Signs & Sounds: Phonaesthematic Association of Japanese Mimetics Using Artificial Neural Networks

Luke Smith '06 Swarthmore College Department of Linguistics K. D. Harrison & D. J. Napoli Advising

April 26, 2006

Uttering a word is like striking a note on the keyboard of imagination.

-Wittgenstein

Abstract

The Japanese mimetic lexicon displays a number of phonaesthematic regularities associating phonological features with semantic characteristics. Artificial Neural Networks can be used to good effect in mapping phonological patterns onto semantic features. This paper demonstrates a proof-of-concept by training an ANN to associate phonological features with meaning to a large degree of success. Cluster analysis reveals that activation patterns for tokens matching the same phonaesthematic pattern group together. Larger corpora and more sophisticated techniques are required for further research.

Mimetics

Saussure famously argued that that the linguistic sign is completely arbitrary in nature. According to orthodox linguistic theory, a word's phonological representation bears no relationship to its semantic referent. The existence of mimetics poses a problem for this analysis. Mimetic words are either sound-symbolic or in some other way a mimesis of a physical or psychological phenomenon. The mimetic domain does indeed display a correspondence between sign and signified. Specifically, in Japanese, associations exist

between the phonological features of mimetics and the semantic properties of the phenomena they represent.

These representations are in a sense no less arbitrary than those made in other parts of the lexicon. Phonological symbolism simply displays a finer granularity of arbitrary representation than that of the non-mimetic lexicon. However, there may be limitations on the space of possible mimetic representations. Consider what might be called "the Tinkerbell phenomenon." Tinkerbell, a pint-sized fairy who appears to us as an ethereal glimmer, speaks with the high-pitched ringing of a tiny bell. The ubiquitous sound-effect for the glinting of light is a sharp, high sound. Could Tinkerbell plausibly be associated with a deep, rumbling boom? Even in a radically different social and linguistic context, this seems impossible. Although the sounds in the play are not linguistic representations proper, this question should give us pause before we so easily assume that linguistic signs are entirely arbitrary.

The Japanese Mimetic Lexicon

The Japanese lexicon is stratified into four distinct sub-lexica: Yamato (native) words, Sino-Japanese words and compounds, non-Chinese loans, and mimetics. The Japanese mimetic lexicon is extremely rich in comparison with that of English; not limited to sound-symbolism, it contains thousands of words describing a wide variety of phenomena. Speakers classify these into four types: *giseigo* (sounds of living things), *giongo* (sounds of the inanimate world, *gitaigo* (mimesis of physical states or events), and *gi-jougo* (mimesis of psychological states or events) (see Table 1). Korean has a similarly rich lexicon. (Shibatani 1990)

Japanese has a rich lexicon of mimetics that represent visual, psychological, and a variety of abstract phenomena. Among these are *pika-pika* ("shining") and *nobi-nobi* ("feel at ease"). Japanese mimetics typically fill an adverbial role, as found in sentences like *ame*

giseigo	wan-wan kero-kero nya-nya	dog's bark frog's croak cat's meow	sounds of living things
giongo	gujya-gujya kara-kara baki-baki	slushy, sloppy dry rustling snapping, breaking	sounds of the inanimate world
gitaigo	pika-pika neba-neba kunya-kunya	shining sticky, greasy soft and cuddly	mimesis of physical states or events
gijougo	mura-mura sobo-sobo wasa-wasa	irresistible temptation dispirited nervous, restless	mimesis of psychological states or events

Table 1: Tokens from the mimetic lexicon by type

ga zaa-zaa futteiru ("The rain is falling zaa-zaa" or "The rain is falling hard"). They can also be adjectival or even verb-like when used with a light verb such as the copula (da) or "do" (suru). Thus, the phrase kyoro-kyoro suru means "to look about helplessly."

Mimetics are often (but not always) at least partially reduplicative in their structure. The prototypical mimetic is one like *petya-petya* ("talk like birds chirping"), which has a fully reduplicated CVCV-CVCV structure. Another, related token is *petya-kutya*, "to talk (in an annoying way) as a crowd talks." Ivanova (2002) observes that the first, fully-reduplicated word neutrally describes a phenomenon, while the second, partially-reduplicated version applies a subjective judgement to the activity described. In addition to fully- and partially-reduplicated forms, a third class of non-reduplicative mimetics exist. These make use of fixed endings with a set semantic association onto which only a single mora is prefixed. They include words like *haQ-kiri* "clearly" and *kuQ-kiri* "distinctly."¹

Regularities in the mimetic lexicon are best understood in terms of mora. Mora are

¹This paper uses a modified version of Kunrei romanization for Japanese; Q denotes a geminate, and N a moraic nasal.

sub-morphological units of uniform length in Japanese. They often, but not always, correspond to syllables. A mora can be (1) a CV string in which the vowel is not long, (2) a CyV string where 'y' denotes palatalization (eg. kyo in to.kyo.u [Tokyo]); (3) a single vowel which may stand alone or lengthen another vowel, (4) a nasal (in restricted distribution), and (5) a geminate (also restricted). The mimetic petya-petya, for example, is divided into four mora: pe.tya.pe.tya. All of the mimetics discussed in this paper are of this typical four-mora type.

Japanese mimetics are used to describe everything from a person's manner of walking to the distribution of checks in a restaurant. They are a vital, daily part of spoken Japanese and are necessary for basic understanding of the language. In addition to lexical knowledge, Japanese speakers have access to a regular system of mimetic construction, and mimetics have at least a limited productivity. In other words, the distribution of phonemes in the mimetic lexicon is not random. Certain phonological features are associated with semantic "features" of mimetics. Perhaps most prominently, voicing is associated with what might be called "intensity;" pouring rain is described with zaa-zaa, while a soft shower is described by a devoiced version of the same mimetic: saa-saa; baki-baki describes the breaking larger objects than does paki-paki. Other associations exist; velars, for instance, correspond with quick, decisive movement or action. No comprehensive account exists, however, of all associations between phonological features in mimetics and the features of their semantic interpretation.

Approaches to Classification

One approach to discovering these associations might be to interview native speakers and test their intuitions. This, however, is problematic in several ways. First, native speakers are not particularly attuned to the relation between phonology and semantics in mimetics. Their production takes place largely outside of consciousness. Second, such

a methodology lacks a rigorously quantitative approach that might shed light on the relative strengths of semantic associations and how conflicts between them are resolved. Finally, interviewing native speakers is time-consuming and difficult. A great deal of research would be required to uncover a complete account of Japanese mimetics.

Another possible method for discovering phono-semantic associations is a brute-force human analysis of the lexicon. This approach could certainly be sufficiently quantitative, but the flood of raw numeric data might make recognizing relevant patterns extremely difficult. Such an analysis could mean countless hours wasted for little gain in predictive capability.

The problems involved with the methods above motivates a third approach: analysis by Artificial Neural Network (ANN). ANNs are computer-simulated networks designed to discover, with minimal intervention, salient patterns in noisy data. They are modeled on the neural structure of the human brain, and they excel in extracting relevant associations from data which is often inconsistent, difficult to visualize, and overwhelming. ANNs are employed effectively in such tasks as face-recognition, artificial speech production, and interpretation of robot vision. ANNs are well-suited to the task of discovering the phono-semantic associations in the Japanese mimetic lexicon.

The lexicon in question is simultaneously vast and intricate, and it has proven resistant to previous attempts at systematic classification. Hamano (1998) attempted to directly associate phonemes in specific word-positions with semantic features. Although some associations can be made, they are not robust and many counterexamples are attested. Ivanova (2002) suggests a more nuanced approach, which takes the phonaesthematic pattern as its basic unit of analysis. The word phonaesthematic describes "the presence of a sequence of phonemes shared by words with some perceived common element in meaning," eg. *glimmer*, *glisten*, *glint*, and *glamour*. By examining sub-morphological phonaesthematic sequences instead of individual phonemes, a more robust analysis of the Japanese mimetic lexicon can be developed.

The phonaesthematic nature of the regularities in the lexicon does not present a problem for ANN analysis. Although the direct inputs to the network will consist exclusively of an ordered set of phonemes identified by their features, the internal layer of the network provides a medium in which to build associations between specific sequences of phonemes or even abstract relationships such as complete or partial reduplication. An ANN should theoretically be capable of identifying any relevant pattern in the data provided.

Ivanova identifies a staggering number of robust and well-attested phonaesthematic regularities in the lexicon. These, with some additions and modifications, appear in Appendix A. ANN analysis could provide an interesting point of comparison to Ivanova's manual survey. It also might be more able to uncover a hierarchy of associations and shed light on their interaction.

Crucially, Ivanova points out that tokens fitting multiple phonaesthematic patterns often display semantic characteristics of both. This points to a difficulty in the classification of mimetic tokens that ANNs are particularly suited to address. Each token is, in effect, placed on one or more dimensions of meaning. If each semantic feature with a phonaesthematic association is imagined in this way, any given token can be plotted in an *n*-dimensional space, where *n* is the number of semantic characteristics. This *n*-dimensional space would model the entire range of phonoaesthematic possibility. Tokens with similar meanings would cluster close to each other, while opposites would be distant from on another.

