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0. Abstract

Four methods for inferring biological phylogenies were applied to Iexical and
structural data of a representative sample of the Austronesian Family of languages. After
introducing individual languages and the Family as a whole, each combination of method
and data type is performance reviewed through topological comparison with a ‘known’
tree. The results suggest a two-step method which is described in detail. First,
NeighborNet analysis is used to qualitatively assess how “phylogenetic” the data are and
thus if tree building is justified. Next, Bayesian analysis is used to construct a tree.
Under the proposed method, a combined lexical and structural data set produced a fully
historically accurate tree, thus supporting past research through an alternative method.
The increase in accuracy with combined data suggests that inferring the natural history of
the whole language depends on reconciling the phylogenetic signals from component
parts; a tension between the lexicon and structures with traceable correlates in both
methods. Lastly, the evolutionary association of structural features is assessed. This
resuit highlights the potential productivity of using biological methods to pursue
previously untenable questions about language evolution.

I. Linguistic Phylogenetics: An Introduction

Languages and organisms both diversify over time through an evolutionary
process. And while the most salient changes occur at the level of the whole language or
species, inferring the natural history of the whole depends on comparing representative
parts. Until the late 1950’s, biological ancestral refationships were established through
comparisons of morphology and behavior. Post-molecular revolution however, the near
limitless amount of comparative DNA, RNA and protein data were assumed to establish,
with great resolution, the evolutionary history of life. Surprisingly, for many species the
trees of relatedness defined by molecules and morphology disagreed. Since then,
biologists have struggled to develop strategies to reconcile incongruent natural histories.
Their progress has led to a robust literature, well-oiled computational machinery, and
many strongly supported phylogenies.

Linguistics, however, has had no revolution of data type to catalyze novel
approaches; “the comparative method” is still used to establish language family sub-
groupings through shared innovation (Pawley and Ross, 1993). But like organisms,

languages are component systems, comprised of phonology (sounds), lexicon (words),



and morpho-syntax (structures)(figure 1). As such, the methods used to compare and

resolve the component histories of an organism can be applied to those of language.

COMPONENT SYSTEMS

LANGUAGE ORGANISM

STRUCTURE
LEXICOM
PHONOLOGY

Figure 1. Components of Languages and Organisms

But why does an accurate natural history of the whole depend on reconciling the
histories of the component parts? It should be possibie to rely on the single most
informative sub-component of either system to tell the entire story., While it is true that
some categories of comparison are better than others due to resilience against
‘borrowing,’ the necessity for component congruence stems from inter- and intra-
differences on the constraints of evolution'. For example, areas of the genome coding for
proteins that perform the most basic and essential functions of life {e.g. metabolism, cell
replication) are relatively intolerant of change, while non-coding areas can sustain large
quantities of mutations without affecting the success of the organism. Similarly in
language, words for the most basic and essential descriptions of a certain lifestyle are in
general less likely to be borrowed than words for new or peripheral items (Atkinson et
al., 2005). In terms of phylogenies, the more constrained sub-components are helpful for
inferring ancient relationships “deep” in time, while unconstrained sub-components help
resolve more “shallow” recent histories. Put together, natural histories based on
consensus allow individual components parts to resolve their respective time-scales while
leaving areas of contradiction unsupported. This approach has been called ‘Total

Evidence’ in the phylogenetics literature (De Queiroz et al., 2005).



Historically, hypotheses of “deep” language relationships have been controversial.
While intra-family groupings can be successfully established by comparing sound change
and lexical similarity, both data types are dependent on the presence of cognates or
“homologous™ words. The lexical component of language, like an unconstrained gene,
may lose and acquire forms at a rate that masks similarity after a certain time period -
approximately 6,000 to 8,000 years ~ a depth that is “shallower” thaﬁ most families
(Gray, 2005;Warnow, 1997 )(figure 2).
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Figure 2. A graph showing the projected haif-life for 200 lexical meanings. Dates were generated
from a model based on distribution of rates for lexical evolution (Pagel, 2000)(taken from Gray, 2003).!

Inferring “dee.p” relationships of language must then depend on a more slowly
evolving data type; unfortunately, there is only one candidate component left — structural
data — which though promising, has a host of theoretical and practical caveats.

Structural data can be roughly defined as the grammar of the language. Unlike
words that form an inexhaustible or “open” class, language structures form a finite or
“closed” class. And while the boundaries of a word are self-evident, defining structural
features is more artificial; that is, categories must be constructed which accurately
compare and contrast strategies from a diversity of grammatical systems. Luckily, the

relevant grouping of language structures is the mandate of language typology and over



years of research, typologists have developed robust and productive parameters of
comparison.

The most major confound of structurally driven phylogenies is ‘borrowing’, when
shared similarity arises from contact instead of ancestry; this distinction is often difficult
to reconcile however, since both processes of change are driven by social diffusion
(Enfield, 2005). With this similarity in mind, the psychological and functional quality of
the characters of comparison must be clearly stated. In specific, while lexical items are
also susceptible to borrowing, the ‘closed class’ nature structural of data (in other words,
the grammatical limits of human language) necessitates comparing a small, discreet
number of possibilities for a given feature, instead of a much larger number of
possibilities for the realization of a word. For example, there are only six possible orders
of the Subject, Verb and Object, while there are thousands of words for “head.” Thus
structural data produces fewer data points, which means and ‘borrowing” becomes harder
to detect. Features that have been substantially borrowed are called “areal’, and despite
the difficulty, their identification and/or exclusion is necessary to maintain the integrity
of the phylogenetic signal.

The challenge of detecting ‘areal’ effects has a non-trivial parallel in biology: for
bacteria, which constitute the largest and most abundant kingdom on Earth, borrowing
(technically called horizontal transfer) of genetic material between species is thought to
be a major player in evolution (Ochman, Lawrence and Groisman, 2000). Biological
strategies, in conjunction with extra-linguistic information about the prehistoric
interactions of humans (e.g. archaeological and genetic evidence), may help historically
locate possible contact situations and those features involved (Curnow, 2001). While
difficult to determine, areal influences do not undermine the possibility of structural
phylogenies: since the spread of individual features differs, areal effects across a diverse
set of features should only make the phylogenetic signal more “noisy” rather than
inaccurate (Wichmann, personal communication).

This report attempts to introduce the power of biological phylogenetics for
inferring the ancestral relationships of languages. By drawing appropriate parallels
between evolutions, the computationally driven approaches used by biologists can be

productively adapted to linguistic data. The methods outlined are not intended to replace



traditional methods, but rather to provide an additional tool to verify established
groupings and generate new hypotheses. I present these tools through their application to
a well-understood sample of 26 Austronesian languages in hopes of satisfying three
goals: 1. To replicate the agreed upon grouping of these languages; 2. To demonstrate
qualitatively and statistically that lexical and structural data should be used in
compliment; and 3. To use the diversity of biological software to generate wholly new -
and potentially meaningful — data concerning language evolution. The Austronesian
Family, due to its large size, structural diversity, data availability, established history, and
nature of dispersal presents an ideal situation to pursue the stated goals.

This report is structured in five sections. Following the introduction (I), the
Austronesian language family will be introduced through its history and geographic
distribution, along with the experimental sample of languages (1I). Next | will describe
how the data were collected and encoded (III). Thirdly I will describe the basic
phylogenetic methods and their resulting applications to the lexical and structural data
~ sets (IV). Based on the results in IV, I suggest a basic but detailed methodology for
phylogenetic analysis and interpretation of linguistic data (V). Lastly, I demonstrate how
the questions and applied solutions of evolutionary biology can be used to tackle new
questions and produce new types of results for historical linguistics (VI). The final

section is a conclusion {VII),

II. The Austronesian Language Family and Experimental Sample

The Austronesian Family (AF) represents a substantial portion of the world’s
linguistic heritage in terms of number and space. The Ethnologue defines 1268 languages
in the family, comprising 20% of the world’s total, manifesting a speaker population of
approximately 270 million. In terms of surface area, the AF falls only behind Indo-
European, with a latitudinal expanse from Madagascar to Easter Island (2/3 of the
world’s circumference!) and a longitudinal distance from New Zealand to Hawaii
(Adelaar, 2005)(Pawley and Ross 1993). How has one language family come to inhabit

such a vast and oceanic habitat?



