While Finnish only exhibits transparent neutral vowels, there is another type of neutral 

vowel: the opaque vowel, which blocks the harmonic process and begins “a new harmonic domain 

with [its] own feature specification” (Krämer, 2003: 27).  In Shona, a language that harmonizes with 

respect to height and roundness, low vowels block harmony.  Shona height harmony is exhibited in 

bvum-isa ‘make agree’, where the suffix -isa/-esa takes its high form (with <i>) to harmonize with 

the high vowel <u> (Table 9). 

Table 9: Height Harmony in Shona 

Height Harmonic Shona Words 
oma ‘be dry’ om-esa ‘cause to get dry’ 
bvuma ‘agree’ bvum-isa ‘make agree’ 

(Beckman, 1997: 1) 

The blocking in Shona “neither trigger[s] nor propagate[s] height harmony” (Beckman 1997: 1), 

instead, only the vowels <i> and <u> are allowed to follow a low vowel.  Mid vowels cannot spread 

across the opaque vowel <a>.  For example, the suffix -isa/-esa uses its high form in cheyam-isa 
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’make be twisted’; even though the initial vowel in the stem is <e>, a mid vowel, the harmony does 

not spread across the vowel <a> (Table 10).  Instead, the suffix -isa is used, since <i> is allowed to 

follow <a>, while <e> is not. 

Table 10: Opaque /a/ in Shona 

Shona Blocked Harmony 
shamba ‘wash’ shamb-isa ‘make wash’ 
cheyama ‘be twisted’ cheyam-isa ‘make be twisted’ 

(Beckman, 1997: 2) 

This is, of course, only one example of opaque vowel blocking.  It is also possible for opaque vowels 

to propagate their phonological features through the word. 

 Neutral vowels are typically vowels that do not have corresponding vowels in the opposite 

harmonic class.  Examples include the front unrounded vowels in Finnish which have no back 

unrounded analogs and /a/ in Swahili, which has no high analog. 

2.4 VOWEL HARMONY IN MULTIPLE DIMENSIONS 

 The vowel harmony system in Turkish works in two dimensions – there is palatal harmony 

as well as labial harmony (or roundness harmony), though the labial harmony is limited to high 

vowels (Clements and Sezer, 1982: 216).  The vowel inventory of Turkish contains eight vowels 

(Table 11), whose orthography and pronunciation are sufficiently closely related that I present 

them here in the orthographic forms. 

Table 11: Turkish Vowels 

Front Back 
 

Unrounded Rounded Unrounded Rounded 
i ü ɨ u High 
e ö  o Mid 
  a  Low 

(Baker, 2009: 8) 

In suffixes that harmonize, it is the case that all high vowels harmonize with respect to roundness 

and backness, while non-high vowels only harmonize with respect to backness.  This can be seen in 

the genitive singular suffixed form of ‘rope’, ip-in, and the genitive singular suffixed form of ‘end’, 

son-un.  Here the suffix alternates based on both the backness and the roundness of the vowel in the 
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root. The vowel <i>, appearing in both the root and the suffix, is front unrounded; the vowels <o> 

and <u> are both back and rounded (Table 12).  For non-high suffixes, agreement is confined to 

backness harmony, as seen in the example pul-lar, the nominative plural ‘stamp’.  In this form the 

vowels <u> and <a> appear.  While they agree with respect to backness (both are back vowels), 

they disagree with respect to roundedness – <u> is rounded and <a> is not. 

Table 12: Turkish Harmony 

 Noun Root  Suffixed Form  

High Vowel in Suffix 
son ‘end’ son-un Gen. Sg. 
ip ‘rope’ ip-in Gen. Sg. 

Non-high Vowel in Suffix 
pul ‘stamp’ pul-lar Nom. Pl. 
yüz ‘face’ yüz-    Nom. Pl. 

(Clements and Sezer, 1982: 216) 

This phenomenon in Turkish complicates the study of vowel harmony because some vowels 

participate in only one type of harmony while the others participate in both.  The computational 

approaches in this paper are mainly focused on finding harmony systems in only one dimension, 

though I do discuss some ways that the models can accommodate multi-dimensional harmony 

systems. 

2.5 MORE TYPES OF VOWEL HARMONY 

 It is clear from these two examples that there are different ways for languages to exhibit 

vowel harmony.  They can exhibit vowel harmony in one dimension, like Finnish, or multiple 

dimensions simultaneously, like Turkish.  Additionally, as in the case of Turkish, it is possible for a 

type of harmony to be restricted to a subset of the language’s vowel space.  It should come as no 

surprise that other types of harmony exist as well, given the examples of height harmony in Shona 

and Swahili.  Additionally, Tangale – a Chadic language spoken in Nigeria (Ethnologue, 2009) – 

exhibits harmony with an open-close or high-low distinction, which can also be analyzed in terms of 

the feature [±ATR] (Hulst and Weijer, 1995: 509-510). 

 In addition to knowing what features can harmonize, it can be important to understand how 

vowel harmony systems function.  This can be framed in terms of a distinction between stem-
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controlled systems and dominant-recessive systems.  In the former, stems determine how affixes 

harmonize.  In the latter, there is a given harmonic feature that “dominates” or takes precedence 

regardless of whether it appears in a stem or an affix (Baković, 2000: ii).  Languages with stem-

controlled harmony tend to add affixes in only one direction, and the direction of harmony typically 

matches that (Krämer, 2003: 113), though Clements notes that harmony can be bidirectional – 

causing both prefixes and affixes to harmonize with the stem (1977).  As I intend to explore 

automatic approaches to finding vowel harmony, it is important to consider whether computational 

methods will be able to find both types of harmony.  Additionally, some methods assume a certain 

direction of vowel harmony, which could make them less effective at spotting a wide range of vowel 

harmony systems.  

2.6 THE HARMONIC DOMAIN 

 The grammatical or morphological word is not necessarily the ideal domain in which to 

understand vowel harmony, due to cases like compound words which may not exhibit vowel 

harmony as a unit but would do so individually.  It is based on evidence from compound words and 

Hungarian vowel harmony that Hall (1999: 3) makes the argument for the prosodic (or 

phonological) word as the domain for vowel harmony and other phonological rules.  It is therefore 

a more appropriate harmonic domain than the grammatical word, but this analysis also has faults.  

Criticism of the prosodic word as the harmonic domain is based on a concern that vowel harmony 

does not fit well with other processes that take place with the prosodic word as their domain, since 

there can be disharmony within prosodic words, no distinction is made between affixes that cohere 

to the prosodic word and non-cohering affixes with regard to harmonizing, and vowel harmony is 

typically “obligatory” rather than “optional” (Hulst and Weijer, 1995: 501-502).  There can be cases, 

though, where the domain for vowel harmony is the prosodic word.  Due to issues in data 

availability and formats, which are discussed later, most of these computational methods are forced 

to operate on the grammatical word.  While this is not ideal, the probabilistic nature of the methods 
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should allow for flexibility when it comes to problems like compound words.  If there is a particular 

concern about a dataset containing a large number of compound words, there are various 

algorithms (ranging from unsupervised to supervised) that could be used for word segmentation in 

a data preprocessing step.  An exploration of word segmentation algorithms, however, is beyond 

the scope of this thesis. 

2.7 CONSONANTS 

 As many methods for statistically exploring vowel harmony ignore consonants, it is 

important to understand what role consonants play in vowel harmony in order to know what 

impact ignoring consonants will have on model outputs. There are several ways in which 

consonants interact with vowel harmony (Krämer, 2003: 22).  The first, in which consonants 

alternate in agreement with harmonic vowels, is of little concern in these models as it represents a 

change to the consonants rather than to the vowels.  Another case, that of consonants influencing 

vowel harmony through one of their place features (for example, roundness from a consonant 

requiring roundness in following vowels), is slightly more concerning.  The final type of consonant 

interaction is consonant blocking of vowel harmony, in which a consonant or consonant cluster 

blocks vowel harmony spreading.  In fact, in Finnish, velar consonants can “prevent frontness from 

spreading” (Hulst and Weijer, 1995: 529), as seen in Table 13.  For example, the first two vowels of 

the words itikka ‘mosquito’ and etikka ‘vinegar’ harmonize – both are front vowels, like <i>, or 

transparent vowels, like <e> – but the final vowel <a> is a back vowel.  The harmony is able to 

spread across the consonant <t>, but the frontness is blocked from spreading across the velar 

consonant separating <i> and <a>. 

Table 13: Finnish Disharmony with <k> 

Noun  
itikka ‘mosquito’ 
etikka ‘vinegar’ 

tiirikka ‘lock pick’ 
(Hulst and Weijer, 1995: 530) 
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Another example of this appears in Tunica, a language originally spoken in Central Louisiana 

(Ethnologue, 2009) and for which revitalization efforts are currently underway (Foster, 2011).  

Tunica exhibits back and round harmony targeting only low vowels.  The harmony is blocked by all 

consonants except for laryngeal consonants (Krämer, 2003: 23).   

2.8 AUTOSEGMENTAL ANALYSIS 

 Vowel harmony can be approached from the viewpoint of autosegmental phonology 

(Goldsmith, 1976), which has played a role in shaping NLP approaches to vowel harmony.3  Most 

computational and statistical approaches to vowel harmony separate the vowels from the 

consonants and then compute statistics on the vowels as though they were actually adjacent to one 

another.  This brief overview of the autosegmental analysis serves to provide a basic background of 

theoretically-based support for the simplifying assumptions made in modeling vowel harmony, but 

does not delve into the nuances of the theory.  For a deeper analysis, see Clements (1977). 

In the autosegmental analysis, a set of harmonizing features should be identified and placed 

on a separate tier.  The class of vowels with the harmonizing feature is identified, as is the set of any 

existing opaque vowels.  The harmonizing features in the system should be associated with vowels, 

but they must do so following the Well-formedness Condition.  This condition requires that every 

vowel be associated with a harmonizing feature, each harmonizing feature on its tier must be 

associated with a vowel, and lines of association are not allowed to cross one another (Katamba, 

1989: 203-212). 