This method, however, presents a problem. What if two phonaesthematic associations are in conflict? For instance, initial *mo* carries the meaning of "murky," (Ivanova 2002) while the ending Q-kiri indicates clarity. Could a word like moQ-kiri exist in Japanese? Speakers confirm that it could not (Terasaki, Okamoto 2006). The two semantic associations are in conflict. Perhaps they are not, however, so directly opposed that they could be collapsed into a single semantic dimension. This means that there is a region in the

spatial model which is effectively off-limits. In a perfect model, every point in the theoretical space should correspond to a possible (but not necessarily attested) token in the mimetic lexicon. What does this mean for our analysis? It may not be possible to predict the outcome of all phonaesthematic conflicts and develop a set of semantic features which will allow a perfect modeling of the lexicon's phonaesthematic space, or, alternatively, a set of ideal meta-features might be required to obtain such a result.

Artificial Neural Networks

The ANN developed in this investigation takes as its inputs the phonological features of a given mimetic from the lexicon. After training, it should be capable of associating those phonological features with a given set of "semantic features" such as intensity and others. Determining the relevant set of semantic features is the primary challenge of this approach. If features with no phonological association are selected, no pattern can be discovered in the data. Thus, this method necessitates an approach informed by the intuition of native speakers and an analysis of the lexicon.

Training an ANN requires a large corpus of representative data tagged with the correct associations between a given input and the "correct" output. In the case of Japanese mimetics, this consists of a list of as many mimetics as possible, their phonological features, and the semantic features with which those phonological features are to be associated. The phonological features make up the data for the input layer of the neural network. The activations of the input layer are then multiplied by the network weights of the ANN and passed to the "hidden" layer. The hidden layer again multiplies its input by network weights as it passes its activations to the output layer. The nodes of this layer correspond to the semantic features of a given mimetic.

Over time, the ANN adjusts the network weights between its layers to better reflect the associations between phonological and semantic features. It does this using an algorithm

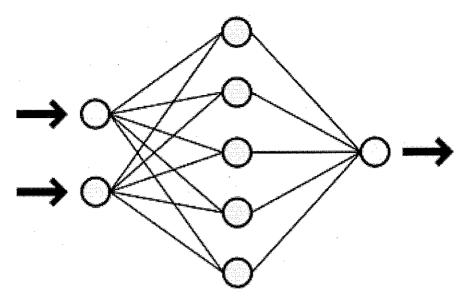


Figure 1: Simplified view of an Artificial Neural Network (Wikipedia.org, Creative Commons Attribution license)

called "Back-Propagation," or BACKPROP. BACKPROP performs a stochastic gradient descent to minimize error in the network. (Meeden 2005)

Cluster Analysis

One problem with the ANN approach is that, while a network is capable of finding associations in the raw data, it often provides little insight into the structure of the system being investigated. Although the network may predict semantic associations for a given set of phonological features, it may reveal little about the underlying rules governing such associations. In order to discover these, an analysis of the network weights must be performed.

The network weights are the components of the ANN that store the associations between inputs and outputs. Each node in the network receives an input value between zero and one. It then multiplies that value by a network weight and passes it to each node in the next layer. Each node has a network weight associated with every node in the next layer of the ANN. When it passes a value to another node, it multiplies that value

by a weight that is used exclusively for that other node. The process of adjusting these weights in response to training data is what gives ANNs their associative power.

To test the performance of an ANN at a given task, two data sets are required. The first is the training set, tagged with both the inputs (phonological features) and the correct outputs (semantic features). The ANN adjusts its network weights in response to the associations found in the training data set. Then, to evaluate the performance of the network, a corpus novel tokens in the same class is presented. The network predicts the outputs associated with the inputs. If its accuracy does not exceed that of a random guess, it is unlikely that any pattern of association exists between inputs and outputs. If the ANN analysis of Japanese mimetics were successful, the network, given a novel token, would predict the same semantic associations as a native speaker would upon hearing the mimetic for the first time.

Even if the network can accurately predict outputs from inputs, its methods of association remain opaque. In order to extract information from the ANN, it is necessary to interpret the network weights. Superficially they are nothing more than a series of meaningless numerical values. To discover their significance, a cluster analysis can be performed. Cluster analysis models the network weights in an *n*-dimensional space, where *n* is the total number of network weights. This space corresponds to the *n*-dimensional space of phonoaesthematic association discussed above. A set of inputs is fed into the network, possibly even the entire corpus. The activations of each node (the input multiplied by the network weight) are then plotted into this *n*-dimensional model. The distance between each set of activations is determined, and the associated inputs are grouped by their proximity to one another. The two closest inputs are grouped together under the input which was closest to both of them, and so on. The entire set of inputs can be grouped in this way into hierarchical clusters, revealing the underlying system of categorization that drives the association of input and output. Thus, we might expect that voiced mimetics would cluster apart from unvoiced mimetics, and that below this major association in the hier-

#	Mimetic	Gloss	[VOICED.VELAR.FRICATIVE] x 4 mora	INTENSE
1	pi.ka.pi.ka	"shining"	[0.0.0][0.1.0][0.0.0][0.1.0]	0.
2	sa.a.sa.a	"soft rain sound"	[0.0.1][1.0.0][0.0.1][1.0.0]	0
3	za.a.za.a	"hard rain sound"	[1.0.1][1.0.0][1.0.1][1.0.0]	1
4	ku.tya.gu.tya	"speak worthlessly"	[0.1.0][0.0.0][1.1.0.][0.0.0]	0

Table 2: Trial one test corpus

archy, other clusters (around, say, velar-decisiveness) would form. Cluster analysis is a convenient way to discover which patterns are prominent and which are relatively weak.

Semantic Features

As mentioned above, determining the best set of semantic features to associate with phonological features is the primary challenge of ANN classification of the mimetic lexicon. INTENSE is certainly one of these. Other relevant characteristics found in the literature include tautness, hardness, viscosity, weakness, friction, protrusion, largeness, even emotionality, normativity and self-confidence. The only way to find the most effective feature set is through trial and error.

Trial One: Feature Extraction

Trial One demonstrates the process through which ANNs extract relevant features from noisy data. A small four-token test corpus was used to demonstrate the network's basic ability to associate phonologically +VOICED mimetics with the +INTENSE semantic feature.

In order to maintain a constant number of phonological inputs to the neural network, phonological assignments were made to each of the four mora in these typical four-mora mimetics. Mora were marked +VELAR if their initial consonant was a velar, and +FRICATIVE if their initial consonant was a fricative. Because all vowels are voiced, a mora was required to be entirely +VOICED (including the initial consonant) in order to be marked

```
0.208295724222
        pi.ka.pi.ka
 2
        sa.a.sa.a
                         0.159071080922
 3
                         0.420666643129
        za.a.za.a
 4
        ku.tya.qu.tya
                         0.17328400539
 5
        pi.ka.pi.ka
                          0.140041028372
 6
                         0.107125475597
        sa.a.sa.a
 7
        za.a.za.a
                         0.496530943773
8
        ku.tya.gu.tya
                         0.127372183711
 9
        pi.ka.pi.ka
                          0.105973608446
10
                         0.0836767780189
        sa.a.sa.a
11
        za.a.za.a
                         0.538912477283
12
                         0.104159019003
        ku.tya.gu.tya
13
        pi.ka.pi.ka
                         0.0884180378068
        sa.a.sa.a
14
                         0.0716269472153
15
                         0.563691291134
        za.a.za.a
16
                         0.091032369665
        ku.tya.gu.tya
```

Table 3: Error reports for first sixteen cycles in Trial One

+VOICED. It should be made clear that the ANN is agnostic to the theoretical correctness of the feature assignment; as long as a relation is preserved between input and target output, it will discover it.

Table 2 gives the four-token test-corpus, selected phonological features associated with each mora in each mimetic, and the intensity value associated with each mimetic. They are numbered in the sequence in which were presented to the network. Table 3 gives the error reports of the network over the first sixteen cycles, through four presentations of each mimetic. The error rate is reported as the average difference between the target output values (in this case there is only one output value: zero or one, for -INTENSE and +INTENSE respectively) and the values produced in the network's output layer. As expected, error rates for the +INTENSE token *zaa-zaa* are much higher than those for the other three tokens in the first several hundred cycles; the error rate for *saa-saa* is also higher than the two remaining tokens between cycles 100 and 1,000. The graph in Figure 2 shows a point-by-point error plot in which the error trajectories for *zaa-zaa*, *saa-saa*, and the other two (indistinguishable) tokens are clearly differentiated.

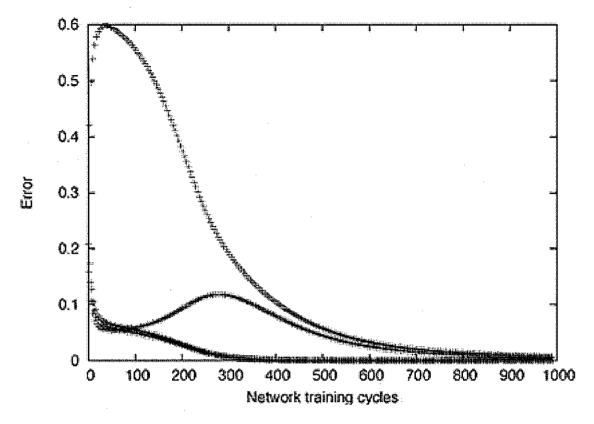


Figure 2: Intensity prediction error for four-token training corpus in Trial One

Figure 3 shows a closer view of error rates for eight passes through the training corpus from cycles 201 to 232. At this stage, the network has begun to misidentify +FRICATIVE as a predictor for +INTENSE. The peaks in the graph represent the high error reports for *zaa-zaa*, the +INTENSE token. The two low reports in each pass through the corpus are from *pika-pika* and *gu.tya.gu.tya*, the -FRICATIVE tokens. The reports immediately to the left of each peak are for *saa-saa*; the +FRICATIVE feature it shares with *zaa zaa* is temporarily confusing the network.