The story of the AF is the audible reflection of a prehistoric expansion in search
of land suitable for agriculture. The original Austronesian speakers (AS) were
agriculturalists who migrated out of modern-day Taiwan around 6,000 years ago. The
original migrants splintered, following two different paths. One was south-west, through
Borneo, Indochina and eventually the Malay Peninsula; this group spoke what would
become the Western-Malayo-Polynesian (WMP) languages. The second movement was
more directly southern through the Philippines, Indonesia, and Melanesia; this group was
responsible for those languages classified as Eastern-Central Malayo-Polynesian
(CEMP).

These migrations brought the AS to both previously inaccessible new areas and to
old areas, inhabited in some cases for more than 40,000 years (Pawley and Ross, 1993).
The indigenous people encountered in Melanesia were taro farmers, living predominantly
in the mountains and speaking languages wholly unrelated to Austronesian. While the
AS never penetrated far inland, contact between the two cultures had linguistic
repercussions, as features diffused between the speaking communities (Ross, 2001).
Other offshoots of the AS developed technology for long distance navigation and spread
predominantly eastwards through the Solomons toward the virgin islands of Oceania —
and into, for the most part, linguistic isolation.

While the aréhaeological and genetic evidence continues to clarify the murky
details of Austronesian expansion, the need to understand Austronesian history from a
linguistic perspective is clear. Not only for evaluating the historical claims of
archaeology and genetics, but as a model system for understanding language evolution,

both contact induced and stochastically (rahdomly) driven.
i. History of Austronesian Linguistics

The 1dentification of the AF, originally coined as Malayo-Polynesian, most
probably originates with the Dutchmen Hadrian Reland in 1706. The first printed work
referencing the Malayo-Polynesian Family was in Withelm von Humboldt’s {ber die
Kawi-Sprache auf der Insel Java (1836-1839) (Tryon, 1995). Comparative

reconstructions were first undertaken by H.N. van der Tuuk in the 1860’s, but not until



the fieldwork of Otto Dempwolff in the early 1900°s were major strides achieved.
Dempwolff not only reconstructed 2215 Proto-Austronesian lexical items, but also
assembled the constituent sounds of the Proto-Austronesian, Proto-Oceanic and Proto-
Polynesian phonologies, establishing these new groupings in the face of older geographic
ones (Tryon, 1995).

Comparative research on Ausironesian exploded in the 1960’s, with large
additions and modifications to Dempwolff’ original work by Dyen, Grace and Dahl.
Recently, Robert Blust (1978) has hypothesized the most detailed sub-grouping scheme,
which, though hotly debated, is the most accepted amongst scholars (Tryon, 1995). In
this analysis, the groupings presented in Tryon (1995), which follow Blust (1978,1990)
for the highest order grouping and Ruhlen (1987), Grimes (1990), Ross (1988) and Lynch
and Tryon (1985) for the more specific groupings of the WMP, CMP, Oceanic, and
Central-Eastern Oceanic respectively, are used as a ‘known’ reference for the evaluating

the accuracy of the experimental phylogenies.

ii. Blust’s Sub-Groupings and the Dynamics of Dispersal

Blust’s highest order distinction seperates three Formosan sub-groups (Atayalic,
Tsouic, and Paiwanic), spoken on Taiwan, from a group with everything else, called
Malayo-Polynesian. The Malayo-Polynesian group is divided into Western and Central-
Eastern. Central-Eastern is further divided into its Central and Eastern components, with
the Eastern group again split in two: the South Halmahera-West New Guinea group and
the Oceanic group. Figure 3 is a simplification, only showing those groupings from

which sample languages were taken.
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Figure 3. Blust’s (1983) Sub-Groupings tailored to represent the language sample (in red). The numbers in parentheses
represent (the number of branches shown/the total number under the node) (adapted from Tryon, 2005).

In his review of Austronesian sub-groupings, Adelaar (2005) makes it clear that

support ~ and scholarly acceptance — is highly variable. In fact, the term ‘sub-grouping’

as a catch-all is itself called into question by Ross (1995), who suggests we reserve the

term for instances of speaker group separation, as opposed to gradual dialect

differentiation, which Ross (1995) coins as ‘linkage.’ In the natural history of

Austronesian, differentiation through ‘sub-grouping’ versus ‘linkage’ follows a regular

pattern driven by a continuous migration. In the model Ross (1995) puts forward, each

hypothesized a node consists of a “stay-at-home” group, which as the name implies,

remained in the area settled while a second group, which I will call the “movers,”

continued on their path; the languages of the “stay-at-home” group would theoretically -

evolve through linkage, while the “movers” would evolve through separation (figure 4).
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Figure 4. A schematic of Ross’s (1995) model for the evolution the Austronesian Family

The differential effect of these two evolutionary scenarios has an impact on the
eligibility of sub-grouping. The main difference concerns the presence or absence of an
internal hierarchy, since “stay-at-home” languages may not have a reconstructible higher-
order (Ross 1995). In the case of the most primal Austronesian node, Ross (1995)
suggests that a “stay-at-home” situation occurred in Taiwan before the speakers of what
would be Proto Malayo-Polynesian left; it is therefore justifiable to ask from which
Formosan language Proto Malayo-Polynesian sprung. Preliminary evidence suggests
Amis and Bunun as the most likely candidates, because of a unique sound merger (*C

and *t ) shared with Proto Malayo-Polenesian.



iii. Austronesian Language Groups and Sample Language Descriptions

(figure .5)

Formosan Languages

Both Proto-Austronesian (pAN) and Proto-Malayo-Polynesian (pMP) have been
substantially reconstructed, especially in terms of lexicon and phonology. The existence
of credible reconstructions supports strongly the division between the Formosan and
Malayo-Polynesian. The internal groupings, as stated above, are much less accepted and
may not have higher-order resolution (Ross 1995). There is a relatively accepted
difference between the Atayalic languages and all others, with another more tentative
division of non-Atayalic languages into Tsouic and Paiwanic groups. One of the most
pressing questions surrounding the internal hierarchy of the Formosan languages has to
do with potential relationships to Proto Malayo-Polynesian; more explicitly, is the
language that evolved into pMP still spoken in some form on mainland Taiwan or did the
entire speaker community migrate?

Other attempts have been made to associate the Formosan languages with other
groupings. For example, some scholars (Dyen and Tsuchida, 1991)(Wolff, 1995) have
suggested that the Formosan and “Philippine languages™ should be grouped together, on
account of similarities in lexicon and morphosyntax. This suggestion is highly
controversial, as are the nebulous boundaries of the “Philippine langﬁages” in general

(Adelaar, 2005).

The Formosan languages included in the sample are the following, listed by
tentative sub-group: (This structure for presenting descriptions of the language sample is

generally followed for all groups.)

13



Atayalic: (Atayal and Seediq)

Atayal

Atayal is spoken by the second largest indigenous group in Taiwan. They
populate the mountainous northern region. The Ethnologue (2005) reports ~84,000 total
speakers and two dialects, Sqolyeg and Ts’ole’. Atayal and Seedig are very closely
related and together comprise two of the ten Formosan languages with over 1,000

speakers (Rau, 1992).

Seedig

Seediq is spoken slightly south of Atayal, in the valley regions running from
central Taiwan to the Pacific. The speaker community consists of two main dialects,
Eastern (Toda-Truku) and Western (Paran-Tongan); these dialects have recognized
differences in terms of phonology, syntax and lexicon, though Paran is the standard
dialect for the standard Seediq orthography. The Ethnologue (2005) identifies 4,750
speakers as of 2002 (Holmer, 1996).