3 MACHINE LEARNING AND NATURAL LANGUAGE PROCESSING FOR VOWEL HARMONY 

The first question when considering using statistical machine learning and natural language 

processing to study vowel harmony is the question: what makes a model “good”?  A successful and 

appropriate model for vowel harmony should meet most, if not all, of the following criteria.  First 

                                                             
3 Other frameworks for analysis do exist, including Optimality Theory (Prince and Smolensky 1993/2002).  
They are not discussed here because the statistical models in this thesis are not intended to provide a 
judgment regarding the relative merits of the potential theoretical explanations of vowel harmony. 
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and foremost, a model should have interpretable results.  It should be clear to a user upon 

examining the results of a model what exactly it entails.  This can take several forms: distilling down 

to a few normalized numerical results, presenting a visualization of the results, simply producing a 

“yes”, “no”, or “uncertain” result, or some combination of these.  In addition to being interpretable, 

the models should be language agnostic and produce results that are comparable across languages 

and datasets.  Language agnostic, in this sense, means that the model can be applied to data from 

various languages as long as the data is formatted correctly.  Ideally, models should be flexible 

enough to pick out various types of vowel harmony and should be able to account for neutral 

vowels.  However, if that is not the case, it is important that their limitations be explicitly addressed, 

so as not to lead to false conclusions.  As the goal of this paper is to provide computational 

approaches to “discovering” or “diagnosing” vowel harmony from data as a first pass tool for 

linguists, it is not crucial that every method provide an in-depth analysis of the complete vowel 

harmony system in a language.  Instead it should point linguists in the direction of interesting data 

and phenomena to explore.  Since this is framed as a tool for linguistic analysis, models and data 

preprocessing decisions should have foundations supported by linguistic assumptions.  The models 

need not explicitly model the desired phenomena in an identical fashion to human learners or to 

the linguistic processes occurring in the data, but they should provide results consistent with 

linguistic analysis.  Finally, it is not good enough for a model to find vowel harmony where it 

exists – it should also fail to find vowel harmony where there is none to be found.4 

 Other preferred criteria include being unsupervised, fast, and applicable to both text data 

from the orthography and phonetic transcription data.  The preference for unsupervised methods 

arises for several reasons – in order to use computational methods as a diagnostic tool for vowel 

harmony, it is important that a model be able to take data as its sole input, rather than requiring 

                                                             
4 Ellison (1994: 2) provides a similar, shorter, set of criteria: the tool must provide a statement of 
generalization, which much be linguistic and “motivated by linguistic concerns”, and “the analyses should be 
specified a priori as little as possible.” 
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users to make predictions about the types of vowel harmony they expect to see.  On the other hand, 

in order to use such tools for quantifying vowel harmony, it can be useful to allow users to specify 

what it is they are seeking.  Speed of the methods is desirable for the typical reasons of user 

satisfaction.  Applicability to both text and transcription data is desirable in terms of making the 

tool more widely useful, though applicability to text data will typically hinge on a close relation 

between the orthography and pronunciation of a language. 

4 CONSIDERATIONS IN DATA AND PREPROCESSING 

 In order to apply computational methods to linguistic data, it is necessary to first consider 

the data.  Depending on the focus of the research, different types of datasets will be appropriate: for 

syntactic analysis it might be preferable to draw from long written or spoken texts, while for 

morphological analysis it may be simpler to disregard context to some extent.  To study vowel 

harmony, one can typically be content with wordlists. When compiling wordlists to use, one must 

consider the possibility of word segmentation issues that can obscure vowel harmony or vowel 

harmony-like processes.  In the case of Chamorro, a language that exhibits vowel fronting, using 

words segmented according to the orthography would result in missing the vowel harmony, 

because the triggering particles are typically written separately (Mayer et al., 2010).  For this 

research, though, I focus only on vowel harmony constrained by word boundaries, allowing that 

this may result in missing other interesting phenomena on occasion.  Given this concession to 

practicality, wordlists are an appropriate type of dataset to use.  The next questions are where to 

acquire the wordlists and what sorts of wordlists to use. 

4.1 DATA SOURCES 

 There are two main types of sources that should be considered, each with its own 

advantages and disadvantages.  The first source type is wordlists comprised of phonetic 

transcriptions in IPA or any other internally consistent phonetic transcription system.  For example 

the online CMU Pronunciation Dictionary (Carnegie Mellon University) for English uses ARPAbet, 
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which maps English phonemes to strings of ASCII characters.5  Since the study of vowel harmony 

concerns itself with phonology and because phonological transcriptions can provide more accuracy 

than orthography, phonetically transcribed texts are in many ways ideal for use as datasets.  

Additionally, for languages with no writing system, this may be the only type of dataset available.  

However, it does come with drawbacks.  First, accurate transcriptions take time to produce, while 

texts in a language’s orthography may be more readily available.  Second, one has to consider the 

possibility of transcription error and inconsistency.  Computational approaches to dialect research 

can face the problem of “creating so-called Exploratorendialekte (‘explorer dialects’), i.e. ‘dialects’ 

created not by differences in pronunciation but by different people transcribing them” (Heeringa 

and Braun, 2003: 258).  This is more likely to be a problem when dealing with differences between 

narrow and broad transcriptions, but could still be a problem when comparing results across 

languages if different datasets follow different transcription conventions.  Some of these problems 

can be resolved by focusing only on vowels as well as careful preprocessing of data.  Additionally, 

one needs to consider the source of the transcribed data and whether it is likely to have inflected 

forms, which are important as they often display vowel harmony (Mayer et al., 2010). 

 If one chooses to use text data in a language’s orthography rather than phonetically 

transcribed data, one faces a different set of strengths and weaknesses.  For languages with writing 

systems and published materials, it may be easy to find matched corpora such as Bible translations.  

Readily available ASCII text online may also require less preprocessing than IPA transcriptions.  

Naturally occurring texts and translations will also provide inflected and morphologically complex 

forms of words, which can exhibit vowel harmony in ways beyond those contained in uninflected 

forms.  For example, in the case of Turkish, palatal vowel harmony is observable in the plural suffix 

-lar/-ler.  In the word ev-ler ‘houses’, the front version of the suffix can be observed, paired with the 

                                                             
5 For Vowel Harmony Calculator input, Harrison et al. (2004) use capitalization conventions to represent IPA 
vowels in a more ASCII-friendly format.  The preference for ASCII symbols is due to ease of input and 
manipulation on a computer, rather than for human readability reasons.  
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front vowel <e> from the singular form ev ‘house’; in top ‘ball’, however, the plural form is top-lar 

‘balls’, with <a> matching <o> with respect to backness.  This also occurs in the plural form of adam 

‘man’, which is adam-lar ‘man’, though the other two examples are presented first to make it clear 

that it is not simply the case that the suffix uses the same vowel as the stem when in fact it 

harmonizes with respect to the backness feature. 

Table 14: Suffixes in Turkish Harmony 

Singular Plural Gloss 
adam adam-lar ‘man’ 
ev ev-ler ‘house’ 
top top-lar ‘ball’ 

(example from Mayer et al., 2010) 

For this reason, a list acquired from a dictionary is less than ideal, unless it is known to contain 

inflected forms.  There is one other major requirement for using text data: the orthography must 

have a one-to-one or nearly one-to-one correspondence with pronunciation.  Without such a 

correspondence, the resulting models will inaccurately represent the phonology and produce 

ambiguous and uninformative results.  Additionally, it is useful to be able to map all vowels to the 

same representations (for example IPA) in order to do cross-language comparisons.  

 Whether one uses transcribed data or orthographic data, it is important that datasets be 

comparable.  In a 2010 publication on vowel harmony visualization, Mayer et al. approach this 

problem in several ways.  Their corpora consist of Bible texts in various languages, thus providing 

consistency in the source material as well as a dataset that contains inflected forms.  They also 

produced random wordlists to experiment with the convergence of their method; this could also be 

used to ensure that results are not skewed by a single odd dataset, such as one containing a large 

number of loanwords. 

4.2 TYPES VS. TOKENS 

 After settling on a type of dataset to use, one has to decide between the use of types and the 

use of tokens.  Given a dataset, the types can be thought of as the vocabulary of distinct words in the 
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dataset, counting each only once.  The tokens are the instances of the types.  For example, suppose 

that the following quote is the dataset in question: 

“Far out in the uncharted backwaters of the unfashionable end of the Western Spiral 

arm of the Galaxy lies a small unregarded yellow sun.” (Adams, 1979: 1) 

The sentence contains 24 tokens, but only 19 types because there are 4 tokens of the type 

“the” and 3 tokens of the type “of”. 

Choosing between types and tokens may require some consideration of what it means to 

quantify vowel harmony.  Using tokens would assume that what matters is the frequency of vowel 

harmony in natural speech or text, thus putting more emphasis on frequently occurring words.  

Using types would assume that frequency is more important in the lexicon as a whole, so frequent 

words and infrequent words will contribute equally (Baker, 2009: 5-6).   

On the one hand, it seems more appropriate to use types than tokens because they better 

describe the overall phonology of the language, rather than focusing on only the most frequent 

items, which, in some languages, may be short and skew the results.  The use of types also has a 

practical advantage, in that it helps prevent models from biasing themselves toward quirks in the 

data source.  For example, the data used by Mayer et al. contains many frequently-occurring proper 

names which “in many Bible translations […] were not adapted to the phonology of the recipient 

language or at least not according to its common vowel patterns” (Mayer et al., 2010: 11). 

On the other hand, the use of types comes with its own problems.  As mentioned before, 

corpora with inflected forms are preferred, due to the ways that harmony can appear in affixes.  

Choosing to use types runs the risk of over-representing words with large numbers of inflectional 

forms.  For example, using a type corpus with inflected forms in Spanish would result weighting the 

corpus toward verbs (with their many inflections) and away from nouns (which have fewer).  

Another downside to type corpora is that they tend to be smaller than available token corpora, 

which means that the models have less data to work with.  Token corpora are also likely to be more 
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accurately representative of the input that native speakers receive during language acquisition.  

Though this is more important for models that seek to describe cognitive processes behind vowel 

harmony acquisition, it is nonetheless worth considering even for models that do not claim to be 

related to the types of learning that occur in human language learners. 

In Section 10 I present results from both type and token corpora. 

4.3 CORPUS SIZE 

 The larger a corpus is, the more information available to the model.  Thus it is possible to be 

more confident that results from models run on large corpora better describe the language’s 

phonology as a whole than results from models run on small corpora.  While a large corpus is 

desirable, such data is not always readily available.  For this reason it is important to know how 

small a dataset can be while still producing trustworthy results.  Following methodology set out in 

Mayer et al. 2010, appropriate minimum corpus size can be determined empirically by choosing a 

gold standard result (typically from a model run on a very large dataset) for a number of languages, 

determining a metric by which to compare results to the gold standard, and plotting the 

convergence to the gold standard as models are trained on datasets of increasing size.  Particularly 

with small dataset sizes, it is important to calculate the distance from the result to the gold standard 

result over a number of randomized trials of the same dataset size, in order to model typical 

performance.  While this thesis does not contain an evaluation of the minimum corpus size that is 

appropriate to use, it is shown in Section 10 that corpora as small as 3126 words from harmonic 

languages produce results comparable to those of much larger corpora. 