The error rates converge over 1,000 training cycles as the network discovers that +VOICED is the relevant feature for predicting +INTENSE. The elevated error for *saa saa* is due to the fact that it shares a feature—+FRICATIVE—with *zaa-zaa*. The network temporarily misidentifies +FRICATIVE in addition to +VOICED as a relevant feature for the prediction of INTENSE. By cycle 1,000, however, the network has correctly identified +VOICED as the

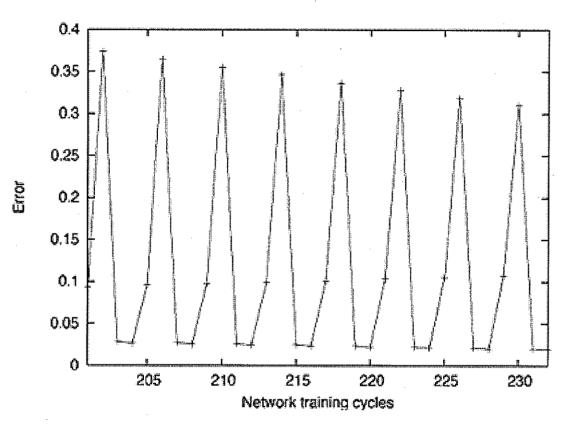


Figure 3: Distinct error trajectories for tokens in Trial One training corpus

#	Mimetic	Gloss	INTENSE	Error
1	ti.bi.ti.bi	'little by little'	0	0.00159028974308
2	ka.ra.ka.ra	'dry rustling'	0	0.00154425726513
3	ga.ra.ga.ra	'clattering'	1	0.012309590643
4	su.be.su.be	'slick'	0	0.00490661539401

Table 4: Trial one evaluation corpus

only relevant feature and error for all tokens approaches zero.

At this point, the network has learned the correct associations for the corpus data. However, as any parent knows, just because a child can recite the text of her favorite book as the pages are turned does not mean that she can read. Table 4 demonstrates that the network has in fact learned a general method for distinguishing +INTENSE tokens—error was minimal on a novel evaluation corpus.

Another way of assessing the network's "understanding" of patterns in the corpus is through cluster analysis of its hidden activations. Figure 4 gives a cluster hierarchy of the training and evaluation corpora in Trial One. Clusters for both the training corpus and the evaluation corpus show the +INTENSE token (zaa-zaa and gara-gara respectively) farthest in Euclidean distance from the other tokens. In other words, distinct clusters of hidden activation patterns correspond to +INTENSE and -INTENSE.

Trial Two

Trial One demonstrates the ANNs basic capability and workings, but does not enhance our understanding of the mimetic lexicon. Trial Two will build on the methodology in Trial One to analyze a larger corpus for more complex phonaesthematic associations. As a step toward classifying a corpus representative of the entire mimetic lexicon, Trial Two demonstrates the network's ability to extract multiple patterns from a data set.

Ivanova (2002) provides a list of observed phonaesthemes and give several examples of each. The phonaesthemes were analyzed and reworked with collaboration with

Training Corpus minimum distance = 0.000383 (to.ki.do.ki) (pi.ka.pi.ka) (pi.ka.pi.ka to.ki.do.ki) (sa.a.sa.a) minimum distance = 0.760665minimum distance = 1.710566 (sa.a.sa.a pi.ka.pi.ka to.ki.do.ki) (za.a.za.a) Resulting Tree = ----> za.a.za.a ----> sa.a.sa.a _]-> pi.ka.pi.ka -> to.ki.do.ki Evaluation Corpus minimum distance = 0.090262 (ka.ra.ka.ra) (ti.bi.ti.bi) minimum distance = 0.228090 (su.be.su.be) (ti.bi.ti.bi ka.ra.ka.ra) minimum distance = 1.236330 (ti.bi.ti.bi ka.ra.ka.ra su.be.su.be) (ga.ra.ga.ra) Resulting Tree = -----> qa.ra.qa.ra |---> ti.bi.ti.bi |---> ka.ra.ka.ra |----> su.be.su.be

Figure 4: Cluster analysis of hidden activations in Trial One

Terasaki and further tokens were uncovered. Appendix A shows the final phonaesthematic clusters and their associated feature IDs the trial. The Trial Two corpus will consist of these 150 tokens. The network's performance on the corpus will be evaluated using Ivanova's and Terasaki's analyses as a reference.

Table gives a complete listing of the phonological and semantic features presented to the network. The 14 phonological features are sufficient to distinguish any two possible tokens from one another. The semantic features listed, however, nowhere near exhaust the number of possible (or even probable) feature set available to native speakers.

Certain stumbling blocks were encountered in the preparation of the corpus. First, mimetics are often similar in structure to words derived from reduplication in other parts of the lexicon. *toki-doki* (occasional) and *betsu-betsu* (separately) seem similar to mimetics but are in fact derived from reduplication of the non-mimetic words *toki* (time) and *betu* (separate) respectively. Some of these tokens exist on a continuum with mimetics, as

Phonological features	Semantic features
VELAR	MURKY
PALATAL	EXEN
NASAL	STICKY
CORONAL	NOSTRSS
LABIAL	UNSTEAD
FRICATIVE	FREE
VOICED	DEFIC
MORAIC_N	NOSPACE
GEMINATE	NOVIT
V_HIGH	IDLE
V_LOW	BADSFT
V_BACK	SHAKING
V_LABIAL	RSTLSS
V_TENSE	LIQSWAY
	DISORD
	NOCONF
•	COWARD
	IMPERT
	BRISK
	MEANDER
	SFTUNR
	PRESS
	TIMID
	EXPROP
	ANXIETY
	SUDDEN
	GENTLE
	SUCCESS
	CLEAR
	EXGOOD
	SUFF
	MANY
	PLENTY
	HEAVY
	RELAX
	UNATTR
	FIDGET

Table 5: Phonological and semantic features in Trial Two

16

Token	Meaning	Lexical Association	Classification
toki-doki	occasional	toki ("time")	non-mimetic
tibi-tibi	little by little	tiisai ("small")	mimetic
doki-doki	heavy pounding (of the heart)	[none]	mimetic

Table 6: Mimetics and Lexical Reduplication

laid out in Table 6. In some cases of conflict the non-mimetic lexeme may contradict the phonaesthematic association. The token *mote-mote*, for instance, fits the pattern for both "murkiness" and "exceeding the proper amount," but its lexical association withholding "possess" (*motsu*) gives it the interpretation of "sexually attractive."

Another difficulty in dealing with the corpus is the slippery nature of the semantic content of the phonaesthemes themselves. For instance, Ivanova (2002) identifies the pattern in Table 7 as a phonaestheme corresponding to "slow action / idleness." Consultation with Terasaki (personal communication, 2006), however, revealed that tokens that Ivanova classified as exceptions to the phonaesthematic pattern are in fact part of the same phonaestheme. A more accurate characterization of the semantic association in question might be "in round drops, rolling." The token *goro-goro* means lolling about, as in rolling around on a futon or kicking around the house; *oro-oro* means to be mentally off-balance, with thoughts rolling about in the head at random. The tokens that Ivanova (2002) classified as exceptions—*boro-boro* etc.—are in fact closer to the core, non-metaphorical meaning associated with the phonaestheme than the ones classified as representative. As the "slow action / idleness" phonaestheme demonstrates, the semantic associations of many mimetics are difficult to pin down with other language.

Despite these difficulties, the ANN in Trial Two successfully classified most of the tokens in the corpus with minimal error. Figure 5 shows the short term error reports, and Figure ?? shows them over the full trial. There are some outliers whose error levels drop only slightly over time, but given enough training, the network would simply "memorize" these tokens and classify them correctly.

Pattern	Meaning	Tokens	Anomalous tokens
(C) + oro + (C) + oro	slow action, idle-	doro-doro (pulpy,	boro-boro (in big
	ness	mushy, thick)	drops; worn-out),
		oro-oro (thrown off	horo-horo (in small
		balance) goro-goro	drops), poro-poro
		(lie about idly)	(in drops)

Table 7: Ivanova's problematic classification

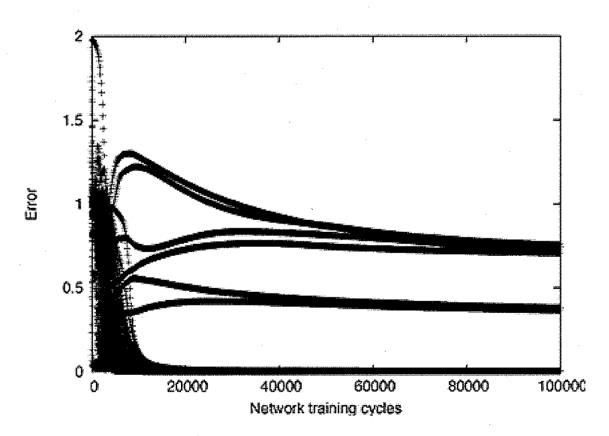


Figure 5: First 100,000 cycles in Trial Two training corpus error

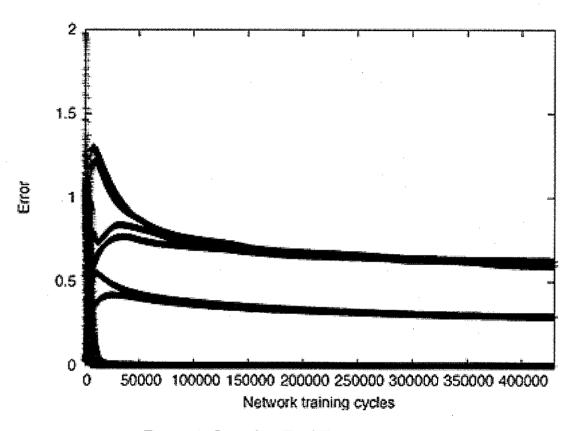


Figure 6: Complete Trial Two error reports

Table 8 shows error reports for specific novel tokens in the evaluation corpus. As anticipated, patterns represented with a large number of tokens in the corpus, such as *gotya-gotya* etc. for the NOCONF phonaestheme, were identified with a lower rate of error. Patterns with only one or two tokens in the training corpus, like BETYA-BETYA for the RSTLSS phonaestheme, were not identified at all due to the fact that the presence of only one token did not give the ANN an opportunity to distinguish the relevant pattern from the characteristics of its tokens. Cluster analysis, shown in Appendix D reveals that some mimetics have been clustered by phonaestheme, but no robust pattern has emerged. A larger corpus might produce better results.