Paiwanic: (Paiwan)

Paiwan

Paiwan is a language of Taiwan, spoken by some 67,000 people in the Southern
area of the country (Ethnologue, 2005). There are five ethnic groups identified within the
Paiwan people, each with their own distinguishing cultural traits, but no information is
reported on dialect variation (http://edu.ocac.gov.tw/local/tour_aboriginal

/english/a/07.htm).

14



GG Sy 2y g ey

uefEmEH

[N

anwleIzman

Y

ILLN

19MEUSY oo

ST

vt
mrraa®

#

e e

o amoa
RIS

wrnaenna

asadey

[CIEITIE I Y
ot bal

.

sdnadigng auRas(y-uet ay, 'y dupy

- auoweyn

o

4

e u L A

R

B LA T,
s..._i.u”n.,ru.o:n:nuu
. "
.Jrl.ma_mmu._.
s WA L
b} upBiaduceday
7 . s
Ao
womEg ., LT U
N i
e bipsag B
waddyy e ¥ NILHD o vt
e e PO 1

T
e ueey

LT

eqoy ejeg
AW

15 are

ure 5. A map of the geographic domain of the Austronesian Family. Languages used in this analys

o
p=J

i

F

listed in red (adapted from Tryon, 1993).

15



MP Languages

As mentioned above, pMP is a reconstructible and accepted sub-group. Ross
(1995) mentions two important MP innovations that are absent from the Formosan
languages: 1. a pronoun shift to reflect the polite possessive and 2. a derivational prefix
which pivots the actor and undergoer (Blust, 1977; Dahi, 1976 and Reid, 1982; from
Ross, 1995). Phonologically, pMP experiences several characteristic phonemic mergers
from pAN, including *C and *t = *t and *L and *n -> *n, as well as the development of
a palatal nasal *fi (Blust, 1990; from Ross, 1995).

The MP outlier languages, which lack support for a more detailed grouping, are as

follows:

MP Outliers: (Chammorro, Palauan and Yapese)

Chamorro

Chamorro is the national langue of the Guam and is in active use. It is spoken by
some 62,500 speakers on the island with an additional 1,400 speakers oftf-island
(Ethnologue, 2005). There are dialect differences, but all mutually comprehensible.
Spanish has had considerable influence on the Chamorro lexicon and sound system

(Topping, 1973).
Palanan
Palauan is the language of the Palauan Islands in Micronesia. Palauan has a

speaker community of ~ 15,000, with little dialect variation (Ethnolbgue, 2005). There

are also speakers of Palauan on Guam.
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Yapese

Yapese is spoken by ~6,600 people on the four reef-enclosed islands of Yap
(Ethnologue, 2005). Yap is situated in the Western Caroline Islands and is one of the
four Micronesian states. Yapese has loan words from Spanish, Japanese, German and

English (Hsu, 1969).

WMP Languages

Little is known about the genetic affiliations within the WMP subgroup. Ross
(1995) chooses to further differentiate the 9 sub-groups of Blust (figure 3) to avoid
presumptions of higher order relationships. I will only refer to those sub-groups of Ross
(1995) which contain sample langnages (Appendix Table 1). 1 will use the following

format:
General Geographic Position: Sub-Groups of Ross (1995) (sampled language/s)

Philippines: Meso-Philippines (Bikol, Cebuano, and Tagalog) Northern Philippines
{Bontok, Kapampangan)

In attempts to define the members of this sub-group, Ross (1995) states that,
“students of Philippine languages have traditionally spoken of a “Philippine” sub-group
that includes all languages of the Philippine archipelago (except Sama-Bajaw “sea
gypsy” languages), the languages of the Batan Islands between the Philippines and
Taiwan, and several groups of languages spoken in the northern arm of Sulawesi, namely
Sangiric, Minahasan and Gorontalo-Mongondic” (p.73). Attempts to reconstruct a Proto-
Philippine have met with much scrutiny, and some analyses negate this possibility by
separating the Southern and Northern Philippine group from the Meso Philippine group
(Reid,1982; from Ross,1995).

17



Bikol

There are around 3.5 million speakers of Bikol languages in the Philippines
(Ethnologue, 2005). The Ethnologue (2005) defines 8 distinct languages situated in three
sub-groups: Coastal, Inland and Pandan. These languages are spoken on the southern
peninsula of Luzon island, along with areas in the provinces Catanduanes and Masbate;
‘the mainland provinces with speaker communities are Camarines Norte, Camarines Sur,
Albay and Sorsogon (Mintz, 1971b). The Bikol language chosen for this study is ‘Central
Bicolano, which alone has ~2.5 million speakers and part of the Coastal sub-group

(Ethnologue, 2005).

Cebuano

There are approximately 20 million speakers of Cebuano, making it one of the
two largest languages of the Philippines (Ethnologue, 2005). The Ethnologe (2005)
identifies 5 separate dialects, one of which, Boholano, may be considered a distinct
language. Cebuano is spoken mainly in Central and Southern Philippines, with
communities on the islands of Negros, Cebu, Bohol, Visayas, as well as in parts of

southern Mindanao (Valkama, 2000).
Tagalog

In the Philippines, Tagalog is spoken by around 24% (~17 million) of people as a
first language and some 40 million as a second language. Tagalog is the lingua franca in
Manilla and the mosf dominant language on the main island of Luzon. Tagalog also
forms the base from which Filipino, the national language of the Philippines, has been
crafted. Tagaloga speakers can be found throughout the world, including the U.S,
Canada, Saudi Arabia and the U.K. (Ethnologue, 2005).

18



Bontok

Bontok is a set of dialects spoken by ~ 40,000 in the central mountain province of

Luzon, Philippines (Ethnologue, 20053).
Kapampangan

Kapampangan is spoken by ~ 2 million people living on the central plain of
Luzon, Philippines (Ethnologue, 2005). Though the center of the language is the
Pampangan province, it also has speech communities in the Tarlac, Nueva Ecija, Bulacan

and Bataan (Forman, 1971). Bilingualism with Tagalog is the norm.

Borneo and Madagascar: East Barito (Malagasy, Ma’anyan)

Evidence suggesting that the East Barito group forms a genetically distinct sub-
group from the other languages of Borneo comes from phonology (Dahl, 1977; from
Ross, 1995). Malagasy is spoken on Madagascar and is most probably the resuit of a
migration in the 7" century AD (Adelaar, 1991; from Ross, 1995).

Malagasy

Malagasy is the sole Austronesian language spoken on Madagascar, with a
speaker community of ~ 14 milfion people. There are a number of similar dialects,
divided into eastern, western and intermediate, defined primarily through phonemic
distinctions. Malagasy has adopted loan words from contact with Swabhili, Sanskrit,
Bantu, English and French, among others. One of the southeastern dialects was written
in Arabic script by at least the 15" century, but in 1820 the Malagasy king Radama I

choose to adopt the Roman script {(Rasoloson and Rubino, 2005.)
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Ma’anyan
Ma’anyan is spoken by ~150,000 people in Southern Indonesia, in the area of the Patai
River drainage (Ethnologue, 2005). Many Ma’anyan speakers are bilingual with
Banjarese, a dialect of Malay (Gudai, 1988).

Sulawesi: Muna-Buton (Tukang Besi)

Muna-Buton sub-group is spoken on the islands South-East of Sulawesi. The
Muna-Buton and Central Sulawesi sub-groups are tenuous, while the Central Sulawesi
sub-group has been well established (van den Berg, 1991; from Ross, 1995).

Tukang Besi

Tukang Besi is spoken by ~130,000 people in the Tukang Besi Archipelago,
located off of southeast Sulawesi, Indonesia. The Ethnologue (2005) recognizes two
dialects. Some speakers are also bilingual in Wolio Ethnologue (2005).