 While this thesis provides results from models trained on entire corpora, it also presents 

some methods for averaging across multiple runs of a given model.  As mentioned in Section 18, the 

large non-random corpora can be seen as representing a vocabulary (types) or the kind of input 

that native speakers receive (tokens).  This makes them a reasonable choice for the models’ 

datasets; all my models in this thesis are run on such datasets.  However, in order to avoid the 
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pitfalls of either dataset type, it would be appropriate to use multiple model runs on randomly 

chosen samples of the data. 

4.4 TIER-LIKE APPROACHES 

The fact that many of the models appropriate for use in studying vowel harmony work by 

splitting phonemes into two (or more) groups stands in favor of using a preprocessed vowel-only 

corpus.  Since the models are likely to learn the most obvious groupings – the vowel-consonant 

distinction – it is preferable to remove consonants and allow models to work only on vowels.  This 

also allows for modeling the long-distance phenomena directly, without having to take into account 

intervening consonants that could water down probabilities.  Naturally, this choice does come at a 

cost – models aren’t necessarily able to pick up on or provide information about consonant 

influence on vowel harmony or vowel harmony influence on consonants. 

Separating vowels from consonants creates a tier-like approach to analyzing vowel 

harmony.  While it doesn’t perfectly match the kind of tier-based analysis used in autosegmental 

phonology, it approximates it.  As such, it makes it possible to justify the use of this simplification – 

made for the sake of improved computation – in terms of linguistic theory.  Additionally, it can be 

justified in terms of the criteria for machine learning methods stated earlier: unsupervised methods 

are preferred.  There are well-established algorithms for automatically separating vowels from 

consonants, two of which are discussed in Appendix I.  I choose to use vowel lists compiled in 

advance instead of an unsupervised method for several reasons.  In order to get meaningful data on 

vowel harmony, it is important to know the phonological features of each vowel; an automatic 

vowel-identification algorithm will not extract this information.  Additionally, I have presupposed 

either a data set containing phonetic transcriptions or a data set containing orthography with a 

near one-to-one mapping to the IPA.  It is not unreasonable, then, to assume that I am also aware of 

what the mapping is so that I may accurately examine the shared phonological features of harmonic 

systems discovered by the vowel harmony algorithms.  Nonetheless, those concerned with 
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maintaining as unsupervised a method as possible may content themselves with the idea that 

automatic identification of vowels from text is possible, though unnecessary. 

5 UNSUPERVISED METHODS FOR QUANTIFYING AND DIAGNOSING VOWEL HARMONY 

Having shown that it is possible to produce useful and appropriate tiered data in a 

supervised or unsupervised manner, I can now examine methods for modeling vowel harmony.  

Ellison (1994: 2-4) describes three categories of machine learning research – connectionist, 

statistical, and symbolic – that can be applied to phonology.  This thesis focuses on statistical 

learning because the phonological phenomenon of vowel harmony is well-suited to statistical 

machine learning and natural language processing (NLP) approaches.  The probabilistic nature of 

such approaches enables them to explain vowel harmony systems while also handling irregularities 

without having to write new rules (as a symbolic approach might require).  Additionally, they are 

better at “communicating generalizations” about the data than connectionist models tend to be 

(Ellison, 1994: 3) – neural networks, for example, learn weights that may not be easily 

interpretable, while many statistical models can be framed in terms of parameters that are easier to 

understand and more transparent in their workings. 

In this thesis I present a new model for discovering and quantifying vowel harmony, the 

Mixture of Unigrams Model.  In order to place it in the context of existing research, I first present 

the most closely related existing models for vowel harmony – Hidden Markov Models.  Goldsmith 

and Xanthos introduce the use of Hidden Markov Models (a commonly used model in natural 

language processing) for vowel harmony in their 2009 paper Learning Phonological Categories.  

Baker expands on this work in Two Statistical Approaches to Finding Vowel Harmony (2009).  Since 

my focus is on easily-interpretable models of whole-word harmony that can be adapted for 

visualizations and additional quantitative measures, I mainly discuss these models and their 

potential connections to other statistical methods.  Other work on quantifying and learning vowel 

harmony patterns in Finnish has been done by Goldsmith and Riggle (to appear) in the context of 
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information theory using unigram, bigram, and Boltzmann models.  Work on visualizing pairwise 

harmony appears in Mayer et al. (2010).  For more information on related work, see Appendix II: 

Other Models.  In addition to presenting a new model, this thesis adds to the existing research on 

statistical methods for vowel harmony by introducing a new visualization tool for whole-word 

harmony and providing evidence of the usefulness of both the model and the visualization tool on 

six different languages with varying types and degrees of harmony. 

6 HIDDEN MARKOV MODELS 

6.1 THE MODEL 

The first method presented in Baker’s Two Statistical Approaches to Finding Vowel Harmony 

models vowel harmony using Hidden Markov Models.  A Hidden Markov Model (henceforth HMM) 

is composed of a set of N states, additional special “start” and “end” states, a matrix A representing 

the transition probabilities for moving from state to state, a sequence of T observations, and a set of 

emission probabilities for each of the N states that express the probability of producing a given 

observation in a given state.  The word “Hidden” in the model name refers to the fact that the states 

are “hidden” or unobserved.  The observations are drawn from some vocabulary V={v1,v2,…,vV} 

(Jurafsky and Martin, 2009: 177).  Having started in the “start” state, at the first time step the model 

moves with some probability into one of the N states and then outputs an observation based on the 

emission probabilities for that state.  At the next time step, it repeats the process, producing a 

sequence of observations written as o1o2…on and a sequence of state variables written as q1q2…qn.  

The subscript denotes the time step at which the state and observation occurred.  Note that it is 

possible to transition from a state back into that same state and even to emit the same observation 

multiple times in a row, depending on the transition and emission probabilities.  This process 

continues until a transition to the end state occurs.  HMMs are often drawn using a diagram as in 

Figure 1.  Following the convention from Baker (2009), this diagram omits reference to the start 
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and end states (which do not emit observations).6  The circles represent states, with the directional 

edges representing transition probabilities.   

 

 
Figure 1: Hidden Markov Model 

 
Here I present a short example of how a HMM could perform.  Suppose that I have a two-

state HMM where one state emits English consonants more frequently than vowels and one state 

that emits English vowels more frequently than consonants – call them C and V, respectively.  For 

the sake of simplicity, I use English orthography rather than IPA.  Beginning in the start state, I flip a 

weighted coin and move into the state C.  At this point, I roll a weighted 26-sided die, which lands 

on the letter c.  In the next timestep, I flip another weighted coin and end up moving to state V 

(there is a high probability of this happening, as English vowels and consonants tend to alternate).  

In this state, the model emits the vowel a.  So far, I have the sequence of states (q1q2)=(CV) and the 

sequence of letters or emissions (o1o2)=(ca).  This continues in this manner until I have spelled the 

word “cat” and reached the end state, moving through the state sequence CVC.  Of course, this is just 

one of many words I could have produced – given different dice rolls, I could have spelled “car”, 

“catnip” or any number of other words. 

First-order Markov models make two important assumptions.  The first is called the Markov 

Assumption, which says that the only previous state influencing the probability of ending up in a 

state is the state before it.  Formally, this is written P(qi|q1q2…qi-1)=P(qi|qi-1); that is, the probability 

of being in a state at time i given all the previous states is equal to the probability of being in a state 

at time i given the previous state.  Such a model is called a first-order Markov model because it only 

                                                             
6 In fact, you may note that the pairs of transition probabilities leaving a given state will sum to 1 in this 
diagram, leaving no probability for reaching the non-emitting end state.  I choose this to maintain consistency 
with Baker (2009).  However, should one wish to visually represent non-emitting start and end states, one 
could easily do so, and simply re-envision the diagrams presented here as showing the non-final transition 
probabilities normalized to sum to 1. 
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relies on one previous state; higher order models are also possible.  The second assumption is 

Output Independence, which says that output probabilities only depend on the current state.  In 

terms of probabilities, this is written P(oi|q1…,qi…qT,o1…oi…oT)=P(oi|qi).  Both of these are 

simplifying assumptions that make computation tractable. 

6.2 FITTING THE MODEL PARAMETERS 

In order to fit HMMs to data, the transition and emission probabilities should first be 

initialized either randomly (with the caveat that none are initialized to zero so that the finite state 

machines are complete) or based on some prior knowledge (Baker, 2009: 11).   Then these 

probabilities are re-estimated using the Baum-Welch algorithm (Baum et al., 1970).  This is done to 

maximize the probability that the HMM assigns to the corpus, making it a better fit for the data.  

While a fully detailed explanation of the Baum-Welch algorithm is beyond the scope of this thesis,7 

it can be understood as follows: the corpus is run through the model and each state and emission 

event is counted, normalized, and eventually used to update the parameters of the model, then the 

process is repeated – each run of the algorithm can only improve or leave unchanged the 

probability that the HMM assigns to the corpus (Baker, 2009: 11).  It is important to note that the 

model and algorithm are influenced by starting parameters, and may only find local maxima.  For 

this reason, it is worth running multiple trials with different starting parameters.  A method for 

choosing between the multiple models is mentioned in Section 6.3. 

6.3 HMMS FOR VOWEL HARMONY 

The use of HMMs indicates an assumption that there is some underlying and unobserved 

factor that influences the surface forms that are observed.  In the case of vowel harmony, it means 

assuming that a language’s vowels can be separated into classes, and each word is expected to have 

most of its vowels contained in just one class.  HMMs are appropriate for such a task because they 

                                                             
7 Rabiner and Juang 1986 as well as Rabiner 1989 provide much more extensive information on HMMs and 
learning HMM parameters. 
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can find hidden structure based on sequences of observations (in this case the vowels). One can see 

that they discover and represent each harmonic class as a probability distribution over vowels, 

skewed in favor of the vowels in that particular class. 

To model vowel harmony in a language using HMMs, one can use a two state HMM.  Vowel 

harmony commonly has two classes of vowels, so a two state model is appropriate but may not 

capture all aspects of the harmony systems of a language.  If one intends to apply a two state HMM 

to a language whose harmony system is unknown (or may not even exist), it is necessary to have an 

understanding of how to interpret the resulting model.  There are three types of results considered 

in Baker’s paper (2009): harmonic, alternating, and a sink.   