Programs and Conclusions

This paper demonstrates a successful proof-of-concept for phonaesthematic association of Japanese mimetics using Artificial Neural Networks. For future work, a corpus of perhaps one hundred times the size might be required. With such a corpus, it would be possible to specify "naïve" semantic features such as wetness, speed, hardness etc. and have the network search for patterns to associate with them. These features might work to break down the semantic associations into smaller, more common elements that would render the space of phonaesthemes in higher resolution.

The work also might benefit from more sophisticated computational methods. One way to speed up the learning of problematic tokens would be to use a Genetic Algorithm (GA). One problem often confronted in the training of neural networks is the phenomenon of the local minimum. If the error function of the network were mapped in a multi-dimensional space, we can imagine how, in its attempt to descend along the error gradient, the network might settle into a configuration that has a lower level of error than the surrounding area, but which does not represent the best possible solution. This is part of the reason why the ANN in Trial Two was unable to classify all of the tokens correctly.

· ·	
mo.so.mo.so	0.998694319028
mu.ka.mu.ka	1.36113869166
ne.ba.ne.ba	1.01487529777
no.ko.no.ko	1.87014146777
yo.bo.yo.bo	1.99242816593
yu.Q.ku.ri	1.04669909089
ba.sa.ba.sa	2.49753137008e-05
gi.ti.gi.ti	1.12817480377
to.bo.to.bo	0.00214731167517
o.ro.o.ro	4.84269103649e-06
gu.jya.gu.jya	0.00299313717304
yu.ra.yu.ra	1.74301395223
hyo.ro.hyo.ro	0.0906405269696
de.bu.de.bu	0.00220005934501
go.tya.go.tya	1.4080120943e-05
su.go.su.go	1.30561197121
i.ji.i.ji	1.0004849271
nu.ke.nu.ke	0.981309841762
me.ki.me.ki	0.673205094683
u.ne.u.ne	9.58668169567e-05
fu.nya.fu.nya	7.1996645154e-06
do.si.do.si	0.364352304025
ga.si.ga.si	6.91751350252e-06
hi.so.hi.so	1.34500042008
bo.te.bo.te	0.000394612296337
mu.zu.mu.zu	0.699978662153
ga.Q.ta.ri	0.00198909687591
fu.N.wa.ri	0.000603075600391
ba.Q.ti.ri	0.000829279222434
ha.Q.ki.ri	0.853517334462
go.Q.po.ri	0.323952721098
ta.Q.pu.ri	0.00458525164778
ba.Q.sa.ri	1.70046316943
do.Q.si.ri	0.100842889473
go.Q.te.ri	0.000599389182655
o.Q.to.ri	0.00361815702284
be.tya.be.tya	1.97831760239
ji.ta.ba.ta	1.77028268892

Figure 7: Error reports on Trial Two evaluation corpus

In the worst cases, the network is like a marble sitting in a basin on top of a mountain. Some method is required to test configurations that are relatively distant from the best solution currently within reach.

In order to do this without sacrificing hard-won training on random reconfiguration, a Genetic Algorithm (GA) could be employed. A population of neural networks is instantiated, trained, and made to compete for survival. In each generation, a certain amount of random mutation is introduced. Low-performing networks are eliminated. New networks are produced through crossover, which is the "breeding" of successful networks to produce new networks that contain characteristics from both of them. In this way, the problem of local minima can be mitigated without giving up the ANNs ability to learn through experience.

Another technique of ANN analysis might also prove useful. It is possible to reverse the direction of the network's throughput (move activation from the output layer through to the input layer) and derive "paradigmatic" representations of the types the network is classifying. The ANN could be given a set of semantic features and made to produce the mimetic token that best represents them. In this way, new phonaesthemes could be more easily uncovered.

Overall, ANNs seem to be a promising tool for classifying mimetics and may prove even more useful than they have already in theoretical linguistics generally. They cannot compare, however, to the learning capacity of the human brain. A speaker can learn a new mimetic and integrate it into her phonaesthematic system after only hearing it once. What child requires 3000 exposures in order to become competent with a new vocabulary item? Even so, ANNs and related tools seem to open up a rich new vein of inquiry.

The above investigation shows that there is a real relationship between semantic characteristics and phonological representations in the Japanese mimetic lexicon. The function of their relation, however, is far from a bijection. Phonaesthematic associations do not constitute a one-to-one correspondence between sign and signified. Tools like Artifi-

cial Neural Networks, however, are the best lights we have in the murky world of natural language.

Appendix A: Ivanova/Terasaki Phonaesthemes

Feature ID	Pattern (1st & 3rd)	Meaning	Tokens	Anomalous tokens
MURKY	mo + CV + mo + CV or mo + x	murkiness	mogo-mogo (mumble), moso-moso (mumble), moQ-sari (sluggish), moya-moya (hazy,murky), moku-moku (send up great volumes of smoke)	mori-mori (eat hea have a thick wa muscles)
EXEN	mu + CV + mu + CV or mu + x	excessive energy, sup- pression	muka-muka (retch, go mad), muku-muku (grow-ing), muN-muN (stuffy, sultry), mura-mura (irresistible temptation)	muki-muki (thick mu
STICKY	ne + CV + ne + CV or ne +	stickiness, tenacity	neba-neba (sticky, greasy), nechi-nechi (sticky, persis- tent), neQ-tori (clammy, viscous)	
NOSTRS	no + CV + no + CV or no + x	slow action, lack of stress, anxiety, or uneasiness	nobi-nobi (feel at ease, be relaxed/relieved), noko-noko (nonchalantly), noro-noro (drag oneself, walk slowly)	1
UNSTEAD	yo + CV + yo + CV	unsteady, unreliable	yobo-yobo (feeble, shaky), yoro-yoro (unstable, weak), yochi-yochi (tod- dle), yota-yota (totter)	
FREE	yu + CV + yu + CV or yu + x	free of pressure, relaxing	yu-Qkuri (slowly, at one's leisure), yu-rari (slowly), yusa-yusa (sway, to and fro), yuQ-tari (slow), yuu-yuu (chill / relaxed)	·
Feature ID	Pattern (vowel-mora)	Meaning	Tokens	Anomylous tokens
DEFIC	C + asa + C + asa	disappointing appear- ance due to some defi- ciency	basa-basa (crumbly, friable, disheveled), pasa-pasa (dry), kasa-kasa (dry, rough), wasa-wasa (nervous, restless)	

NOSPACE	g/k + V + ti + g/k + V	lack of fluidity and space	giti-giti (very tight), bati-bati (heavy, brittle), pati-pati (brittle), kati-kati (frozen hard, dried up completely), koti-koti (tense, stiff, frozen hard)	moti-moti mushy
NOVIT	C + obo + C + obo	lack of vitality and energy	syobo-syobo (dispirited, despondent, bleary-eyed)	tobo-tobo (trudge wea yobo-yobo (feeble, sh unsteady)
IDLE	(C) + oro + (C) + oro	slow action, idleness	doro-doro (pulpy, mushy, thick) oro-oro (thrown off balance) goro-goro (lie about idly), boro-boro (in big drops; worn-out), horo-horo (in small drops), poro-poro (in drops)	
BADSFT	(C) + ujya + (C) + ujya	unpleasant softness	gujya-gujya (slushy, sloppy), ujya-ujya (wrig- gle)	
SHAKING	(C) + ura + (C) + ura	shaking, swaying	kura-kura (dizzy, reeling, spinning), yura-yura (quake, sway), mura-mura (unsteady), gura-gura (toppling), bura-bura (swaying, hanging out)	sura-sura smoothly, out a hitch
RSTLSS	(C) + yoro + (C) + yoro	restless, unstable	nyoro-nyoro (long and squirming), gyoro-gyoro (water dribbling) tyoro-tyoro (trickle, flicker), hyro-hyoro (totter, toddle, stagger), kyoro-kyoro (look around restlessly, nervously)	
Feature ID	Pattern (2nd & 4th)	Meaning	Tokens	Anomylous tokens
LIQSWAY	CV + bu + CV + bu	a great amount of liquid or flesh swaying	debu-debu (fat and flabby), gabu-gabu (guzzle/chug, slosh), zabu-zabu (splash)	
DISORD	(C)V + tya + (C)V + tya	disorder, disappointing experience	itya.itya (behave flirtatiously), bitya-bitya (spurting, gotya-gotya (worthless speech), {gotya-gotya (messy, jumbled-up), kutya-kutya (crumpled)	