Sumatra: North-West Sumatra/Barrier Islands (Batak Toba)

Despite apparent structural diversity, strong comparative evidence has
demonstrated the genetic affiliation of the languages spoken off the South West coast of
Sumatra (Adelaar, 1981; from Ross, 1995).

Batak Toba
Batak Toba is one of the five dialects/languages of the Batak group. It is spoken by

~2,000,000 in Northern Sumatra. As of the late 1950’s, Batak Toba speakers had

exposure to Dutch, English, and Indonesian, but all were considered ‘foreign’ languages.
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The original Batak Toba script, a version of the Devanagari alphabet, which was used for
works on mythology, astrology and magic, has subsequently been abandoned for the

Roman alphabet (Nababan, 1981).

Central and Southern Philippines: Sama Bajaw (Y akan)

The sub-group Sama-Bajaw contains the languages of “sea gypsies;” Proto Sama

Bajaw has been reconstructed (Pallesen, 1985; from Ross, 1995).
Yakan

Yakan is spoken by some 105,000 people in the Southern Philippines, around Basilan
Island in the Sulu Archipelago and around the coastal areas of the Zamboanga peninsula.
The Yakan are muslim with heavy influence from the Qur’an (Brainard and Behrens,

2002; Ross, 1995). Yakan is well established and in substantial use.

Central Eastern MP Lancuages (CEMP)

Ross (1995) suggests 3 paths of migration through which the pMP speakers
penetrated the Indo-Malaysian archipelago: through Borneo, through Sulawesi and
through Halmahera. The pMP speakers whose language would eventually evolve into
pCEMP probably took the most directly southern of these routes, through Halmahera
between 3,000 and 2,500 B.C. The split between Central and Eastern language
communities took place as CMP speakers headed further south around 2,000 B.C.
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CMP Languages

All three of the CMP sample langnages belong to the Bima-Sumba sub-group. In total 7

sub-groups are currently recognized (Appendix Table 2).
Eastern Tip of Java: Bima-Sumba (Kambera, Manggarai, Ngad’a )

All three languages are spoken on or around Sumba Isiand, which sits at the linguistic

border between the CMP and WMP languages.
Kambera

Kambera is a language of Eastern Indonesia, spoken on the Eastern part of the
island of Sumba by ~ 235,000 people (Ethnologue, 2005). Klamer (1998) suggests there
is no standard dialect, but does suggest a dialect or language relationship with a number
of other tongues spoken on Samba. Samba is a rural island consisting mostly of farmers.
While most towns have primary schools, the nearest university is on the island of Timor,

some 350 km away (Klamer, 1998).
Manggarai

Manggarai is spoken in Eastern Indonesia, in the north-central and western parts
of Flores Island by ~500,000 people (Ethnologue, 2005.) Five dialect groupings are
recogonized, consisting of forty-three subdialects. The Central dialect is the largest, with
a speaker population of ~ 300,000. Manggarai has only been slightly impacted by Dutch.
A much larger influence was the Makassak language of South Sulawesi, whose speakers
exerted political control over the Manggarai population until the middle of the 18"
century (Verheijen and Grimes; in Tryon, 1995). Verheijen and Grimes (1995) note that

the Manggarai people are predominantly inland oriented and agricultural.
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Ngad’a

Like Manggarai, Ngad’a is also spoken on Flores Island, though by a smaller
population of 60,000 — 70,000 living on the south-west coast. There are six recognized

dialects for Ngad’a.
Central Maluku: Paolohi and Alune

The Central Maluku grouping, located in eastern Indonesia, is comparatively
well-established, although debate continues to surround whether the identifying features

of the group are shared by more languages in the area (Collins, 1983)
Paulohi

As of 2005, there are only 50 speakers of Paulohi left. The majority of the
population was killed by a severe earthquake and tidal wave (Ethnologue, 2005.)

- Alune

Alune speakers, located on the western side of Seram island, number around
17,000 (Ethnologue, 2005). Alune is the largest language on the western side of the

island and has approximately 5 distinct dialects.

EMP Languages

The two sub-groups of the EMP are the South Halmahera/West New Guinea
(SHWNG) group and the Oceanic group. The Oceanic group was first recognized by
Blust (1978) and justified by 56 lexical innovations. While no languages were sampled
from the SHWNG group, SHWNG and EMP sub-groups deserve mention because of the

fact that both have reconstructible proto-languages; a situation that goes against the Ross
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(1995) model for Austronesian dispersal, where “stay-at-homes” (the left hand nodes ,
figure 4) evolve through dialect differentiation.

To explain, Ross (1995) suggests that the pEMP speaker community lived in an
area too small for dialect differentiation to occur. And if the logic that the majority of
languages (especially the conservative ones) should still be spoken around the original
homeland is followed, then Ross (1995) suggests that either Halmahera or the
Cenderawasih Bay was the departure point for speakers of Oceanic languages.

As Oceanic speakers colonized the Pacific, they hopped from island to island,
leaving communities behind to evolve in linguistic isolation; this situation which has
allowed linguists to accurately define the internal relations of Oceanic despite its

tremendous geographic span (Pawley and Ross, 1993).

Oceanic Languages

The original homeland of pOC was most probably the Bismark Archipelago,
reached by migrants who followed a path of small islands off of the Northern shores of
Irian Jaya and Papua New Guinea (Ross, 1995). There were most likely multiple waves
of migration, and pOC speakers had linguistically detectable interaction with coastal
Papuan populations along the way. To this day, pockets of Oceanic languages are still
spoken on and around Papua New Guinea. Archeological and linguistic evidence suggest
1250 B.C. as approximate date for the massive migrations which spread Oceanic
speaking populations throughout Melanesia and intb the Western parts of both
Micronesia and Polynesia (Ross, 1995).

Ross (1995) states that the groupings of Oceanic are reasonably well-understood,
and can be organized into twelve sub-groups (Appendix Table 3). The sub~groups from

which contain sample languages are listed below:
Vanuatu: North/Central Vanuatu (Paamese)

The Ethnologue lists 109 Oceanic languages spoken on Vanuatu alone. Clark

(1985; from Ross, 1995) explains the North/Central sub-group is the result of dialect
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differentiation, with a defined boundary between those languages of the North and

Central Vanuatu.

Paamese

Paamese is a language of Vanuatu with two dialects Northern and Southern
manifesting a total speaker population of ~ 6,000 (Ethnologue, 2005). Most Paamese
speakers are also fluent in Bislama, an English-based pidgin used as lingua franca across
Vanuatu (Ethnologue, 2005).

Vanuatu: South Vanuatu (Lenakel)

A Proto Language has been successfully reconstructed for this sub-group (Lynch,

1978).

Lenakel

Lenakel is a language of Vanuatu, spoken by ~ 6,500 people in the central and
western areas of the island of Tanna (Ethnologue, 2005). Lenakel has a number of
dialects; It has also become the go-to langnage for missionary work involving the other
three languages of Tanna (Lynch, 1978).
Central Pacific: Central Pacific (Fijian, Maori, Hawaii)

Fijian

Fijian is spoken as a first language by 331,000 people on the islands of Fiji alone
and an additional 5,000 people in communities elsewhere, like Vanuatu and New

Zealand. Fijian has 320,000 second language speakers (Ethnologue, 2005). While Fijian

is a co-national language with Hindustani and English, there is political pressure to
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acknowledge only Fijian as the national language. Fijian has a large number of dialects,

with at least 9 recognized dialect-groups.
Hawaiian

Hawaiian is language of the Hawaiian Islands. Hawaiian is currently spoken by ~
1,000 people as a first language while around 8,000 have some command (Haugen, 1993;
from Ethnologue, 2005). At the turn of the 19" century, some 37,000 people spoke
Hawaiian. Social and political moves have been taken to revitalize the language through
language immersion schooling and possibilities for higher degrées in Hawaiian

(Ethnologue, 2005).
III. Methods of Data Collection and Selection
i. Choosing the Languages, Features and Words

The initial language sample was assembled to sﬁppor’c phylogenetic analysis both
theoretically and practically. Theoretically, I wanted to represent the linguistic diversity
of the family. Practically, I needed languages that were well represented in both the |
World Atlas of Linguistic Structures (WALS)(Haspelmath er a/., 2005) and Austronesian
Basic Vocabulary (ABV )} Gray and Greenhill, 2005) databases and would sum to a
manageable sample size.