 
Figure 2: Three Types of HMM Results 

  
The harmonic model (Figure 2a) has high probability of remaining in a given state, and is 

the only one of the three that is expected if a language exhibits vowel harmony.  In a harmonic 

model, the probability of remaining in a given state is high and the probability of switching states is 

low.  In terms of vowel harmony systems, this can be thought of as meaning that, given the first 

vowel in a word, the following vowels are likely to match that vowel with respect to the 

harmonizing feature. 

In an alternating model (Figure 2b), there is a high probability at each timestep of 

transitioning out of the current state into the other state. This is the kind of model that typically 

appears when using HMMs to separate vowels and consonants, and would not indicate harmony – 

on the contrary, it would indicate a high incidence of pairwise disharmony.  In the example in 

Section 6.1, I would expect an alternating model, since one state was likely to emit consonants and 

the other was likely to emit vowels and English vowels and consonants tend to alternate. 
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Baker found that training a model on phonetically transcribed English data resulted in a 

sink (Figure 2c), where one state has a high probability of remaining in the same state at each time 

step, while the other state has a high probability of transitioning away into the sink state where it is 

then likely to remain (Baker, 2009: 17).  Other possible transition parameter schema should also be 

interpreted as non-indicative of vowel harmony.  

Baker demonstrates that while a two state HMM can learn either palatal harmony or 

roundness harmony in Turkish (with the former proving a better fit for the corpus), a four state 

HMM is capable of learning both types of harmony.  As mentioned in Section 6.2, the model can be 

initialized randomly or with prior knowledge.  In his experiments, Baker found that models learned 

using randomized starting emission probabilities resulted in models that better matched the 

phenomena described by linguists than models learned using empirically determined starting 

emission probabilities (Baker, 2009: 20-23). 

Given a number of HMMs learned with different starting parameters, the “best” model and 

one that should be analyzed is the one that assigns the highest probability to the data.  In his 

conclusion, Baker suggests taking this best HMM and concluding that a language exhibits vowel 

harmony if both states assign no more than a 30% probability to transitioning to the other state 

(2009: 23), though this number seems to be somewhat arbitrary rather than empirically 

determined.  Goldsmith and Xanthos take a similar approach to determining whether a language 

exhibits vowel harmony based on a two state HMM, but they present the results visually by plotting 

each resampling of the transition probabilities from a state to itself (2009: 27).  In this way, they 

have a visual representation of the same data that Baker uses to make his determinations.  

Additionally, both methods provide a way of comparing results across languages and datasets. 

7 MIXTURE OF UNIGRAMS 

This section focuses on a related approach to statistically modeling whole-word harmony.  I 

begin with a brief description of n-gram models and their applications, proceed to a discussion of 
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the proposed model and how to fit the model, and finish by exploring the relationship between 

HMMs and Mixture of Unigrams models. 

7.1 N-GRAM MODELS 

N-gram models (also broadly called language models) are probabilistic models that can be 

used to predict sequences of items (in NLP contexts, typically words, letters, or phonemes).  Here I 

focus on the simplest n-gram models: the unigram (or 1-gram) and bigram (or 2-gram) models, 

with a brief discussion of the general case.  For a more complete introduction to n-gram models and 

their applications, see chapter 4 of Speech and Language Processing (Jurafsky & Martin, 2009).  In 

addition to predicting the next item in a sequence, n-gram models can be used to assign 

probabilities to sequences.  For example, if I have an n-gram model for letters in English text and an 

n-gram model for letters in Spanish text, I can assign probabilities under each model to a string of 

letters and make a prediction based on those probabilities as to whether the word is most likely 

Spanish or English. 

When I talk of making predictions about sequences in the context of natural language 

processing, there are a number of example applications.  To do automatic speech recognition or 

optical character recognition, for example, it is appropriate to have both a language model and an 

acoustic or image recognition model, respectively.  This allows the model to make predictions about 

how likely different sequences of letters are based both on their auditory (or visual) representation 

as well as a background understanding of the language being used.  For example in the optical 

character recognition case, if one were examining a smudged English text and were confident that 

the first letter in a word were “w” and thought based on the image recognition that the next letter 

was probably “h” or “b” (which look fairly similar), one could use a language model to find out that 

the next letter is much more likely to be “h”.  This is due to the fact that the bigram (pair of letters) 

“wh” is much more common in English than the bigram “wb”. 
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With this brief introduction, I now give a slightly more formal definition of an n-gram 

model.  I begin with a sequence of random variables           , which will sometimes be written 

  
  for convenience.  Using the definition of conditional probability, I assign probability to the 

sequence by doing:                                    
          

             
     

   .  

Unfortunately, this alone isn’t enough to be useful.  One has to consider the fact that these models 

will eventually be trained using corpus data, which is an incomplete representation of human 

language.  What this means in practice is that computing the probabilities as they stand based on a 

corpus will be inaccurate for long sequences – as n increases, the number of possible sequences also 

increases, and it is unrealistic to expect to see all of them in a corpus.  This combination of problems 

will result in improperly small (or even zero) probabilities assigned to long sequences (Jurafsky & 

Martin, 2009: 87-89).  Instead, it is possible to make a familiar simplifying assumption to 

approximate the probability: the Markov assumption.  In the bigram case, I can say that 

       
               , making this equivalent to a first-order Markov model.  In the general 

case, an n-gram model is equivalent to an n-1 order Markov model. 

Learning an n-gram model is typically done using Maximum Likelihood Estimation on a 

corpus.  Using a bigram model as an example, the probability            is estimated by counting 

all instances of the bigram        and normalizing by the count of all bigrams whose first element 

is     , which is the number of times      appears in the corpus.  For higher order n-gram models, 

or for cases where the corpus may be incomplete, it is useful to do smoothing.  This distributes 

small amounts of probability mass to unseen items or to items with zero probability mass in order 

to be sure that no sequence of items is assigned zero probability.  This avoids the potential problem 

of assigning zero probability to perfectly valid but as yet unobserved sequences.  However, since 

vowel inventories will be known in advance, the models discussed in this thesis will not require 

smoothing. 
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7.2 EXAMPLE OF A UNIGRAM MODEL 

 Imagine having two languages – L1 and L2 – that share a common set of written characters, 

the two-letter set {A, Z}.  First consider a unigram example where the probabilities are estimated 

from large corpora of each language: choosing a letter at random from a text in L1 leaves you with a 

50-50 chance of choosing A or Z.  In texts from L2, you have a 70% chance of choosing A and a 30% 

chance of choosing Z.  Given the word AAAZ, is it more likely that this word is from L1 or L2?  Under 

the unigram model, P(AAAZ)=P(A)·P(A)·P(A)·P(Z).  Under the L1 model, the product is 

                                 .  Under the L2 model, the product is                

                  .  Thus AAAZ is more likely to be a word from the language L2, since 

0.1029>0.0625.  It would also be possible to base conclusions about the same word on bigram or n-

gram models. 

7.3 MIXTURE MODEL 

 Instead of assuming that the data can be well-represented by one unigram model, it might 

be preferable to think of the data as coming from two unigram models.  This intuition – based on 

both my own investigations and the harmonic HMMs from Baker (2009) – comes from the 

observation that many vowel harmony systems exhibit a two-way distinction (e.g. front words vs. 

back words).  If a language has two vowel harmony classes, then it would be expected that most 

words would fall into either one class or the other.  Thus it would be appropriate to have one 

unigram model to model probabilities of the vowels in words of one class, and another to model the 

probabilities of the vowels in words of the other class.  The resulting graphical model is called a 

Mixture of Unigrams model.   For information about how such a model compares to other graphical 

models with NLP applications, see Blei, Ng, and Jordan (2003).  The Mixture of Unigrams model can 

compare directly to the HMM model if thought of as a HMM with zero probability of transition 

between the two classes.  The model can be explained using a generative story, which is the 
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simplified way to imagine data was created (clearly, this is not the true process for word creation 

but rather a framework for modeling a much more complex phenomenon).   

 To provide a short example of the generative story for the Mixture of Unigrams model, I 

present an example from a hypothetical four vowel system that exhibits palatal harmony.  The 

vowels /i/ and /e/ form the class of front vowels, while /u/ and /o/ form the back class of vowels.   

I imagine that I am creating the vocabulary of a constructed language with this harmony system 

based on a Mixture of Unigrams model – for the sake of this example I’ll assume that all words have 

exactly 3 vowels in them.  Each time that I want to create a new word, I first flip a weighted coin to 

decide whether it will be a front word or a back word.  There is a 60% chance that I will choose the 

front class, and a 40% chance that I’ll choose the back class (Figure 3). 

 
Figure 3: Mixture of Unigrams Class Probabilities 

Each of these classes can be represented by a probability distribution over the set of vowels 

(Figure 4).  The front class assigns higher probability to the front vowels, while the back class 

assigns higher probability to the back vowels.  It is worth noting, though, that none of the vowels 

are assigned zero probability in either class – this allows for the possibility of producing 

disharmonic words (as harmonic languages will often do). 
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Figure 4: Mixture of Unigrams Vowel Probabilities by Class 

 
Now I decide that it’s time to create a new word in my constructed language.  Having flipped 

the coin, suppose that it lands on the front class.  For each of the three vowels in the word, a die 

weighted according to the probability mass function for the front class (Figure 4) is rolled.  If it 

lands on, for example, the sequence /iee/, then those will be the vowels in the new word I am 

creating.  Note that this probability mass function is more likely to produce a harmonic set of 

vowels like /iee/ from the front class than a disharmonic one like /ieo/, based on the probability 

mass function (though /ieo/ is not impossible).  Section 7.4 explores the relationship between this 

generative model – which is certainly not representative of the true story behind vowel harmony 

systems in naturally-occurring language – and how to fit the model using actual data from corpora.  

For a more formal approach to both the model’s generative story and how to fit the model, see 

Appendix III. 