NICCONT	CV L co L CV L co	1 1 6 6 1	1	
NOCONF	CV + g0 + CV + g0	lack of confidence	mago-mago (at a loss, disorganized), mogo-mogo (mumble), sugo-sugo (disheartened, downcast)	(*************************************
COWARD	(C)V + ji + (C)V + ji	cowardice, bewilder- ment, lack of enthusi- asm/initiative	iji-iji (hesitantly, timidly), moji-moji (bashful, fidget), taji-taji (quail)	maji-maji (to stare [to tently)
IMPERT	CV + ke + CV + ke	impertinent	nuke-nuke (impudently, brazenly) zuke-zuke (bluntly, without reserve), tuke-tuke (rudely)	
BRISK	(C)V + ki + (C)V + ki	brisk, dynamic action	doki-doki ([heart] beat fast, throb), paki-paki (breaking), bati-bati (heavy breaking), poki-poki (breaking), baki-baki (heavy breaking), meki-meki (remarkably, rapidly), syaki-syaki (briskly, concisely), melting, weakening	
MEANDER	(C)V + ne + (C)V + ne	meandering, winding	kune-kune (sway, meander), une-une (winding, tortuous)	
SFTUNR	CV + nya + CV + nya	soft, unreliable, unstable	funya-funya (limply, flabby), kunya-kunya (soft and cuddly) munya-munya (mumble), gunya-gunya (melting, weakened)	
PRESS	CV + si + CV + si	pressure	dosi-dosi (hand over fist, without hesitation), gosi-gosi (scrub), basibasi (whack), gasi-gasi (fierce scrubbing), gisi-gisi (squeeze, be packed), hisihisi (press, feel keenly)	
TIMID	CV + so + CV + so	timid, retiring	boso-boso (in a subdued voice), hiso-hiso (in whispers), koso-koso (secretly, stealthily), moso-moso (slow movement), boso-boso (under one's breath), goso-goso (rummage)	

EXPROP	CV + te + CV + te	exceed the proper amount	bote-bote (fat, obese), gote- gote (gaudy, heavy), kote- kote (thickly, lavishly), bate-bate (exhausted)	mote-mote (sexually tractive)
ANXIETY	(C)V + zu + (C)V + zu	anxiety, impatience	guzu-guzu (grumble), muzu-muzu (burning with desire), uzu-uzu (impatient, itching)	·
Feature ID	Pattern (2nd, 3rd & 4th)	Meaning	Tokens	Anomylous tokens
SUDDEN	C + Q-tari	sudden/abrupt action	gaQ-tari (destroy suddenly), baQ-tari (run into, stop suddenly), paQ-tari (suddenly, abruptly)	
GENTLE	CV + N-wari	gentleness	fuN-wari (fluffy), jiN-wari (well up slowly),yaN-wari (gentle, mild)	
SUCCESS	CV + Q-tiri	successful, positively evaluated, compact	baQ-tiri (perfect), miQ-tiri (full, soft), ga-tiri (full, hard), gaQ-tiri (solid, steady, tight), kiQ-tiri (exact, perfect, tight)	
CLEAR	CV + Q-kiri	clear-cut, exactly	haQ-kiri (clearly, without any misunderstanding), kuQ-kiri (clearly, distinctly), nyoQ-kiri (stuck out), tyoQ-kiri (exactly)	
EXGOOD	CV + Q-pori	exceed the proper amount (with positive connotation)	gaQ-pori (make a pile of money), goQ-pori (in a large quantity), si-pori (wet through, tender, passionate), suQ-pori	·
SUFF	CV + Q-puri	sufficient amount	doQ-puri (to the full, be up to one's neck in), gaQ-puri (drink up a large amount of liquid), taQ-puri (plenty, full of)	
MANY	CV + Q-sari	many	baQ-sari (make a drastic cut), guQ-pori (stab / plunge in completely), doQ-sari (heaps/loads of), fuQ-sari (abundant hair)	

PLENTY	CV + Q-siri	plenty, packed	doQ-siri (massive), giQ-siri (closely, tightly), biQ-siri (filled completely), zuQ-siri (heavy)	
HEAVY	CV + Q-teri	heavy, fat	goQ-teri (thick, stodgy), koQ-teri (filling, rich), poQ- teri (plump, chubby)	
RELAX	(C)V + Q-tori	relaxing	oQ-tori (composed, gentle [personality]), siQ-tori (quiet, calm), uQ-tori (enchanted)	yoQ-tori (chill, relaxe
Feature ID	Pattern (partial redup)	Meaning	Tokens	Anomylous tokens
UNATR	C1v1 + tya + C2v2 + tya	disorder, unattractiveness	betya-kutya (gab), metya- kutya (unreasonable, inco- herent), petya-kutya (chat- ter)	
FIDGET	(C1)V1 + ta + C2V2 + ta	restlessness, fidgety	ata-futa (hastily), dota-bata (make a fuss), jita-bata (flail)	: : :

Appendix B: Combined Trial Two Corpus

mo.go.mo.go	mumble
mo.Q.sa.ri	sluggish
mo.so.mo.so	slow movement
mo.ya.mo.ya	hazy, murky
mo.ku.mo.ku	send up lots of smoke
mo.ri.mo.ri	have thick muscles [e]
mu.ka.mu.ka	retch
mu.N.mu.N	stuffy, sultry
mu.ra.mu.ra	irresistible temptation
mu.ku.mu.ku	growing
mu.ki.mu.ki	have thick muscles
ne.ba.ne.ba	sticky, greasy
ne.ti.ne.ti	sticky, persistent
ne.Q.to.ri	clammy, viscous
no.bi.no.bi	feel at ease
no.ko.no.ko	nonchalantly
no.ro.no.ro	drag oneself
yo.bo.yo.bo	feeble, shaky
yo.ti.yo.ti	toddle
yo.ta.yo.ta	toddler
yo.ro.yo.ro	unstable, weak
yu.Q.ku.ri	slowly, at leisure
yu.Q.ra.ri	slowly
yu.sa.yu.sa	sway to and fro
yu.Q.ta.ri	slowly
yu.u.yu.u	chill (not temperature)
ba.sa.ba.sa	crumbly, disheveled
ka.sa.ka.sa	dry, rough
wa.sa.wa.sa	nervous, restless
pa.sa.pa.sa	dry
gi.ti.gi.ti	very tight
ka.ti.ka.ti	frozen hard, dried up
ko.ti.ko.ti	tense, stiff, frozen
ba.ti.ba.ti	brittle (large)
pa.ti.pa.ti	brittle
so.bo.so.bo	dispirited
to.bo.to.bo	trudge wearily
yo.bo.yo.bo	feeble, shaky, unsteady
do.ro.do.ro	pulpy, mushy
o.ro.o.ro	thrown off balance
go.ro.go.ro	lie about idly
bo.ro.bo.ro	in big drops
ho.ro.ho.ro	in small drops
po.ro.po.ro	in drops
gu.jya.gu.jya	slushy, sloppy
u.jya.u.jya	wriggle
ku.ra.ku.ra	dizzy, reeling
u.ra.u.ra	gentle
yu.ra.yu.ra	quake, sway
su.ra.su.ra	smoothly, without a hitch
	- ·

```
swaying
mu.ra.mu.ra
                      toppling
qu.ra.qu.ra
                      swaying, idling
bu.ra.bu.ra
                      trickle, flicker
tyo.ro.tyo.ro
                      totter, toddle, stagger
hyo.ro.hyo.ro
kyo.ro.kyo.ro
                      look around restlessly, nervously
                      long and squirming
nyo.ro.nyo.ro
gyo.ro.gyo.ro
                      dribbling
                      fat and flabby
de.bu.de.bu
                      guzzle, chug, slosh
qa.bu.qa.bu
                      splash
za.bu.za.bu
i.tya.i.tya
                      flirt
                      messy, jumbled
qo.tya.qo.tya
                      crumpled
ku.tya.ku.tya
bi.tya.bi.tya
                      spurting
                      speak worthlessly
go.tya.go.tya
ma.go.ma.go
                      at a loss, disorganized
                      disheartened, downcast
su.qo.su.qo
i.ji.i.ji
                      hesitantly, timidly
                      bashful, fidget
mo.ji.mo.ji
ta.ji.ta.ji
                      quail
nu.ke.nu.ke
                      impudently, brazenly
                      bluntly, without reserve
zu.ke.zu.ke
tsu.ke.tsu.ke
                      rudely
do.ki.do.ki
                      beat fast, throb
me.ki.me.ki
                      remarkably, rapidly
sya.ki.sya.ki
                      biskly, concisely
pa.ki.pa.ki
                      breaking
ba.ki.ba.ki
                      heavy breaking
po.ki.po.ki
                      breaking
ku.ne.ku.ne
                      sway, meander
u.ne.u.ne
                      winding, tortuous
                      limply, flabby
fu.nya.fu.nya
                      soft and cuddly
ku.nya.ku.nya
                      mumble
mu.nya.mu.nya
                      soft, weakened
gu.nya.gu.nya
do.si.do.si
                      hand over fist, without hesitation
                      squeeze, be packed
gi.si.gi.si
                      press, feel keenly
hi.si.hi.si
go.si.go.si
                      scrub
ba.si.ba.si
                      whack
ga.si.ga.si
                      fierce scrubbing
bo.so.bo.so
                      in a subdued voice
                      in whispers
hi.so.hi.so
ko.so.ko.so
                      secretly, stealthily
                      slow movement
mo.so.mo.so
                      rummage
go.so.go.so
                      fat, obese
bo.te.bo.te
                      gaudy, heavy
go.te.go.te
                      thickly, lavishly
ko.te.ko.te
ba.te.ba.te
                      exhausted
mo.te.mo.te
                      sexy [e]
gu.zu.gu.zu
                      grumble
```

```
burning with desire
mu.zu.mu.zu
u.zu.u.zu
                      impatient, itching
ga.O.ta.ri
                      destroy suddenly
                      run into, stop suddenly
ba.Q.ta.ri
pa.O.ta.ri
                      suddenly, abruptly
fu.N.wa.ri
                      fluffy
ji.N.wa.ri
                      well up slowly
                      gently, mild
ya.N.wa.ri
ba.Q.ti.ri
                      perfect
                      solid, steady, tight
ga.Q.ti.ri
ki.Q.ti.ri
                      exactly, perfect, tight
ha.Q.ki.ri
                      clearly, without misunderstanding
                      clearly, distinctly
ku.Q.ki.ri
nyo.Q.ki.ri
                      stuck out
                      exactly
tyo.Q.ki.ri
                     make a pile of money
ga.Q.po.ri
                      in a large quantity
go.Q.po.ri
                      wet though, tender and passionate
si.Q.po.ri
                      to the full, be up to one's neck
do.Q.pu.ri
ga.Q.pu.ri
                      drink up a lot of liquid
                      plenty, full of
ta.Q.pu.ri
su.Q.pu.ri
                      fits perfectly
ba.Q.sa.ri
                      make a drastic cut
                      heaps / loads of
do.Q.sa.ri
fu.Q.sa.ri
                      abundant hair
                      heaps, loads of
gu.Q.sa.ri
do.Q.si.ri
                     massive
gi.Q.si.ri
                      closely, tightly
zu.Q.si.ri
                      heavy
                      thick, stodgy
go.Q.te.ri
ko.Q.te.ri
                      filling, rich
po.Q.te.ri
                      plump, chubby
o.Q.to.ri
                      composed, gentle
si.Q.to.ri
                      quiet, calm
u.Q.to.ri
                      enchanted
                      laid back
yo.Q.to.ri
                      clammy, viscous
ne.Q.to.ri
be.Q.to.ri
                      sticky, tight [e]
ji.Q.to.ri
                      damp, moist [e]
be.tya.ku.tya
                      qab
                      unreasonable, incoherent
me.tya.me.tya
pe.tya.pe.tya
                      chatter
a.ta.fu.ta
                      hastily
do.ta.do.ta
                     make a fuss
                      flail
ji.ta.ba.ta
```