Of the 1268 Austronesian languages listed in the Ethnologue, WALS has listings
for 311. For each language listed, the number of attested WALS features was calculated.
The languages and number of attestations were then sorted into genera, in order to
identify the most well-attested exemplars.

WALS identifies 17 Austronesian genera with considerable disparity in size
(Appendix Figurel): 2 genera have only single members, 4 have five or fewer members
and one has 140 members. In order to make the results more easily comparable with the
established groupings from historical linguistics, at least two languages from each genus

were selected. Selected languages had 1. high attestations of WALS features and 2. a
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listing on the ABV database. Unfortunately, some genera could not be represented by
paired exemplars. Naturally this was the case for outliers, but in other situations
candidate languages were excluded because they lacked an ABV listings and/or had low
WALS feature attestation. In total, the initial sample set consisted of 28 languages
representing 14 of the 17 Austronesian genera. Of the 14 included genera, 6 were
represented by two or more languages.

While ideally the 28 language sample should be compared with respect to all 142
features in WALS, the patchy attestation of certain features and languages forced me to
severely restrict that number to ensure a robust and thorough typological sample for
comparison. In selecting WALS features to include, two goals were set: 1. to represent
the typological diversity of the WALS database (Appendix fi guré 2) and 2. to select those
features which are resistant to borrowing. In an effort to meet these goals, three sets of
information were compared: 1. The number of attestations per feature in the 28 language
set, 2. the percent representation of each typological “theme” of WALS and 3. features

ii»

unlikely to be borrowed, assessed through a ranking of a “p-value™ (Wichmann and

Kalmholiz, 2005)(figure 6).
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Figure 6. Schematic of WALS feature choosing for phylogenetic analysis

27



From this set, redundant features were eliminated to avoid “linked” data (i.e. data which
is known a priori to be dependent). After the filtering, 35 features were selected to
comprise the initial sample (Appendix Table 4)

The initial language/featare matrix contained 980 (35 x 28 = 980) possible data
points of which 418 were recorded in WALS. I added 258 data points bringing the
matrix to 84 % completion. Unfortunately, due to lack of in-depth and/or available
grammars many data points were still unknown after substantial searching; these were
coded with a “?” (Data Available on Supplementary CD). |

After data entry, the matrix was pruned a final time in preparation for
phylogenetic analysis. One language (Timugon) and five features were excluded because
of sparse attestation (Feature 46 and 123), being uninformative (Features 11 and 30), or
because of dependence (Feature 81). The final matrix was 88 % complete, with 27
languages and 31 features in total. For each of the final 27 languages, a modified 200

Swadesh word list was taken from the ABV database.

ii. Coding the Data

Lexical items were coded by cognate class following the format of Gray and
Greenhill (2005) where the cognate class serves as the unit of selection. To accomplish
this encoding, two matrices were assembled for the 27 languages and 200 lexical items.
The first matrix consisted of the words transcribed in the International Phonetic Alphabet
(IPA). The second matrix consisted of the preliminary cognate judgments of the ABV
website. To differentiate between those words Without a cognate class and those which
had not yet been annotated by the ABV curators, both matrices were compared. The
words with cognate judgments present were color-coded by cognate class. After initial
Jjudgments had been marked, the words themselves were compared. Using my best
judgment I added words to each cognate class (most of these were obvious members). In
no case did I reject an ABV judgment. Afterwards, in a third matrix, the cognate classes
were separated into independent columns; the presence of a cognate was scored as “1”

and the absence of a cognate as “0” (figure 7B). Note that this encoding strategy neatly
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deals with lexical polymorphism. The 27 language sample generated 451 cognate
classes from 200 lexical items. The number of cognate classes belonging to a language —
and thus the amount of information available for phylogenetic inference - differed
markedly, between 33 (Yapese) and 158 (Tagalog) (Appendix figure 3).

Structural data were encoded in two ways for comparison. The first encoding
established the WALS feature as the unit of selection {multi-state), while the second
encoding established the WALS feature unit as the unit of selection (binary). The
strategy for adapting multi-state encoding into binary encoding parallels the separation of
a lexical item into constituent cognate classes. The members of features with “mixed” or
“other” groupings (the “trashcan” problem; see below) were analyzed independently to
verify the similarity of feature state. In cases with more than one type of “mixed” or
“other category” a new feature state was created. In the binary encoding scheme,
languages with “mixed” state were considered polymorphic and scored with multiple
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iil. Issues of WAILS-based Phylogenetics

The WALS database was created primarily as a visual tool for assessing the
geographic distribution of the structural diversity of world’s languages. As such, there
are a number of issues surrounding the use of WALS features as characters for
phylogenetic inference.

Firstly, there is significant inter-feature heterogeneity in how the feature states
represent a given feature. In terms of tree building, this amounts to comparing “uneven”
units. For example, Feature 26: Prefixing vs. Suffixing in Inflectional Morphology is
composed of feature states on a continuum between ‘strongly prefixing’ and ‘strongly
suffixing’ with an additional category of ‘little affixation’. The feature state value is
determined by a score based on the behavior of several inflectional parameters of the
language (e.g. case affixes on nouns, pronominal affixes on verbs, etc). The feature
states of 26 thus indicate a general property of the language. Oppositely, the feature
states for Feature 7: Glottalized Consonants, represent specific language properties (e.g
presence of ejectives, glottalized resonants, etc.). This issue of irregular units of
comparison can be called the ‘apples and oranges problem.’

Secondly, many WALS features are nested or obviously linked. Since
independence of characters is a fundamental for non-skewed phylogenetic analysis, this
issue arises as a major drawback of WALS-based phylogeny. Linked features must be
excluded by hand. As an example, take Feature 87: Order of Adjective and Noun and
Feature 97: Relationship between the Order of the Object and Verb and the Order of
Adjective and Noun. In this case, the state value for Feature 87 has a direct impact on the
value of Feature 97, thus an analysis which included both Features as characters of
comparison would be increasing the weight of the language parameter Adjective/Noun
order. This can be called the ‘independence problem.’

Thirdly, WALS uses “other” feature states to group langnages with properties
outside of the main feature classifications. This is referred to as the “trashcan problem.”
If these problematic features are to be used in phylogenetic analysis, members of the

“other” category must be addressed individually and re-grouped in terms of the quality of
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the feature. In some cases, features are linked through “other” categories, thus
compounding the ‘trashcan’ and ‘independence’ problems. For example, take features 14
and 15, Fixed Stress Locations and Weigh-Sensitive Stress, respectively: all the
languages to which feature 14 applies are lumped in the “other” category for 15 (and vice
versa).