Now it is necessary to consider how and why this model is appropriate for vowel harmony 

tasks in real languages and not just this hypothetical one.  For example, to describe Finnish, it might 

be useful to use a mixture of two unigram models – one that assigns high probability to front 

vowels and thus generates the front words, and one which assigns high probability to back vowels 

and thus generates back words.  Since these unigram models are probability mass functions over 

the set of vowels in the language, the model still allows for some disharmony by assigning small but 

non-zero probabilities to disharmonic vowels.  Given a non-harmonic language, one would not 
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expect the same split into two harmonic classes, so it might be reasonable to guess that each 

unigram model would more or less match the overall probability mass function of the vowels in the 

language and be used with near-equal frequency.  Alternatively, there might be a split where one 

unigram model matches the overall probabilities of the language’s vowels and is used much more 

frequently than the other model (which could pick up on some subset of words with a different set 

of vowel probabilities – e.g. consistent borrowings from some other language).  Either of these 

options would indicate a non-harmonic language.  On the other hand, a clear split into two coherent 

classes of vowels should indicate a whole-word harmony system.  Such a clear split would have a 

low cosine similarity between the probability vectors representing the classes (simply put, vowels 

with high probability in the first class would have low probability in the second class – and vice 

versa).  Additionally, the set of high probability vowels in each class should be grouped according to 

some coherent feature (like backness, height, or roundness). 

7.4 FITTING THE MODEL, CONVERGENCE, AND IMPLEMENTATION 

While the Mixture of Unigrams model was described using the generative story, the true 

interest is not in generating data but in fitting model parameters given existing corpora.  The 

technique used here is a Markov Chain Monte Carlo method called (collapsed) Gibbs Sampling.  

While Section 7.4 and Appendix III contain brief overviews of the method for fitting the model, 

interested readers looking for a longer introduction to Gibbs sampling may wish to consult Resnik 

and Hardisty’s technical report Gibbs Sampling for the Uninitiated (2010). 

Informally, Gibbs sampling for Mixture of Unigrams models works as follows: all words in 

the dataset are randomly assigned to one of the classes.  Counts of the vowels in each class are then 

incremented to reflect the current probability distributions over vowels for each class.  For a set 

number of iterations, the sampling repeats itself by cycling through each word in the corpus.  For 

each word in the corpus, its vowel counts are subtracted from the total counts, then its probability 

under each class is calculated, and the class label for the word is redrawn based on those 
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probabilities.  The counts are re-incremented accordingly (so that the new probability distributions 

take into account the word’s new class), and then the process repeats with the next word. 

Gibbs sampling is sensitive to initial conditions and sometimes finds local maxima rather 

than global maxima – this means that, while it may find a good set of probability distributions, it 

may not find the set of probability distributions that best describes the data.  It is therefore 

advisable to run Gibbs sampling multiple times on a corpus.  From there, one can either choose the 

model that assigns the highest probability to the corpus or average across models.  It is worth 

noting that, due to randomness, the class numberings may be different across multiple runs.  For 

example, running Gibbs sampling for a Mixture of Unigrams model might call front vowels class 0 in 

one run and class 1 in the next.  While this could be a problem if there were a large number of 

classes, it is simple enough to find the pairs of similar classes (using a measure like cosine 

similarity). 

In addition to running Gibbs sampling multiple times on a corpus in order to avoid local 

minima, averaging over multiple runs on randomly chosen subsets of the corpus can help avoid 

overfitting to quirks of the dataset (such as loanwords).  Section 10 presents results for single runs, 

but future work on this topic could include an exploration of the impact of single run as compared 

to aggregated run results, particularly for smaller datasets. 

The code used for the Mixture of Unigrams models in this thesis is an expansion of earlier 

code by Wallach, Knowles, and Dredze (2011) from our work on extensions to topic models.8   

7.5 RELATION TO HMMS 

 A Mixture of Unigrams model can be viewed as a special case of a two-state HMM with zero 

probability of transitioning from one state to the other state.  This has several consequences for the 

use of such models.  Both HMMs and Mixture of Unigrams models are well-suited to the discovery 

                                                             
8 Latent Dirichlet Allocation and related extensions to topic models can discover semantic topics in corpora of 
documents based on document-word co-occurrences.  It was through my work with Hanna Wallach and Mark 
Dredze that I became interested in exploring similar (but simpler) models for studying vowel harmony 
through word-vowel co-occurrences. 
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of whole-word harmony, and can thus face muddled results in situations where harmony is blocked 

within the word.  However, given their statistical nature, they can account for some disharmony, so 

it is still appropriate to use them to measure how harmonic a language is.  The fact that the Mixture 

of Unigrams model is a special case of the HMM model begs the question of the strengths and 

weaknesses of the respective models.  The Mixture of Unigrams model benefits from its simplicity.  

To do cross-language comparison using Mixture of Unigrams, there are fewer variables that must 

be accounted for.  Therefore one could propose a measure for harmony based on a simple distance 

metric between the two distributions.  Such a measure in HMMs is more complicated, as one must 

also take into account the transition probabilities.  Additionally, HMMs make an assumption about 

the directionality of harmony; according to the Markov assumption each state (or in this context, 

harmonic class) depends on the previous state.  Mixture of Unigrams models need not make such an 

assumption, rendering them less closely tied to one particular type of harmony system.  

Additionally, the fact that it is possible to learn, visualize, and model harmony systems using a 

Mixture of Unigrams model (which makes a stricter whole-word harmony assumption than HMMs) 

helps to satisfy the goal of having a simple model. 

8 NON-GENERATIVE MODELS 

The following model for analyzing vowel harmony differs from the previously mentioned 

models in that it is not generative.  That is, rather than creating models which could be used to 

assign probabilities to more data in the given language, the next model only provide statistical 

measurements of the dataset.  To examine more data from the language the computations would 

need to be repeated, while the generative models can assign probabilities to new data based on the 

parameters they have fitted. 

9 VOWEL HARMONY CALCULATOR 

The Vowel Harmony Calculator (VHC) created by K. David Harrison, Emily Thomforde, and 

Michael O’Keefe is an online tool for studying vowel harmony at the whole-word level.  While the 
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VHC also offers a Conditioned Harmony calculator in the testing stages, I focus on the VHC 

Unconditioned harmony tool only.  Based on a corpus of ASCII text, user-provided description of the 

harmony system (e.g. list of Finnish front vowels, neutral vowels, and back vowels), and user-

specified options on long vowels and diphthongs, the VHC can be used to produce a quantification 

of a language’s vowel harmony.   It can handle languages with and without transparent vowels.  In 

calculating statistics on whole-word harmony, it ignores monosyllabic words (which are by 

definition harmonic). 

What the VHC seeks to provide is a measurement of how much a language harmonizes.  This 

is not as simple as just counting the number of harmonic words (that is, words containing vowels 

from only one harmonic class).  Since some vowels may be more common than others in a given 

language, it is possible to have “class skewing”, which means that one harmonic class is more 

common than another.  In order to resolve this, the VHC calculates a “harmony threshold”, or the 

percentage of words that one would expect to be harmonic based on chance.  This threshold 

considers both the overall vowel distribution of the corpus (and potential class skewing) as well as 

the average syllable count of words (ignoring monosyllables). 

The harmony threshold is a baseline against which to compare the actual percentage of 

harmonic words, which is calculated directly from the data.  The “harmony index” is the actual 

percentage of harmonic words in the corpus minus the harmony threshold.  A large harmony index 

indicates a highly harmonic language, while a small harmony index indicates little to no harmony. 

In addition to producing a harmony index, the VHC provides users with quite a bit more 

data, including measures of harmony on initial two syllables, a log of the disharmonic words, and 

vowel frequency information, among other things. 

10 RESULTS 

In this section I present results from both the VHC and Mixture of Unigrams.  The data was 

not run through HMMs, so I cannot provide direct comparison of that model, but I suspect that my 
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results would match up well with results of the methods presented by Baker (2009) were I to run 

HMM experiments on these datasets, as the HMMs find comparable distributions over vowels for 

Finnish and Turkish in Baker’s experiments. 

10.1 DATA 

In order to ensure compatibility with both the VHC and Mixture of Unigrams models, the 

datasets chosen are ones available online from the sample corpora and additional results on the 

VHC website (Harrison et al., 2004).  The corpora were chosen to cover both palatal and height 

harmony, as well as non-harmonic languages.  The specific corpora9 chosen for each language were 

chosen based on their similar sizes.  The token and type counts (Table 15) are based on the corpora 

with monosyllabic words removed, as monosyllabic words are ignored by the VHC calculations.  In 

order to better compare the results from the two models, the Mixture of Unigrams models were run 

on these corpora with monosyllabic words removed even though that is not a requirement of the 

model (a comparison of results with and without monosyllabic words is presented in Section 10.3). 

Table 15: Dataset Sizes 

Language Harmonic Number of Tokens Number of Types 
Finnish Yes 17726 4779 
Swahili Yes 15018 4246 
Turkish Yes 18641 18543 
Tuvan Yes 8135 3126 

Japanese No 10967 3786 
Indonesian No 10934 1815 

 
Before moving on to the results, there are a few brief comments to be made on the corpora used.  

Both the Indonesian and Finnish corpora are Bible text corpora (more specifically the gospels).  The 

Japanese corpus is comprised of song lyrics, the Swahili text is verbs only, and the source texts for 

the Tuvan and Turkish corpora are not specified.  While it would be ideal to have better matched 

corpora, these corpora were chosen based on their size similarity and relation to the VHC. 

  

                                                             
9 The corpora are listed on the webpage under the following names: finnish-gospels [txt],  Swahili-verb [lex], 
turkish [lex], tuvan-mark [txt], Japanese-pop [txt], and Indonesian-gspls [txt]. 
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10.2 VHC RESULTS 

The results from the VHC show, as expected, a high harmony index for the harmonic 

languages and a low harmony index for the languages not expected to exhibit harmony (Table 16).  

The only parameters set for these runs were the types of harmony to test for (diphthongs were not 

reduced, and no distinction was made between long and short vowels).10   For height harmony, the 

vowels are listed in the format high/neutral/low, and for backness harmony they are listed as 

front/neutral/back.  The corpora for the languages known to be harmonic were run with the 

parameters set to their known harmony systems.  As Japanese and Indonesian are not expected to 

have any harmony, they were run with the parameter set to the Swahili harmony system, since all 

three languages share very similar vowel inventories. 