Appendix C: Original Code:

This research is greatly indebted to Lisa Meeden and Doug Blank of Swarthmore and Bryn Mawr colleges and their colleagues for their work on the Python Robotics. The complete source is available at http://www.pyrobotics.org. See Blank, D.S., Kumar D., Meeden, L. (2005).

```
VOWELS = "aiueo"
VELARS = "kq"
NASALS = "mn"
FRICATIVES = "szSZT"
PALATALS = "y"
CORONALS = "stzdnyr"
LABIALS = "mbwp"
V HIGH = "iu"
V LOW = "a"
V_BACK = "aou"
V LABIAL = "ou"
V TENSE = "iuoe"
MORAIC N = "N"
GEMINATE = "O"
VOICED = "zbgr" + VOWELS + NASALS + MORAIC_N
def firstPosFeature(string, fset):
    if fset.find(string[0]) == -1:
       return 0
    else:
        return 1
def secondPosFeature(string, fset):
    if fset.find(string[len(string)-1]) == -1:
        return 0
    else:
        return 1
def floatingFeature(string, fset):
    for c in fset:
        if string.find(c) != -1:
            return 1
    return 0
def moraFeatures(string):
    features = []
```

```
FEATURE ORDER:
   velar palatal nasal coronal labial fricative
   voiced moraic nasal geminate vowel high vowel low
    vowel back vowel labial vowel tense (14)
    features = features + [firstPosFeature(string, VELARS)]
    features = features + [floatingFeature(string, PALATALS)]
    features = features + [firstPosFeature(string, NASALS)]
    features = features + [firstPosFeature(string, CORONALS)]
    features = features + [firstPosFeature(string, LABIALS)]
    features = features + [floatingFeature(string, FRICATIVES)]
    features = features + [firstPosFeature(string, VOICED)]
    features = features + [firstPosFeature(string, MORAIC N)]
    features = features + [firstPosFeature(string, GEMINATE)]
    features = features + [secondPosFeature(string, V HIGH)]
    features = features + [secondPosFeature(string, V LOW)]
    features = features + [secondPosFeature(string, V BACK)]
    features = features + [secondPosFeature(string, V LABIAL)]
    features = features + [secondPosFeature(string, V TENSE)]
    11 11 11
    #voicing
    if VOICED.find(string[0]) == -1:
        features = features + [0]
    else:
        features = features + [1]
    #velar
    if VELARS.find(string[0]) == -1:
        features = features + [0]
        features = features + [1]
    #fricative
    if FRICATIVES.find(string[0]) == -1:
        features = features + [0]
    else:
        features = features + [1]
    return features
def featurize(string):
    moraList = string.split('.')
    features = []
    for mora in moraList:
        # print mora
        # print moraFeatures(mora)
```

11 11 11

features = features + moraFeatures(mora)

```
return features
def phonaesthize(n, fname, j, dValue, oFile):
    # retrieve string
    tdata h = open(fname)
    tdata = tdata h.readlines()
    11 11 11
    # debug printing
    print "read from file:"
    print tdata
    11 11 11
    k = 0
    #if we're dumping activations ...
    if dValue == 1:
        activationsFile = open("a dump.dat", "w")
        namesFile = open("a names.dat", "w")
    if oFile != "":
        oHandle = open(oFile, "w")
    # master loop
    eList = []
    while k < j:
        k = k + 1
        for line in tdata:
            pFeatures = line.split('\t')[0]
            sList = line.split()
            sFeatures = []
            #hack atoi for sFeatures
            i = 1
            while i < len(sList):
                sFeatures = sFeatures + [string.atoi(sList[i])]
                i = i + 1
            current = featurize(pFeatures)
            results = sFeatures
            #copy to layers
            n.getLayer('input').copyActivations(current)
            n.getLayer('output').copyTargets(results)
            #if we're dumping activations
            if dValue == 1:
                aList = n.getLayer('hidden').getActivationsList()
                for v in aList:
                    activationsFile.write(str(v))
```

```
activationsFile.write("\n")
                namesFile.write(pFeatures)
               namesFile.write("\n")
           #step network
            (error, correct, count) = n.step()
           #record error
           print error
           eList = eList + [error]
           #if we're outputting to a file
           if oFile != "":
               oHandle.write(str(error))
               oHandle.write("\n")
        if k == j - 1:
           aError = 0
           for v in eList:
               aError = aError + v
               aError = aError / len(eList)
           print "FINAL AVERAGE ERROR:"
           print aError
   if dValue == 1:
       activationsFile.close()
       namesFile.close()
if name == ' main ':
   .....
   USAGE:
   python gitaigo.py trainingfile cycles header
   [-s nfile] [-l nfile] [-e efile] [-d] [-o outfile]
   11 11 11
   if sys.argv[3] == '1':
       print "\n...GITAIGO.v1.2....."
       print "...Luke.Smith.2006....."
       print "...Swarthmore College Linguistics...\n"
   # If we're loading from a file ...
   try:
       fsIndex = sys.argv.index("-1") + 1
       n = loadNetworkFromFile(sys.argv[fsIndex])
       print "loaded network from file:"
       print sys.argv[fsIndex]
   except(ValueError):
       n = Network()
       n.addThreeLayers(56,60,37)
       n.setEpsilon(0.25)
```

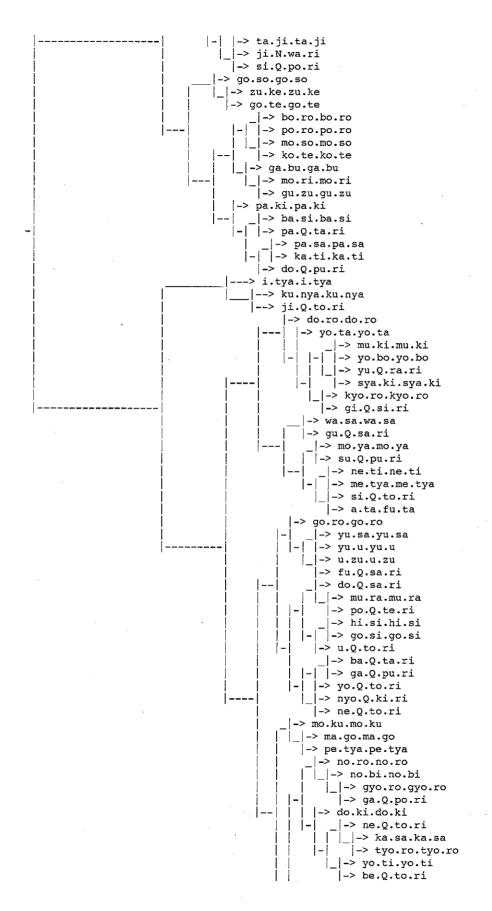
```
n.setMomentum(0.1)
    n.setBatch(0)
    n.setReportRate(100)
    n.setLayerVerification(0) # turn off automatic error checking
# check for activations dump
try:
    if sys.argv.index("-d") > 0:
        dValue = 1
except(ValueError):
    dValue = 0
# check for output dump"
oFile = ""
try:
    if sys.argv.index("-o") > 0:
        oValue = 1
        oFile = sys.argv[sys.argv.index("-o") + 1]
except(ValueError):
    oValue = 0
phonaesthize(n, sys.argv[1], string.atoi(sys.argv[2]), dValue, oFile)
# if we're saving to a file ...
try:
    fsIndex = sys.argv.index("-s") + 1
    n.saveNetworkToFile(sys.argv[fsIndex])
except(ValueError):
    n = Network()
```