In sum, the strategies used to make WALS more readable and straightforward
detract from the ease and quality of using the database for phylogenetics. In this report,
efforts were made to address some of the problems outlined above: The ‘apples and
orange’ problem was unattended in the multi-state encoding and partially dealt with in
the binary encoding. Feature independence was also inspected, although the nature of the
WALS categories suggests that fulfilling a requirement for strict independence would
necessitate building a new database from the bottom-up. Many cases of feature linkage
were thrown out; some, however, remain (including features 14 and 15). Features with
“mixed” or “other” categories were examined individually and WALS features were
slightly recoded to take the similarities and differences of languages in these categories
into account. Recoding also eliminated those feature state values which were not

expressed by any language in the sample (figure 7C).
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IV. Evaluating Phylogenetic Methods for Linguistic Data
i. Introducing the Methods

In order to assess the most appropriate phylogenetic methods for modeling
language evolution, representatives from 4 of the 5 major approaches were used to
evaluate the lexical and structural data presented in IIl. The experimental trees based on
lexical, structural, and combined data sets were compared to each other and the ‘known’
tree, providing a measure of the accuracy and robustness for a given method (figure 8).
Before presenting these results, each method is explained in terms of basic assumption
and role within the phylogenetics discipline. By complimenting results with a transparent
description of mechanism, the suitability of each method can be evaluated for modeling

language evolution.
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Figure 8. A cladogram of the “known’ tree conducive to quantitative comparison

The most significant methodological split in phylogenetics is between phenetic
and cladisitic approaches (Makarenkov, 2005). The phenetic approaches operate on a
pair-wise distancé matrix calculated by comparing every character for each taxon.
Because individual character states only function to generate this initial matrix, these

methods make no reference to ancestral relationships. The most widely employed
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phenetic appmaches are called the distance methods. One such method, Neighbor-
Joining (NI, is evaluated here.

The cladisitic approaches do refer to ancestral relationships through the use of
specific evolutionary models which function with respect to individuat changes in
character states. The cladistics methods have a wide number of incarnations. Here
Maximum Parsimony (MP) and Bayesian Analysis are evaluated.

Also evaluated is NeighborNet, an example of a network approach. Network
approaches may employ both cladistic and phenetic methods, but differ from those
previously described in that they do not force the data into a tree. Instead, multiple
relationships between taxa are simultaneously represented. While the format of the
“trees” generated from this method disallows quantitative comparison to the ‘known’, the
underlying methods of assembly are nonetheless described.

NJ and MP trees were generated with PAUP* (Swofford, 2003). Bayesian
analysis was accomplished with MrBayes (Huelsenbeck and Ronquist, 2001 ;Ronquist
and Huelsenbeck, 2003). NeighborNet analysis was done through SplitsTree4 (Huson
and Bryant, 2005.)

ii. Comparing the Known and Experimental Trees

Trees were compared with respect to topology. The topology was assessed with

- the symmetric differences test based on Robinson and Fould (1981) and employed
through the PHYLIP program TreeDist (Felsenstein, 2005). In this framework, a series
of partitions is generated for each tree branch. These partitions are defined simply by the
taxa on either side of a given branch (figure 9). The distance score for any two trees is
simply the number of unshared partitions, meaning the larger the distance score, the

greater the difference between trees.

33



o B 4
i | B
L C |
. F C
[.
Partitions Partitions
{ADF | BCEG) {ADF ! BCEG)
[DF | ABCEG} {AD | BCEFG)
{BC | ADEFG) {BC | ADEFG}
{EG | ABCDF} '

Figure 9. An example of the symmetric length difference test at work. Partitions for each unrooted
tree are shown in tables and unshared branches are in bold. These two trees have a distance score of 3
(from Felsenstein, 2004).

For each method, experimental trees were generated for the lexical, structural, and
combi.ned data sets. The structural data were encoded in two different fashions, multi-
state and binary-state, thus giving five experimental data sets in total.

Since the performance of each method was judged solely by tree fopology, other
information including branch lengths and measures of nodal support were ignored.
Additionally, the WMP outlier languages (Chamorro, Palauan, and Y apese), lacking a

consensus position on the ‘known’ tree, were excluded from this initial analysis.
iv. The Neighbor-Joining Distance Method
Neighbor-Joining (Saitou and Nei, 1987) is one of the most popuiar distance
methods. NJ is a type of clustering algorithm that generates a tree to match the initial

pair-wise distances between taxa. While ignoring specific changes in character states

may seem like a devastating loss of information, computational studies suggest
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surprisingly little is lost (Felsenstein, 2004). Felsenstein (2004) articulates this
phenomenon by suggesting higher-order character state information is consistently
retained in the distance matrix itself. Furthermore, Atteson (1999) demonstrated that if
the distance matrix is sufficiently close to the evolutionary distance, NJ generates the true
phylogeny (Makarenkov, 2005). Unlike some other distance methods (i.e. UPGMA), the
NJ algorithm allows for variation in evolutionary rates over different branches of the tree.

NI operation can be summarized through a series of basic steps from which a |
“bush” is transformed into a binary tree. At each iteration of the algorithm, two distances
from the pair-wise matrix are joined to form the shortest possible tree. Once joined, the
two distances are collapsed under a composite node and the matrix is reformed. The
process continues until the step-wise shortest tree has been resolved.

The NJ method offers a number of advantages for the analysis of linguistic data.
~ Perhaps most basically, N] makes no assumptions of evolutionary model and is thus
applicable to evolutionary processes in general. The calculation of a tree from raw
distances allows for a straightforward interpretation of the tree produced and avoids
possibler inaccuracies as a result of over-parameterization. It remains to be seen however,
if language evolution, like biological evolution, consistently leaves a trace equivalent to
the comparison of higher-order character states in the distance matrix. Finally, NJ is

- computationally efficient and can therefore offer a quick analysis of the data.
v. The Maximum Parsimony Method

Maximum Parsimony (MP) methods generate the tree (or trees) with the smallest
number of evolutionary changes. This larger aim of minimizing change is accomplished
by the individual comparison of characters. The various incarnations of MP methods
involve different constraints on how the states of these characters are allowed to change.
For example, Fitch parsimony uses a minimum of constraints: all character state changes
are equally probable and reversible. In Wagner parsimony however, character states are
assumed to change in a defined order (Makarenkov, 2005).

Since MP methods calculate the number of total changes by summing the

individual changes of each character, affecting the role of each character may be a
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productive way to construct straightforward and accurate models of language change.
For example, characters can be differentially weighted to have a greater or lesser effect
on the outcome of a tree. Similarly, intra-character state changes can be Sélectively
penalized to make some transitions more evolutionarily “likely”. By incorporating
informed models of how language characters evolve, MP may be effectively tweaked
specifically for language evolution. Of course, varying these parameters does not change
the larger assumption that the tree with the fewest changes is the best.

‘Another aspect of the MP method is the algorithm used to evaluate the possible
trees. Since the number of possible trees increases exponentially with number of taxa
involved, searching a full set of possible trees is rarely feasible. Instead, heuristic
searches are employed. Generally heuristic searches operate by slightly modifying an
initial tree and evaluating whether the new tree reduces the overall number of changes.
The prbcess repeats until slight changes fail to produce a more optimal tree. While these
algorithms do make MP methods available to large data sets, they are prone to getting
“trapped” in local optima (Felsenstein, 2004). In this report, the tree bisection-
reconnection (TBR) algorithm, one of three stepwise addition heuristics offered by the

PAUP* (Swofford, 2003) software was used.
vi. The Bayesian Analysis Method

While relatively new in their application to phylogenetics, Bayesian methods date
back t01790. Bayesian inference of phylogeny is executed through an algorithm which
searches through a space of possible trees, preferably steering toward those trees which
maximize a value called the posterior probability. The posterior probability 1s numerical
evaluation of the probability that a given tree is the correct one for the data, and is
formulated from the Bayes’ Theorem (Huelsenbeck, 2001).

As implemented through MrBayes, a number of these algorithms work
stimultaneously and in a coordinated fashion to sample trees from their path at a constant
rate. Some of these algorithms, called “chains” in the terminology of MrBayes, are free
to make large jumps in tree space to find neighbors for comparison. These are called

‘hot’ chains. One chain, however, is always ‘cold’ and is constrained to make only local
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comparisons. After every generation of the program, the chain with the highest posterior
probability becomes the ‘cold’ chain. In concert, these chains avoid locally optimal areas
of posterior probability and zero in on those areas of tree space with the best trees. A
point of convergence is reached when the posterior probabilities of subsequent trees fails
to improve; after this point, the algorithms are collecting tree samples with near equal
probabilities. The trees sampled before the point of convergence are thrown out in what
is called a ‘burnin’. From the remaining sample of optimal trees, a consensus tree is
assembled following a basic rule: only include those nodes which exist in more than a
certain threshold percentage (usually 50%) of optimal trees. Each included node is given
a number representing its strength, which is calculated by the probability of finding that
node in the set of optimal trees.