Table 16: Vowel Harmony Calculator Results 

Language Harmony Tested Harmony Index (Tokens) Harmony Index (Types) 
Swahili Height: iu/a/oe 20.81% 23.29% 
Finnish Backness: äöy/ie/aou 29.62% 36.24% 
Turkish Backness: ieüö/-/ɨauo 30.92% 30.89% 
Tuvan11 Backness: ieüö/-/ɨauo 56.62% 59.39% 
Japanese Height: iu/a/oe 5.92% 5.67% 

Indonesian Height: iu/a/oe 2.68% 2.18% 
 
It is worth considering the harmony index results for token corpora as opposed to type corpora.  In 

all cases except Turkish, the harmony index for languages with vowel harmony is greater in type 

corpora than token corpora.  It is worth noting that the sizes of the type and token corpora are 

much closer for Turkish than for the other languages.  Additionally, one can note that non-harmonic 

languages seem to have lower harmony indices in type corpora than token corpora.  In order to get 

a better grasp of the difference between the kinds of corpora (or the lack thereof), it would be 

prudent to run randomized, size-matched tests of both type and token corpora in order to see 

whether there truly is a difference in the results or whether these differences can be accounted for 

by random chance error.  All in all, however, the results are very close between the two, so it seems 

                                                             
10 In fact, for all models run, diphthongs and long vowels are not treated any differently from other vowels. 
11 Note: here I use the Turkish orthography for Tuvan to maintain consistency due to their similar vowel 
inventories, rather than switching to IPA or a Cyrillic alphabet. 
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safe to use either types or tokens.  This is reassuring, as it minimizes the concern about theoretical 

implications discussed in Section 4.2. 

10.3 MIXTURE OF UNIGRAMS RESULTS 

In this section, I introduce results from the Mixture of Unigrams model.  Visualizations are 

presented in Section 11.  For each language, four versions of the model were run:12 token corpus 

with monosyllabic words excluded, type corpus with monosyllabic words excluded, token corpus 

with monosyllabic words included, and type corpus with monosyllabic words included.  This allows 

for a comparison that is informative with regard to the questions raised about the difference 

between type and token corpora.  Additionally, it helps to answer the question as to whether having 

monosyllabic words in a corpus is likely to skew results. 

First, to familiarize the reader with the output, I present output from the Mixture of 

Unigrams model run on the Finnish token corpus with monosyllabic words removed (Table 17).13  

For more examples of output, see Appendix IV. 

Table 17: Finnish Vowel Probabilities by Class 

Class 0 

ä 0.36 

e 0.28 

i 0.26 

y 0.08 

ö 0.03 

a ≈0.0 

u ≈0.0 

o ≈0.0 
 

 Class 1 

a 0.32 

i 0.22 

e 0.16 

u 0.15 

o 0.15 

ä ≈0.0 

y ≈0.0 

ö ≈0.0 
 

Class 0 assigns higher probability to front vowels and nearly zero probability to back vowels, while 

Class 1 does the opposite.  Both classes assign a fair amount of probability mass to both <i> and 

<e>, the neutral vowels; this is to be expected, since neutral vowels appear in both front words and 

back words.   The one probability that stands out as potentially concerning is the low probability 

                                                             
12 Each model was run with 5000 iterations of Gibbs sampling, though convergence appears to have been 
reached in well fewer than 500 iterations for all harmonic language corpora.  Though it is also possible to 
optimize hyperparameters, this was not done for any of the models. 
13 Values presented here are rounded to two places after the decimal, and as such may not sum to 1. 
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mass assigned to the front vowel <ö> in Class 0.  As it turns out, this is related to the low overall 

number of instances of that vowel in the corpus.  A discussion of how to resolve this apparent 

problem can be found in Section 11. 

 Within a given language, it is possible to compare probability mass functions learned by 

variations of the model or dataset.  This is easily done by computing cosine similarities.  The cosine 

similarity between two vectors is computed using the formula                 
   

      
, which 

calculates the cosine of the angle between the two vectors.  A result of 0 indicates orthogonal 

vectors, while a result of 1 indicates that the angle between the vectors is 0 meaning that they are 

similar.   

The comparison of Mixture of Unigrams models is slightly more complicated.  Let Ai indicate 

the results from one model run and Bi indicate the results of the other, where i is the index of the 

class.  Then the similarity between the two learned models can be computed as 

                              
                                   

 
 
                                   

 
  

and should be distinguished from just cosine similarity alone.  Choosing the maximum means that 

matching classes are compared. 

The use of cosine similarity (and a variation on cosine similarity) is appropriate as a basic 

measure of how harmonic a model is, but it is inappropriate as the only tool for such a judgment.  

Probability distributions over vowels for harmonic languages are expected to be fairly orthogonal, 

since each probability distribution should assign high probability to one class of vowels while 

assigning low probability to the other class.  Thus cosine similarity will generally produce low 

values for harmonic languages.  Of course, there are drawbacks, as we could find low cosine 

similarity between probability distributions that are not actually harmonic – that is, that do not 

divide the vowels into coherent classes based on some feature.  Thus it is important to also examine 

the distributions for coherent vowel classes.  However, this still serves as a simple and useful first 

test.  It also has a feature that makes it preferable over other measures like Bhattacharyya distance; 
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its range is [0,1] rather than infinite.  Since it is mainly used here for checking the differences 

between datasets and results on those datasets, as well as plotting a comparison against another 

method of quantifying vowel harmony, it is convenient to bounded values to compare. 

Table 18: Mixture of Unigrams Maximum Cosine Similarity Results 

 
Tokens vs. Types 

(Without Monosyllables) 

Tokens vs. 
Types 

(With Monosyllables) 

Monosyllables vs. 
No Mono. 
(Tokens) 

Monosyllables vs. 
No Mono. 

(Types) 

Finnish 0.99512 0.99604 0.99583 0.99897 

Tuvan 0.99493 0.99346 0.99432 0.99797 

Turkish 0.99985 0.99999 0.99322 0.99252 

Swahili 0.99933 0.99823 0.99676 0.99878 

Japanese 0.99741 0.94707 0.91973 0.99404 

Indonesian 0.99697 0.98479 0.98753 0.99354 

 
Table 18 displays the maximum cosine similarity for various runs of the Mixture of 

Unigrams model.  As it turns out, the model learns highly similar probability mass functions 

regardless of the choices made with respect to monosyllables or tokens and types.  The only 

languages for which the similarity ever falls below .99 are Japanese and Indonesian, the non-

harmonic languages, which is of little concern because their probability distributions are not likely 

to resemble harmonic classes.  While it may seem somewhat surprising that the maximum cosine 

similarity is so high, an examination of the cosine similarity of the overall distributions of vowels in 

the corpus shows that those also vary minimally across token/type and monosyllable distinctions.  

Each column in Table 19 shows the cosine similarity of unigram models on two versions of each 

dataset.  All values are above 0.98, meaning that the overall vowel probability distributions vary 

minimally across the different versions of the datasets. 

  



 

42 
 

Table 19: Cosine Similarity for Overall Vowel Probability 

 
Tokens vs. Types 

(Without Monosyllables) 

Tokens vs. 
Types 

(With Monosyllables) 

Monosyllables vs. 
No Mono. 
(Tokens) 

Monosyllables vs. 
No Mono. 

(Types) 

Finnish 0.99369 0.99580 0.99513 0.99857 

Tuvan 0.99016 0.99248 0.99322 0.99865 

Turkish 1.0 1.0 0.99859 0.99861 

Swahili 0.99952 0.99931 0.99761 0.99865 

Japanese 0.99849 0.98712 0.99007 0.99981 

Indonesian 0.99843 0.99971 0.99045 0.99714 

What this means, is that, while the token/type distinction may have theoretical implications 

when considering how to measure vowel harmony, its practical implications are likely minimal.  

Additionally, it should not be problematic to compare methods regardless of their use of 

monosyllabic words, though for the sake of consistency, Section 10.4 compares VHC results to 

Mixture of Unigrams results run without monosyllabic words.  

Though I have focused on the probability mass function produced, due to its usefulness in 

both visualizations (Section 11) and quantifying harmony, the Mixture of Unigrams model produces 

other output that could be leveraged for the study of vowel harmony.  First, it would be possible to 

produce and consider the probability distributions over harmonic classes – this could be useful in 

the event that one class is very strongly favored over the other, which might indicate a non-

harmonic system (similar to the sink in HMMs).  The other potential tool is the probability that 

model assigns to the corpus as a whole (typically implemented as a log probability, due to 

underflow issues).  This is calculated at each iteration of Gibbs sampling, and is expected to 

converge.  A brief examination of this has shown that the harmonic languages converge quite 

quickly, but at least one non-harmonic language (Japanese, types, no monosyllabic words) took 

over 1000 iterations to converge.  Thus it might be possible to explore the use of time-to-iteration 

as a tool for diagnosing vowel harmony. 

10.4 COMPARISON OF RESULTS 

A Mixture of Unigrams model for a language with vowel harmony should have low cosine 

similarity between the two classes of vowels.  This is an imperfect measurement of whether the 
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probabilities learned do represent a harmonic system or not, as it would also be possible to have 

low cosine similarity between two classes of vowels without the groupings of high and low 

probability vowels having a shared feature such as backness or height.  As such, it should not be 

depended on as the sole measure of whether a Mixture of Unigrams model fit to data has learned a 

harmonic or non-harmonic system.  However, it serves as a convenient and simple way of directly 

comparing Mixture of Unigrams results to VHC results, showing that the results are well-correlated.  

In Figure 5 I plot the VHC Harmony index on the x-axis and the Mixture of Unigrams results, 

calculated as                              , on the y-axis.    

 
Figure 5: Vowel Harmony Calculator and Mixture of Unigrams 

 

11 VISUALIZATIONS 

One of the strengths of statistical models is their ability to quantify phenomena like vowel 

harmony.  These results can then be presented in a number of ways.  Previous work on HMMs for 

vowel harmony presents results in HMM diagrams and tables of values.  While this provides quite a 

bit of useful information about the vowel harmony system, it does not allow the user to make initial 

judgments at a glance.  Goldsmith and Xanthos (2009) provide a visualization tool for determining 

whether the output of an HMM is harmonic or alternating.  However, the numerical data can be 
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used to create more extensive visualizations for vowel harmony.  In Section 11.1, I introduce a 

method for visualizing not only whether or not a language is harmonic but also, if it is, what type of 

harmony it exhibits. 

A visualization tool provides a quick way to gain an understanding of the vowel harmony 

system of a language.  Mayer et al. (2010) present a matrix-based approach to visualizing pairwise 

vowel harmony and other related phenomena.  Their visualization tool provides a convenient way 

of seeing clusters of vowels (what I have termed vowel classes), but it does not provide immediate 

clarity as to what features unite the clusters of vowels, nor does it provide information about 

whole-word harmony.  Goldsmith and Xanthos (2009) provide a visualization tool for HMMs that 

plots the transition probabilities from a state to itself at each step in the learning of the model.  Each 

axis represents one state.  Starting, typically, from somewhere near the point (0.5, 0.5), they plot 

the transition probabilities each time the model parameters are re-estimated.  At the end, models 

with high x and y coordinates (in the upper right quadrant) are considered harmonic since they are 

likely to remain in the same state and models with low x and y coordinates (in the lower left 

quadrant) are considered alternating.  However, this does not provide the user with a visualization 

of the type of harmony occurring, only whether or not the language is harmonic. 