Appendix D: Trial Two Cluster Analysis

```
minimum distance = 0.000000
                                  ( mu.ra.mu.ra )
                                                         ( yu.Q.ta.ri )
minimum distance = 0.000000
                                  ( ku.tya.ku.tya )
                                                           ( yu.Q.ta.ri mu.ra.mu.ra )
minimum distance = 0.000009
                                    do.ta.do.ta )
                                                         ( bi.tya.bi.tya )
minimum distance = 0.000012
                                  ( qu.ra.qu.ra )
                                                         ( mu.ku.mu.ku )
minimum distance = 0.000014
                                    zu.Q.si.ri )
                                                        ( gi.si.gi.si )
minimum distance = 0.000017
                                    ka.ti.ka.ti )
                                                         ( pa.sa.pa.sa )
minimum distance = 0.000019
                                  ( ko.Q.te.ri )
                                                        ( ku.ra.ku.ra )
minimum distance = 0.000021
                                  ( ku.Q.ki.ri )
                                                        ( ki.Q.ti.ri )
minimum distance = 0.000033
                                    gi.si.gi.si zu.Q.si.ri ) ( mu.ku.mu.ku gu.ra.gu.ra )
minimum distance = 0.000055
                                    mu.nya.mu.nya )
                                                          ( tsu.ke.tsu.ke )
minimum distance = 0.000057
                                    tyo.O.ki.ri )
                                                         ( gu.nya.gu.nya )
minimum distance = 0.000057
                                    be.Q.to.ri )
                                                        ( yo.ti.yo.ti )
minimum distance = 0.000061
                                    bi.tya.bi.tya do.ta.do.ta )
                                                                       ( mu.ku.mu.ku gu.ra.gu.ra gi.si.gi.si :
minimum distance = 0.000064
                                    ba.ki.ba.ki ) ( so.bo.so.bo )
minimum distance = 0.000074
                                    ku.ra.ku.ra ko.Q.te.ri )
                                                             ( su.ra.su.ra )
minimum distance = 0.000082
                                    yo.ro.yo.ro )
                                                        ( mo.go.mo.go )
minimum distance = 0.000089
                                                       ( yu.sa.yu.sa )
                                  ( yu.u.yu.u )
minimum distance = 0.000112
                                  ( mo.te.mo.te )
                                                        ( pa.ti.pa.ti )
minimum distance = 0.000116
                                  ( tyo.ro.tyo.ro )
                                                           ( ka.sa.ka.sa )
                                                        ( ku.ne.ku.ne )
minimum distance = 0.000120
                                    ya.N.wa.ri )
minimum distance = 0.000146
                                    mu.ku.mu.ku gu.ra.gu.ra gi.si.gi.si zu.Q.si.ri bi.tya.bi.tya do.ta.do.ta
minimum distance = 0.000149
                                  ( su.ra.su.ra ku.ra.ku.ra ko.Q.te.ri )
                                                                           ( yu.Q.ta.ri mu.ra.mu.ra ku.tj
minimum distance = 0.000212
                                    pa.ti.pa.ti mo.te.mo.te )
                                                               ( po.ki.po.ki )
minimum distance = 0.000231
                                    bu.ra.bu.ra mu.ku.mu.ku gu.ra.gu.ra gi.si.gi.si zu.Q.si.ri bi.tya.bi.tya (
minimum distance = 0.000248
                                    yu.Q.ta.ri mu.ra.mu.ra ku.tya.ku.tya su.ra.su.ra ku.ra.ku.ra ko.Q.te.ri )
minimum distance = 0.000255
                                                        ( mu.ki.mu.ki )
                                    yo.bo.yo.bo )
minimum distance = 0.000276
                                  ( mo.ji.mo.ji )
                                                        ( u.jya.u.jya )
minimum distance = 0.000294
                                  ( ga.Q.po.ri )
                                                        ( gyo.ro.gyo.ro )
                                                                        ( go.tya.go.tya )
minimum distance = 0.000308
                                    tsu.ke.tsu.ke mu.nya.mu.nya )
minimum distance = 0.000382
                                    pe.tya.pe.tya )
                                                          ( ma.go.ma.go )
minimum distance = 0.000409
                                    fu.Q.sa.ri )
                                                        ( u.zu.u.zu )
                                  ( po.ki.po.ki pa.ti.pa.ti mo.te.mo.te )
minimum distance = 0.000430
                                                                                ( so.bo.so.bo ba.ki.ba.ki )
minimum distance = 0.000465
                                    go.tya.go.tya tsu.ke.tsu.ke mu.nya.mu.nya )
                                                                                    ( u.ra.u.ra )
minimum distance = 0.000475
                                                       ( nyo.Q.ki.ri )
                                    ne.O.to.ri )
minimum distance = 0.000505
                                                        ( ji.N.wa.ri )
                                    si.Q.po.ri )
minimum distance = 0.000526
                                    gu.nya.gu.nya tyo.Q.ki.ri bu.ra.bu.ra mu.ku.mu.ku gu.ra.gu.ra gi.si.gi.sí
minimum distance = 0.000556
                                  ( ka.sa.ka.sa tyo.ro.tyo.ro )
                                                                      ( ne.Q.to.ri )
minimum distance = 0.000606
                                  ( so.bo.so.bo ba.ki.ba.ki po.ki.po.ki pa.ti.pa.ti mo.te.mo.te )
                                                                                                        (bo.
                                                                  ( u.ra.u.ra go.tya.go.tya tsu.ke.tsu.ke mu.
minimum distance = 0.000710
                                  ( ki.Q.ti.ri ku.Q.ki.ri )
                                    gyo.ro.gyo.ro ga.Q.po.ri )
minimum distance = 0.000734
                                                                     ( no.bi.no.bi )
                                                         ( yu.Q.ra.ri )
minimum distance = 0.000794
                                  ( sya.ki.sya.ki )
minimum distance = 0.000864
                                                        ( kyo.ro.kyo.ro )
                                  ( gi.Q.si.ri )
minimum distance = 0.000907
                                    minimum distance = 0.000959
                                    su.Q.pu.ri ) ( mo.ya.mo.ya )
minimum distance = 0.001050
                                    yo.ti.yo.ti be.Q.to.ri ) ( ne.Q.to.ri ka.sa.ka.sa tyo.ro.tyo.ro )
                                                     ( za.bu.za.bu )
minimum distance = 0.001120
                                    ga.O.ti.ri )
minimum distance = 0.001220
                                  (ta.ji.ta.ji)
                                                        ( mo.Q.sa.ri )
minimum distance = 0.001222
                                    yu.Q.ra.ri sya.ki.sya.ki )
                                                                     ( mu.ki.mu.ki yo.bo.yo.bo )
minimum distance = 0.001303
                                    ko.ti.ko.ti ku.ne.ku.ne ya.N.wa.ri ) ( u.jya.u.jya mo.ji.mo.ji )
minimum distance = 0.001425
                                    mo.go.mo.go yo.ro.yo.ro yu.Q.ta.ri mu.ra.mu.ra ku.tya.ku.tya su.ra.su.ra 1
minimum distance = 0.001539
                                    ba.te.ba.te ) ( mu.N.mu.N )
minimum distance = 0.001552
                                  ( ne.Q.to.ri ka.sa.ka.sa tyo.ro.tyo.ro yo.ti.yo.ti be.Q.to.ri )
minimum distance = 0.001677
                                    qo.si.qo.si )
                                                        ( hi.si.hi.si )
minimum distance = 0.001772
                                    ga.Q.pu.ri)
                                                       ( ba.Q.ta.ri )
minimum distance = 0.002093
                                    no.bi.no.bi gyo.ro.gyo.ro ga.Q.po.ri )
                                                                                 ( no.ro.no.ro )
minimum distance = 0.002527
                                    po.Q.te.ri )
                                                  ( mu.ra.mu.ra )
minimum distance = 0.002778
                                  ( do.ki.do.ki ne.Q.to.ri ka.sa.ka.sa tyo.ro.tyo.ro yo.ti.yo.ti be.Q.to.ri )
minimum distance = 0.002845
                                                                  ( mo.Q.sa.ri ta.ji.ta.ji )
                                  ( ji.N.wa.ri si.Q.po.ri )
minimum distance = 0.002980
                                  ( kyo.ro.kyo.ro gi.Q.si.ri )
                                                                     ( mu.ki.mu.ki yo.bo.yo.bo yu.Q.ra.ri sya
                                                                 ( yu.sa.yu.sa yu.u.yu.u )
minimum distance = 0.003189
                                  ( u.zu.u.zu fu.Q.sa.ri )
                                                         (bo.ro.bo.ro)
minimum distance = 0.003206
                                  ( po.ro.po.ro )
minimum distance = 0.003401
                                  ( u.jya.u.jya mo.ji.mo.ji ko.ti.ko.ti ku.ne.ku.ne ya.N.wa.ri )
                                                                                                       ( bo.:
minimum distance = 0.003418