Bayesian inference offers a number of advantages for the analysis of linguistic
data. Most notably, by driving tree selection by a measure of probability rather than the
minimal change framework of MP, no assumption needs to be made about the
conservatism of language evolution. However, assumptions must still be drawn about the
structure of the evolutionary modet and the prior probability distributions of the
parameters of the model. These specific aspects of Bayesian phylogenetics will be
covered in greater depth in section V. MrBayes also allows for rate variation for the
.evoluﬁon of individual characters; a model which may more realistically describe how

specific features of language change over time.

vii. The Network Analysis Method

Phylogeﬁeric Nerwork Analysis (PNA) refers to a group of methods that préserve
and describe alternative phylogenetic relationships within a data set. As opposed to
traditional methods which force a single tree, PNA provides a qualitative analysis of just
how “phylogenetic” the data are: In most implementations, perfectly phylogenetié data
appear as a tree, while data lacking a clear phylogenetic signal appear like a web. In

biological phylogenetics the inclusion of these relationships can help identify cases of
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horizontal gene transfer (HGT), hybridization, and homoplasy; confounds which have
non-trivial paraliels in language evolution.

As mentioned previously, linguistic borrowing may leave a phylogenetic trace
similar to HGT. Events of borrowing are most often preliminarily identified by
contradictions between the a gene tree and the consensus tree of the organism or language
tree as a whole (Iallet and Lagergren, 2001). Despite the limitations of this approach for
language”, PNA can nevertheless identify the strength and nature of potential cases of
language contact.

Hybridization and creolization may theoretically confound phylogenetic analysis
similarly, since both processes create new lineages through the combined interaction of
existing organisms or languages. In biology, homoplasy describes a process of
convergent evolution where similar phenotypes arise from unrelated species. Methods of
detecting homoplasy may conceivably help linguists identify those areas of langnage not
evolving independently, either through collective adaptation to a specific
“communication niche” and/or through contingency in the human mind.

PNA share a diversity of algorithmic machinery with traditional phylogenetic
approaches (Makarenkov et al., 2005). The method used here is NeighborNet, a variation -
of the NJ method, implemented through the SplitsTree package.

viii. Results

The phylogenies generated above were compared to the ‘known’ tree to evaluate
which combination of method, data type and coding scheme produced the most
historically accurate phylogeny (Table 1, figure 14). Underlying the question of the best
method is a subset of question's concerning the role of data type and encoding scheme, the
other two variables manipulated. These questions are as follows: 1. Which method was
the most precise or internally consistent? 2. What was the effect of multi-state or binary-
‘state encoding for the structural data? 3. What data type, lexical or structural, produced
the most accurate results across methods? 4. What was the effect of combining lexical

and structural data? 5. Did lexical and structural data represent phylogenetic signals that
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were statistically significantly different? Attending to these questions appropriately
requires a careful explanation of both the results and the analyses used to interpret them.

Before the specifics, I have two general points. Firstly, the trees are compared
both visually and in terms of their symmetric difference. The symmetric difference, as
explained above, is only a rough guide of assessing similarity. Each distance score
simply refers to the number of unshared partitions and therefore falls short of giving a
statistical measurement of difference. Additionally, all partition differences are scored
equally, a bias not shared in visual assessment where the presence or absence of some
nodes carries interpretable weight.

Secondly, the ‘known’ tree is a controversial consensus adapted from a schematic
diagram and fit into tree notation. For these reasons, the topology of the ‘known’ tree
was certainly influenced by its role as an informative diagram. In other words, the need
for simplicity and aesthetic quality may have detracted from its accuracy. No literature
exists on the direct comparison of hand-built and program-built trees, so the ‘known’ tree
should be considered an approximation.

Together these points suggest that a symmetric difference comparison to the
‘known’ tree is a quick and comparative heuristic rather than a stand-alone score of fit.
Qualifications withstanding, the symmetric difference measurement is far from
meaningless: the distance from the ‘known’ provides helpful preliminary judgments
which serve as a skeleton for addressing larger trends in data about the effect of method,

data type and encoding scheme.
ix. Precision of Method

Internal consistency is essential for robust and trustworthy results. Since the five
data sets analyzed represent the same evolutionary process, a perfectly precise method
would reconstruct identical trees. To evaluate precision, the symmetric difference test
was used to calculate pair-wise distances between each of the five trees generated by a
method. The resulting distances were averaged for an average distance (AD) score

(Table 2a-c).



Table 1. Syminetric Difference Distances between experimental and “known” trees

Data Type Maximum Parsimony Distance Bayesian
Lexical 15 i3 13
Str. Multi 27 27 16
Str. Binary 29 29 15
Lexical + Mulfi 14 15 13
Lexical + Binary i5 13 13

Tables 2a-c. Symmetric Difference distances between experimental trees built from different data sets
within a method

A. Maximum Parsimony Lexical Str. Str. Binary Lexical + Lexical +
Multi Multi Binary

Lexical 0

Sir. Multi 30 0

Str. Binary 32 20 0

Lexical + Multi 9 29 31 0

Lexical + Binary 8 30 32 9 0

MP Average Distance = 23.0

B. Distance Lexical Str. Str. Binary Lexicai + Lexical +
Multi Multi Binary

Lexical 0

Str, Multi 32 0

Str. Binary 32 14 0

Lexical + Multi 30 30 32 0

Lexical + Binary 12 28 30 2 0

NJ Average Distance= 24.3

C. Bayesian Lexical | Str. Str. Binary Lexical + 1exical +
Multi Multi Binary

Lexical o

Str. Multi 17 0

Str. Binary 18 5 0

Lexical + Multi 6 17 18 : 0

Lexical + Binary 4 15 16 2 0

Bayesian Average Distance = 11.8
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DATA TYPE

* LEXICAL * STRUCTURAL MULT!-STATE ENCODING ﬁ COMBINED STRUCTURAL MULTI-STATE ENCODING
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DISTANCE BAYESIAN

PARSIMONY

Figure 14. A mapping of symmetric difference distances from experimental trees to the “known,”
organized by method and data type.

Bayesian analysis, with an AD of 11.8 was substantially lower then both the
Distance method (AD = 24.3) and the MP method (AD = 23) (Tables 2a-c). The low AD
score of the Bayesian method indicates a comparatively strong internal consistency,
meaning Bayesian methods are less prone to fluctuation in tree topology due to data type
and coding scheme. This result is unsurprising since the tree produced by MrBayes is
inherently a consensus tree: from the 25,000 most optimal trees, only nodes found in 50
% or more of those trees were expressed in the final tree. Distance methods on the other
hand generate a single tree with no consensus. With MP, consensus trees are only used
when more than one most-parsimonious tree are found. Here, the only data sets to return

more than one tree were the multi-state structural data, returning 16 trees, and the



combined structural muiti-state and lexical set, which returned 2 trees. In these cases, the

same 50% majority consensus method was used.
X. Binary vs. Multi-State Encoding

Binary and multi-state structural encodings produced trees that were equally
distant from the “known” under both Distance and MP methods. With SD scores of 27
and 29 for binary and multi-state encodings respectively, these trees were clearly the least
accurate (figure 14). Additionally, these trees were inaccurate in different ways, judging
by the large SD scores between encodings for a single method (SD = 20 for MP and SD =
14 for Distance). |

Under these two methods, visual inspection suggests that multi-state encoding
performed slightly better despite being 2 SD points higher. Most strikingly, one of the
strongest and most frequently observed nodes uniting the Meso/Northern Philippines
group remains intact with multi-state encoding but is broken up with binary encoding.
Further support for the multi-staté encoding comes from NeighborNet analysis. Here,
binary encoding appears to cloud the phylogenetic signal as evidenced by the increased
“webbing™ as compared to the multi-state network (figure 13).