The visualization tool I present provides the user with visual feedback about both the type 

and extent of whole-word harmony in a language.  When confronted with a language whose 

harmony system (or existence thereof) is unknown, a linguist could use this tool to rapidly 

determine whether or not the language appears to have harmony, and if so, how to set parameters 

for a more supervised quantification tool like the VHC. 
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11.1 HMMS AND MIXTURE OF UNIGRAMS 

The visualization method presented in this section14 is appropriate for both HMMs and 

Mixture of Unigrams models, as they both produce compatible outputs. I first present example 

results from the token gospel corpus of Finnish (with monosyllables removed).  As mentioned 

earlier, Finnish has an eight vowel system with palatal harmony (Table 20). 

Table 20: Finnish Vowels 

Front Back 
 

Unrounded Rounded Unrounded Rounded 
i y  u High 
e ö  o Mid 
ä  a  Low 

The vowels can be displayed in a grid as follows, with the X-marked squares representing 

sounds not in the Finnish vowel inventory: 

 
Figure 6: Finnish Vowel Template 

This grid will be the template for the creation of a heat map based on the model output.  For 

each language’s vowel inventory, a similar grid is created.  I follow linguistic convention in 

representing the vowel space by placing front vowels to the left, back vowels to the right, low 

vowels on the bottom, high vowels on the top, and, when applicable, rounded vowels to the right of 

their unrounded counterparts. The model output is shown in Table 21, with the class probabilities 

over vowels. 

  

                                                             
14 The graphics in this thesis were produced using Wolfram Research’s Mathematica 8 (2010). 
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Table 21: Finnish Vowel Probabilities by Class 

Class 0 

ä 0.36 

e 0.28 

i 0.26 

y 0.08 

ö 0.03 

a ≈0.0 

u ≈0.0 

o ≈0.0 
 

 Class 1 

a 0.32 

i 0.22 

e 0.16 

u 0.15 

o 0.15 

ä ≈0.0 

Y ≈0.0 

ö ≈0.0 
 

 
These same probabilities can be displayed in a heat map – the darker the block, the higher 

the probability.  All vowel probabilities are divided by the largest probability, which I call     , 

then the opacity of the squares is determined by                  .  This means that the vowel 

with highest probability is always shown with 100% opacity. 

 
Class 0 

 
Class 1 

Figure 7: Initial Visualization for Finnish Vowel Harmony 

In Figure 7, I present a simple visual representation of the class probabilities for each vowel.  

One can get an inkling that the vowels seem to be split up into two groups (front and back), with 

some overlap (the transparent vowels /i/ and /e/).  The image isn’t all that compelling, though, 

because of the visibility of the transparent vowels.  Imagining that one knew nothing of the 

language’s vowel harmony, this image wouldn’t necessarily inspire all that much confidence in the 

notion that the language is definitely harmonic. 

 However, some minor changes can drastically improve the quality of the visualization’s 

ability to display the harmonic system.   Notice that the block for <ö> (highlighted in the Class 0 
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diagram, Figure 7) seems to be particularly pale in both classes.  This is because that vowel is less 

common in the corpus as a whole.  In order to make sure that the visualization is not unduly 

influenced by the corpus-wide probabilities of each vowel, I implement a fairly simple fix.  First 

compute the unigram model probability mass function over vowels for the entire corpus.  Then 

divide each probability in the Mixture of Unigrams model by the overall unigram model probability 

for that vowel.  These new numbers are now treated in the same way as explained earlier (such that 

the new highest ranking vowel still has 100% opacity).  This has a strong positive impact on the 

visualization results (Figure 8). 

 
Class 0 (Front) 

 
Class 1(Back) 

Figure 8: Normalized Visualization for Finnish Vowel Harmony 

Now the split between front and back vowels is much clearer, while still demonstrating the 

role of the neutral vowels.  When using this visualization tool, harmony is apparent through stripes 

of high opacity contrasted with stripes of low opacity.  The high opacity stripes of one class should 

be the low opacity stripes of the other, and vice versa.  Thus, palatal harmony is indicated by 

strongly visible vertical stripes and height harmony is indicated by horizontal stripes.15 

 Additionally, it is possible to produce a visualization that indicates whether a language has 

transparent neutral vowels in its harmony system.  Let    represent the probability mass assigned 

to a given vowel   under the probability mass function from class  .  For each vowel, the number 

                                                             
15 Though I have no examples of it here, it is not unreasonable to predict that it may be possible to see labial 
(roundness) harmony, based on pairs of stripes in the round/not-round columns. 
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   is computed.  This will always fall between 0 and 1.  A similar visualization can 

be created where the percent opacity is equal to        for each vowel.  Dark vowels are those 

that are have similar probability mass across both classes – likely candidates to be transparent 

vowels.  The Finnish vowels <i> and <e> show up clearly in the visualization (Figure 9). 

 
Figure 9: Finnish Neutral Vowels 

Swahili, a five-vowel language, does exhibit height harmony and this shows up well in the 

visualization, particularly once it becomes clear that the low vowel <a> is transparent (Figure 10). 

Swahili 
Class 0 Class 1 Transparent Vowels 

   
Figure 10: Visualization for Swahili Vowel Harmony 

  
Having seen what this does for two harmonic languages, it is also important to check that 

both the model and the visualization tool don’t find harmony where it ought not to be found.  To 

this end, I use the Japanese pop lyrics dataset.  Japanese, like Swahili, has a vowel inventory with 

five vowels. 
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Japanese 
Class 0 Class 1 Transparent Vowels 

   
Figure 11: Visualization for Japanese 

There don’t seem to be clear classes for Japanese in the same way that there were in Finnish, which 

is to be expected because the language is known not to be harmonic (Figure 11).  In fact, the 

visualization for transparent vowels marks all vowels but <o> as candidates for transparency.  This 

indicates that there is strong overlap between the two classes, showing that the language does not 

appear to be harmonic. 

 Even for languages that are harmonic, there are many differences in the harmony systems.  

It is important to see that the transparent vowel visualization also fails to invent spurious 

transparent vowels.  This is clearly the case in Tuvan, which has no neutral vowels (Figure 12). 

 
Figure 12: Tuvan Neutral Vowels 

 As a final note, it would be nice to know that the visualization tool can distinguish between 

languages with varying degrees of harmony.  Turkish and Tuvan provide a good example of this, 

since they are easily comparable and Tuvan is known to be more strongly harmonic than Turkish.  
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A comparison of the visualizations for the two languages provides evidence that this tool can 

provide a visual interpretation of the strength of harmony, which is particularly clear when 

comparing the back vowel classes (Figure 13). 

 
Front Class 

 
Back Class 

 

Turkish 
 

 
 

 
 

Tuvan 

  
Figure 13: Visualization for Turkish and Tuvan Vowel Harmony 

12 CONCLUSION AND FUTURE WORK 

In this thesis, I have shown that a simple Mixture of Unigrams model, which makes stricter 

whole-word harmony assumptions than a HMM, is capable of modeling vowel harmony systems in 

a way that coincides well with recent work on quantifying vowel harmony.  While all of the results 

examined in Section 10 use Mixture-of-Two-Unigrams models, preliminary tests with Mixture-of-

Four-Unigrams models suggest that it may also be possible to discover multi-dimensional harmony 

even with a model as simple as the Mixture of Unigrams. Through experiments on six languages 

(with varying levels of harmony), I have shown that what originally appear to be significant 
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questions in data choice – types vs. tokens and monosyllables vs. no monosyllables – do not actually 

have as strong an impact on model output as one might expect.  In addition to comparing across 

languages, these statistical tools for vowel harmony can be used, if given the appropriate data, to 

evaluate and quantify change in harmony over time.  Seeing how and why languages become more 

or less harmonic could provide new and useful information about this phonological constraint.  

In addition to exploring models of vowel harmony, I have presented a visualization tool that 

combines basic knowledge about a language’s vowel inventory with the output of unsupervised 

models to produce graphics that can provide users with a fast preliminary way to make judgments 

on a language’s vowel harmony system or lack thereof.  This visualization tool can be used as an 

intermediate step to guide users to vowel harmony phenomena that may merit further 

investigation while also providing them with a convenient way to figure out which parameter 

settings may be appropriate if they wish to use another quantification tool like the VHC. 

Given sufficient training data and appropriate machine learning techniques, Mixture of 

Unigrams model and HMMs could be used to directly choose vowel classes for the VHC parameters, 

thus cutting out the middleman and making the VHC more like an unsupervised model.  The main 

benefit of this would be that, rather than having to test a language with an unknown harmony 

system by guessing what type of harmony it has or whether it has neutral vowels, the VHC (given 

only the list of vowels in the language) could determine the most appropriate harmony systems for 

which to test. 

In the future, I’d like to see these kinds of tools for whole-word harmony combined with 

statistical methods for pairwise harmony, such as recent work by Sanders and Harrison (under 

review).  A combination of these methods could lead to interesting research in the typology of 

vowel harmony with respect to what combinations of pairwise or whole word harmony and 

disharmony are attested in the world’s languages. 
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APPENDIX I: AUTOMATICALLY SEPARATING VOWELS AND CONSONANTS 

Depending on the dataset, its orthography or phonetic transcription style, and the user’s 

knowledge thereof, it may be necessary to automatically separate vowels and consonants rather 

than using a list to extract the vowels in the corpus.  In most cases, this will not be a concern, but 

showing that it is possible to do so automatically supports the unsupervised nature of the methods. 

I.I SUKHOTIN’S ALGORITHM 

Sukhotin’s Algorithm (Sukhotin, 1962) was created by B. V. Sukhotin, a Soviet researcher, as 

an algorithm for identifying vowels in a simple substitution cipher. As the original article was 

produced in Russian then translated to French, the description here is based on Guy (1991).  The 

algorithm makes the assumption that vowels occur next to consonants rather than other vowels.  