                                  ( pa.Q.ta.ri )
                                                       ( ba.si.ba.si )
```

```
minimum distance = 0.003654
                                   ( ko.te.ko.te )
                                                          ( mo.so.mo.so )
minimum distance = 0.003872
                                   ( ma.go.ma.go pe.tya.pe.tya )
                                                                         ( mo.ku.mo.ku )
minimum distance = 0.004173
                                   ( za.bu.za.bu ga.Q.ti.ri )
                                                                     ( ho.ro.ho.ro )
minimum distance = 0.004222
                                   ( u.Q.to.ri )
                                                        ( hi.si.hi.si go.si.go.si )
minimum distance = 0.004790
                                   ( vo.0.to.ri )
                                                         ( ba.Q.ta.ri ga.Q.pu.ri )
minimum distance = 0.005105
                                   ( qu.zu.qu.zu )
                                                          ( mo.ri.mo.ri )
minimum distance = 0.005478
                                    ( ko.so.ko.so )
                                                           ( nyo.ro.nyo.ro )
minimum distance = 0.005564
                                   ( u.ra.u.ra go.tya.go.tya tsu.ke.tsu.ke mu.nya.mu.nya ki.Q.ti.ri ku.Q.ki.ri
                                     mu.ra.mu.ra po.Q.te.ri )
minimum distance = 0.005745
                                                                    ( do.Q.sa.ri )
minimum distance = 0.005890
                                   ( mu.ki.mu.ki yo.bo.yo.bo yu.Q.ra.ri sya.ki.sya.ki kyo.ro.kyo.ro gi.Q.si.ri
minimum distance = 0.006480
                                   ( mu.N.mu.N ba.te.ba.te )
                                                                    ( ba.ti.ba.ti )
minimum distance = 0.007183
                                   ( ho.ro.ho.ro za.bu.za.bu ga.Q.ti.ri )
                                                                                 ( bo.so.bo.so so.bo.so.bo ba.l
minimum distance = 0.009678
                                   ( mo.so.mo.so ko.te.ko.te )
                                                                      ( bo.ro.bo.ro po.ro.po.ro )
minimum distance = 0.009957
                                     me.tya.me.tya )
                                                            ( ne.ti.ne.ti )
minimum distance = 0.010037
                                   ( hi.si.hi.si go.si.go.si u.Q.to.ri )
                                                                                 ( do.Q.sa.ri mu.ra.mu.ra po.Q.t
minimum distance = 0.010299
                                   ( a.ta.fu.ta )
                                                         ( si.Q.to.ri )
minimum distance = 0.011167
                                    ( nyo.Q.ki.ri ne.Q.to.ri )
                                                                     ( ba.Q.ta.ri ga.Q.pu.ri yo.Q.to.ri )
minimum distance = 0.011349
                                   ( do.Q.pu.ri )
                                                         ( pa.sa.pa.sa ka.ti.ka.ti )
minimum distance = 0.012010
                                     no.ro.no.ro no.bi.no.bi gyo.ro.gyo.ro ga.Q.po.ri do.ki.do.ki ne.Q.to.ri ka
minimum distance = 0.012103
                                   ( yo.ta.yo.ta mu.ki.mu.ki yo.bo.yo.bo yu.Q.ra.ri sya.ki.sya.ki kyo.ro.kyo.ro
minimum distance = 0.012453
                                   ( mo.ri.mo.ri gu.zu.gu.zu )
                                                                      ( ga.bu.ga.bu )
minimum distance = 0.013591
                                     go.te.go.te )
                                                          ( zu.ke.zu.ke )
minimum distance = 0.015558
                                     pa.sa.pa.sa ka.ti.ka.ti do.Q.pu.ri )
                                                                                 ( ba.si.ba.si pa.Q.ta.ri )
minimum distance = 0.016346
                                     ba.ti.ba.ti mu.N.mu.N ba.te.ba.te )
                                                                                 ( nyo.ro.nyo.ro ko.so.ko.so )
minimum distance = 0.021130
                                     ga.bu.ga.bu mo.ri.mo.ri gu.zu.gu.zu )
                                                                                   ( bo.ro.bo.ro po.ro.po.ro mo.
minimum distance = 0.021733
                                   ( yu.sa.yu.sa yu.u.yu.u u.zu.u.zu fu.Q.sa.ri )
                                                                                       ( go.ro.go.ro )
minimum distance = 0.022283
                                    ( si.Q.to.ri a.ta.fu.ta )
                                                                   ( ne.ti.ne.ti me.tya.me.tya )
minimum distance = 0.023636
                                   ( qu.Q.sa.ri )
                                                        ( wa.sa.wa.sa )
minimum distance = 0.025616
                                     mo.Q.sa.ri ta.ji.ta.ji ji.N.wa.ri si.Q.po.ri )
                                                                                           ( nyo.ro.nyo.ro ko.s
minimum distance = 0.027316
                                   ( ba.si.ba.si pa.Q.ta.ri pa.sa.pa.sa ka.ti.ka.ti do.Q.pu.ri )
                                                                                                         (pa.k:
minimum distance = 0.027425
                                   ( ba.Q.ta.ri ga.Q.pu.ri yo.Q.to.ri nyo.Q.ki.ri ne.Q.to.ri )
minimum distance = 0.030766
                                     zu.ke.zu.ke go.te.go.te )
                                                                      ( go.so.go.so )
minimum distance = 0.041142
                                     ne.ti.ne.ti me.tya.me.tya si.Q.to.ri a.ta.fu.ta )
                                                                                               ( mo.ya.mo - su.
minimum distance = 0.045747
                                     do.Q.sa.ri mu.ra.mu.ra po.Q.te.ri hi.si.hi.si go.si.go.si u.Q.to.ri
                                                                                                           .Q.t
minimum distance = 0.052773
                                   ( nyo.ro.nyo.ro ko.so.ko.so ba.ti.ba.ti mu.N.mu.N ba.te.ba.te mo.Q.sa. : ta.
minimum distance = 0.058806
                                     pa.ki.pa.ki ba.si.ba.si pa.Q.ta.ri pa.sa.pa.sa ka.ti.ka.ti do.Q.pu.
minimum distance = 0.060869
                                     mo.ku.mo.ku ma.go.ma.go pe.tya.pe.tya no.ro.no.ro no.bi.no.bi gyo.ro.jyo.:
minimum distance = 0.071151
                                     ji.Q.to.ri )
                                                        ( ku.nya.ku.nya )
minimum distance = 0.075812
                                     mo.ya.mo.ya su.Q.pu.ri ne.ti.ne.ti me.tya.me.tya si.Q.to.ri a.ta.fu.ta )
minimum distance = 0.100507
                                   ( wa.sa.wa.sa gu.Q.sa.ri mo.ya.mo.ya su.Q.pu.ri ne.ti.ne.ti me.tya.me.tya s:
minimum distance = 0.102745
                                   ( bo.ro.bo.ro po.ro.po.ro mo.so.mo.so ko.te.ko.te ga.bu.ga.bu mo.ri.mo.ri gu
minimum distance = 0.131916
                                     go.so.go.so zu.ke.zu.ke go.te.go.te bo.ro.bo.ro po.ro.po.ro mo.so.mo.so ka
minimum distance = 0.135562
                                   ( ku.nya.ku.nya ji.Q.to.ri )
                                                                       ( i.tya.i.tya )
minimum distance = 0.171335
                                     go.ro.go.ro yu.sa.yu.sa yu.u.yu.u u.zu.u.zu fu.Q.sa.ri do.Q.sa.ri mu.ra.mu
minimum distance = 0.412362
                                   ( do.ro.do.ro yo.ta.yo.ta mu.ki.mu.ki yo.bo.yo.bo yu.Q.ra.ri sya.ki.sya.ki }
minimum distance = 0.841598
                                   ( i.tya.i.tya ku.nya.ku.nya ji.Q.to.ri do.ro.do.ro yo.ta.yo.ta mu.ki.mu.ki y
Resulting Tree =
                                 -> bo.so.bo.so
                                    _|-> so.bo.so.bo
                                    -> ba.ki.ba.ki
                                  | |-> po.ki.po.ki
                                    |_|-> pa.ti.pa.ti
                                      -> mo.te.mo.te
                                  |-> u.jya.u.jya
                                  |-> mo.ji.mo.ji
                                 | |-> ko.ti.ko.ti
                                  |_|-> ku.ne.ku.ne
                                    -> ya.N.wa.ri
                               -> ho.ro.ho.ro
                              |_|-> za.bu.za.bu
                                 -> ga.Q.ti.ri
                                 -> nyo.ro.nyo.ro
                                -> ko.so.ko.so
                                 -> ba.ti.ba.ti
                                |_|-> mu.N.mu.N
                                  -> ba.te.ba.te
```

|-> mo.Q.sa.ri



References

- [1] HAMANO, S., "The Sound-Symbolic System of Japanese" CSLI Publications
- [2] Ivanova, G., "On the Relation between Sound, Word Structure and Meaning in Japanese Mimetic Words" *Iconicity in Language* http://www.trismegistos.com/IconicityInLanguage/, (Utsunomiya University, Japan, 20 Jan. 2002)
- [3] Blank, D.S., Kumar, D., Meeden, L., and Yanco, H., "The Pyro Toolkit for AI and Robotics," AI Magazine [available at http://pyrorobotics.org/?page=PyroPublications] (2005)
- [4] OKAMOTO, N., Personal Correspondence (Tochigi Prefecture, Japan, 19 Apr. 2006)
- [5] SHIBATANI, M. The Languages of Japan, (Cambridge [England], New York: Cambridge University Press, 1990)
- [6] TERASAKI, M., Personal Communication (Swarthmore College, Swarthmore, PA, 25 Apr. 2006)