To determine what the vowels are in the word “llamado” using Sukhotin’s algorithm, I first assume 

that I do not know where the word ends or begins (imagine that it is written in a circle), then I fill in 

a symmetric matrix with the number of times each letter in the word is adjacent to each other 

letter, then fill the diagonal with zeros: 

Table 22: Table for Sukhotin’s Algorithm 

 L A M D O SUM 
L 0 1 0 0 1 2 
A 1 0 2 1 0 4 
M 0 2 0 0 0 2 
D 0 1 0 0 1 2 
O 1 0 0 1 0 2 

 
Next, claim that the letter with the highest sum greater than zero is a vowel, and the rest are 

consonants.  For each row of each consonant, subtract twice the number of times it occurs next to 

the new vowel from its sum: 
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Table 23: Updated Sukhotin’s Algorithm Table 

 L A M D O SUM  
L 0 1 0 0 1 0 C 
A 1 0 2 1 0 4 V 
M 0 2 0 0 0 -2 C 
D 0 1 0 0 1 0 C 
O 1 0 0 1 0 2 C 

 
Now repeat the previous portion, claiming that O is a vowel: 

Table 24: Terminal Sukhotin’s Algorithm Table 

 L A M D O SUM  
L 0 1 0 0 1 -2 C 
A 1 0 2 1 0 4 V 
M 0 2 0 0 0 -2 C 
D 0 1 0 0 1 -2 C 
O 1 0 0 1 0 2 V 

 
Now that there are no letters left whose sum is greater than zero, the algorithm terminates 

(Guy, 1991: 259-260).  If you experiment with short words, you will find that the algorithm does 

not always succeed, but its performance should improve given more data (assuming that the data 

does in fact have low probabilities of vowel-to-vowel transitions). 

 

I.II HIDDEN MARKOV MODELS 

Hidden Markov Models (described earlier) are “probabilistic finite state machines” (Baker, 

2009: 10).  A two state Hidden Markov Model that follows an alternating pattern can also be used to 

separate vowels and consonants into separate classes. 

 

APPENDIX II: OTHER MODELS 

This thesis has focused on three models for statistically modeling and quantifying whole-

word harmony – the Mixture of Unigrams model introduced here, the HMM for its close relation to 

Mixture of Unigrams, and the VHC as a baseline against which to measure results.  I would be 

remiss, however, were I to fail to provide at least a brief mention of some other related work on 

statistically modeling vowel harmony. 
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 Goldsmith and Riggle (to appear), have explored information theoretic approaches 

including unigram, bigram, and Boltzmann models for vowel harmony in Finnish.  Work from Baker 

(2009) builds on this and tests the models on a larger set of languages.  Mailhot (2010) presents a 

regression-based model for harmony acquisition by learners.  This type of model is based more 

heavily in psychology and perception, differentiating it from the models discussed in this thesis.  

Work by Mayer et. al. (2010) uses statistics on vowel successors to produce matrices visual 

displaying information about pairwise harmony and other harmony-like phenomena including 

reduplication and German umlaut.  This thesis focuses on whole-word harmony rather than 

pairwise harmony, but the availability of visualization and quantification tools for both whole-word 

harmony and pairwise harmony sets the stage for interesting work on the typology of vowel 

harmony.  Sanders and Harrison (under review) provide a statistical method for the quantification 

of pairwise harmony.  
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APPENDIX III: MORE ON MIXTURE OF UNIGRAMS 

 This section presents a more technical description of the Mixture of Unigrams model as 

applied to vowel harmony.  First I introduce the pieces of the model: 

Table 25: Notation for Mixture of Unigrams 

Notation Description 
          The set of vowels in the language, represented 

with integers for simplicity. 
                 The set of   words in the corpus. 
               A word   in the corpus is made up of a set of   

vowels, with      for               Word 
length l can be drawn from a multinomial with a 
Dirichlet prior, or another distribution, but this 
is not important when it comes to fitting the 
model. 

              The set of classes.  For my purposes, I use two, 
but the model could accommodate more.  

          The class assigned to word    
            is a corpus-wide multinomial distribution over 

classes, drawn from a Dirichlet distribution with 
parameter vector    where   is the 
concentration parameter and   is the base 
measure. 

           For each class          ,     is a multinomial 
distribution over the set   drawn from a 
Dirichlet distribution with parameter vector    
where   is the concentration parameter and   is 
the base measure. 

 
Then the generative story is as follows: 

 Draw          
 Draw           for each           
 For each word          : 

 Draw               

 Choose a length   for the word 
 For          : 

 Draw       
 

It can also be represented using this plate notation.  Each rectangular plate represents 

repetitions (the FOR loops in the generative story) and each disk represents a variable, with the 

colored disk representing the only observed variable.  Here C stands for Class. 
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Figure 14: Plate Diagram for Mixture of Unigrams 

 

III.I PSEUDOCODE FOR GIBBS SAMPLING 

I begin the description of Gibbs sampling with a few notes on notation: 

Table 26: Notation for Gibbs Sampling 

Notation Explanation 
   The count of the number of words in the corpus 

that are assigned to class    

  
  
  

      
        

  
Where            .  These are the corpus 
counts as though    were removed from the 
corpus. 

     The count of the number of times the vowel 
indexed by   appears in words in the corpus that 
are assigned to class    

    
     

   Let   index a vowel in      Then     
   and   

  are 

the counts described above as though the 
vowels indexed   or greater in word   were 
removed from the corpus. 

         
    The class assigned to word   at iteration  . 
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Pseudocode: 
(Based on work by Wallach, Knowles, and Dredze, presented in Knowles, 2011.) 
 
Initialization: 
Set                 
Set                       

For        : 
Initialize             from the set of classes       randomly from a multinomial dist. 
Increment:       
For each vowel in    : 

Increment:             

Sampling: 
For         iterations: 
 For        : 

For each class          : 

       
 

 
   

  
 

 For each          : 

             

 

   
      

  

 
 
  

  
 

                     

  Draw          
      based on the probabilities just defined 

Decrement counts:     
              

   

                
   
  

For vowel in   : 

Decrement counts:       
                              

   

              
  

Increment counts:     
              

     

                
     

  

For vowel in   : 

Increment counts:       
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APPENDIX IV: MIXTURE OF UNIGRAMS OUTPUT 
Table 27 and Table 28 contain visual output of vowel harmony systems and transparent 

vowels, respectively.  Table 29 contains the raw output from mixture of unigrams run on each 

dataset with all combinations of tokens, types, monosyllables, and no monosyllables. 

Table 27: Mixture of Unigrams Visualizations 

 Types (No monosyllables) Tokens (No monosyllables) 
Finnish 

    
Turkish 

    
Tuvan 

    
Swahili 

    
Japanese 

    
Indonesian 
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Table 28: Mixture of Unigrams Neutral Vowel Visualization 

 Types (No monosyllables) Tokens (No monosyllables) 

Finnish 

  

Turkish 

  

Tuvan 

  

Swahili 

  

Japanese 

  

Indonesian 
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Table 29: Vowel Probabilities from Mixture of Unigrams 

Language Vowel 
Tokens 

(No 
mono.) 0 

Tokens 
(No 

mono.) 1 

Types 
(No 

mono.) 0 

Types 
(No 

mono.) 1 

All 
Tokens 0 

All 
Tokens 1 

All 
Types 0 

All 
Types 1 

Finnish 

ä 0.004 0.359 0.355 0.003 0.004 0.359 0.355 0.003 

e 0.162 0.278 0.246 0.167 0.162 0.278 0.246 0.167 

i 0.217 0.257 0.227 0.208 0.217 0.257 0.227 0.208 

y 0.002 0.077 0.122 0.002 0.002 0.077 0.122 0.002 

ö 0.000 0.025 0.033 0.001 0.000 0.025 0.033 0.001 

a 0.322 0.002 0.009 0.352 0.322 0.002 0.009 0.352 

u 0.147 0.001 0.004 0.143 0.147 0.001 0.004 0.143 

o 0.146 0.001 0.004 0.123 0.146 0.001 0.004 0.123 

Indonesian 

a 0.424 0.406 0.416 0.441 0.424 0.406 0.416 0.441 

e 0.219 0.232 0.246 0.224 0.219 0.232 0.246 0.224 

i 0.057 0.192 0.071 0.178 0.057 0.192 0.071 0.178 

u 0.014 0.171 0.017 0.158 0.014 0.171 0.017 0.158 

o 0.286 0.000 0.250 0.000 0.286 0.000 0.250 0.000 

Japanese 

a 0.231 0.415 0.393 0.236 0.231 0.415 0.393 0.236 

i 0.219 0.266 0.240 0.202 0.219 0.266 0.240 0.202 

e 0.153 0.183 0.198 0.158 0.153 0.183 0.198 0.158 

u 0.192 0.134 0.168 0.193 0.192 0.134 0.168 0.193 

o 0.205 0.002 0.000 0.210 0.205 0.002 0.000 0.210 

Swahili 

a 0.457 0.362 0.462 0.345 0.457 0.362 0.462 0.345 

e 0.007 0.332 0.006 0.326 0.007 0.332 0.006 0.326 

o 0.001 0.238 0.000 0.241 0.001 0.238 0.000 0.241 

u 0.197 0.040 0.180 0.048 0.197 0.040 0.180 0.048 

i 0.338 0.028 0.352 0.040 0.338 0.028 0.352 0.040 

Turkish 

a 0.249 0.474 0.472 0.251 0.249 0.474 0.472 0.251 

ɨ 0.004 0.228 0.229 0.004 0.004 0.228 0.229 0.004 

u 0.040 0.118 0.124 0.038 0.040 0.118 0.124 0.038 

o 0.050 0.077 0.077 0.050 0.050 0.077 0.077 0.050 

i 0.250 0.053 0.044 0.253 0.250 0.053 0.044 0.253 

e 0.306 0.042 0.046 0.302 0.306 0.042 0.046 0.302 

ü 0.081 0.007 0.007 0.081 0.081 0.007 0.007 0.081 

ö 0.020 0.001 0.002 0.020 0.020 0.001 0.002 0.020 

Tuvan 

a 0.034 0.407 0.036 0.439 0.034 0.407 0.036 0.439 

ɨ 0.012 0.245 0.014 0.264 0.012 0.245 0.014 0.264 

u 0.009 0.172 0.013 0.121 0.009 0.172 0.013 0.121 

o 0.020 0.125 0.018 0.088 0.020 0.125 0.018 0.088 

e 0.419 0.025 0.420 0.046 0.419 0.025 0.420 0.046 

i 0.301 0.020 0.292 0.029 0.301 0.020 0.292 0.029 

ü 0.129 0.006 0.130 0.013 0.129 0.006 0.130 0.013 

ö 0.076 0.000 0.077 0.000 0.076 0.000 0.077 0.000 
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