Under Bayesian analysis, both structural encodings produced relatively
unresolved trees. Nevertheless, in both cases the Formosan/non-Formosan split was
included; in terms of migration, this is arguably the most salient grouping and was only
included in one of the four trees produced by the Distance and MP methods (the MP
binary encoding). Excluding the Northern/Meso Philippines group, both binary and
multi-state encodings managed to pair 8 languages together appropriately. While far
from fully resolved, Bayesian analysis of both encodings avoids making improbable

assumptions and thus generates trees which are relatively similar (SD = 5).
xi. Lexical vs. Structural Data and Combined Analysis

Due to the different number of characters included in the lexical and structural

data sets, no final judgment can be made about which type of data is inherently better for
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phylogenetic analysis. Undoubtedly lexical data generated trees closer to the known
across methods (figures 10-13). It is unclear, however, how much of this improved
accuracy was due to the substantially greater number of characters available for
comparison: lexical data had 451 binary characters compared to the two encodings of the
structural data, with 31 multi-state characters or 97 binary characters respectively. While
it might be feasible to generate [ef(ical trees based on random groups of 97 cognate sets
and compare these to the binary structural trees , this analysis was not undertaken.
Instead, rather than excluding characters, the merits of the data type were evaluated with
respect to their ability to cbmpliment each other. With these combined data sets, the
lexical characters are primarily driving the topology and branch lengths of the tree.
Nevertheless, the results suggest that the structural data has an important role in
“tweaking” the outcome. Case studies from biological phylogenetics suggest the addition
of even small amounts of morphological data to molecular data sets may significantly
alter the structure of a tree (Baker and Gatesy, 2002). In other words, this “tweaking” is
far from trivial and should be examined across methods.

For the combined Distance analysis, both combined encodings of the structural
data produced nearly identical trees (SD = 2), allowing us to consider both trees as
virtually identical and evaluate a singular set of “tweakings” from the lexical tree.

The most evident change is the break-up of the WMP group, as the Northern and
Meso Phillippines languages are extracted from the Sama Bajaw, Sundic and Sulawesi
languages and placed “higher-up” in the tree. This new placement creates a node
between the Northern and Meso Philippines languages and all other non-Formosan
languages. A second change occurs with this other non-Formosan group, where the
Oceanic languages become a “sister” branch to the CMP languages, thus creating an
accurate C-E MP node, save the remaining Philippines languages (Y akan, Batak Toba
and Tukang Besi). In terms of migration, this “tweaked” topology makes more sense: the
lexical tree has the major branches in the wrong order outside of the Formosan group, an
issue which is largely resolved in the combined tree when the Northern and Meso
Phillippines languages, instead of the Oceanic, are the first to branch off. The remaining
conflict with the known occurs because of the placement of the other Philippines

languages (Yakan, Batak Toba, and Tukang Besi) inside the C-E MP lincage.
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A similar improvement in resolution occurs in the combined Bayesian analysis.

- Once again, the binary and multi-state encodings of the structural data were largely the
same (SD = 2) but the two combined encodings resolve the four-way node connecting
Tukang Besi, the Oceanic languages, the CMP languages, and the Phillippines languages
differently. While the binary encoding only slightly alters this shared node by “lowering”
Tukang Besi, the multi-state encoding fully resolves this and all shared nodes so that
never more than two branches branch from a single node. In terms of Ross’s dynamics of
migration, this is an expected property. In fact, the multi-state combined encoding
mirrors the order of branching in the ‘known,” where the Philippines languages branch
off first, leaving an intact C-E MP node which itself shows a split between the CMP and
Oceanic languages. ' |

Under MP, the combined multi-state and binary structural encodings “tweak” the
lexical tree differently. The combined binary encoding separates two Philippines
languages from their “usual” positions across methods: Y akan assumes the position of
being the first branch off of the Northern and Meso Philippines group, while Tukang Besi
assumes a similar position with the Oceanic groups. Both of these changes are
inaccurate, and the latter change also occurs with the combined multi-state encoding.

The combined multi-state encoding does produce a substantial improvement with respect
to the placement of the Oceanic languages: they are moved from being the earliest branch
off of the non-Formosan group to a position consistent with the ‘known’ C-E MP node.

This improvement over the lexical tree does not appear in the combined binary encoding.
xii. Statistical Difference Between Lexical and Structural Data

To address if two data sets produce significantly different trees, the incongruence
length difference (ILD) test of Farris (1994) is often employed (Allard and Carpenter,
1996). The ILD operates in the Maximum Parsimony framework: pairs of trees are built
from a mixed sample of characters drawn randomly from both data types and are
evaluated by summing the number of total character changes in each tree. If the sum of
the two trees based on the original data types falls into the “shortest” 5% of pairs of trees

sampled, the data represent a significantly different phylogenetic signal.
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The ILD test was run for lexical and multi-state structural data types in PAUP*.
200 pairs of reordered trees (replicates) were calculated. The original data set produced a
combined tree fength of 1545. The shortest combined length was 1541. Eight of the 200
replicates had combined lengths of 1545 or shorter, giving a P-Value of 0.04; thus
rejecting the null hypothesis that the two data types represent the same phyiogenetic
signal was rejected. Put positively, the lexical and multi-state structural data sets were

found to express significantly different phylogenetic signals in terms of MP.
xiil. Discussion

Leaving Neighbor-Net analysis temporarily aside, the results presented here
suggest that Bayesian analysis is the most appropriate phylogenetic method for linguistic
data. In terms of data type and encoding scheme, the combined lexical and multi-state
structural data produced the most historically accurate tree; a phylogeny which is not
only relatively impressive, but which reconstructs the major divisions and minor pairings
of the ‘known’ tree.

While “tweaking” effects have been observed with Bayesian analysis in biclogical
contexts (Nylander et al., 2004), NJ also demonstrated greater accuracy when “tweaked.”
Increased accuracy due to data inclusion from different components of language suggests
a “total evidence” approach is appropriate for modeling the evolution of whole
languages. The relative and objective imprécision of MP, along with a worsening of
topology with combined data, suggests that a “minimal number of changes” approach is
inappropriate for language evolution. Further support for Bayesian over MP analysis was
also found in a different structurally based data set by the author and colleagues
(unpublished data™).

Analyzing the data types separately, lexical data outperformed structural data in
resolving phylogenies across all methods. It remains unclear however, how much of this
performance should be attributed to data type versus number of character comparisons.

Encoding data as binary or multi-state had differential effects under different
methods and when analyzed alone or in combination with lexical data. Evidence from

less web-like NeighborNet representation of multi-state structural data suggests this
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encoding produces a more “phylogenetic” signal. Importantly, under Bayesian analysis
combined multi-state data provided more accurate “tweakings” then binary data.
Overall, the complimentary approach of NeighborNet and Bayesian analyses
allows for informed tree building for languages. Network representation displays
relatedness without forcing a tree, thus providing a means to assess whether subsequent
tree building is justified. If it is, the empirical evidence presented here suggests that
Bayesian analysis operates under assumptions appropriate for modeling language
evolution. And since only nodes above a certain threshold probability are reported, the
degree of resolution of a Bayesian result depends on the strength of the phylogenetic
signal within the data, thus avoiding phylogenetic “leaps of faith.” The similarity
between the ‘known’ tree, generated from over al00 years of research, and the Bayesian
tree, generated from a 36 hour computer run, supports both the accuracy of the current
consensus on the history of the Austronesian languages and potential productivity of a

computational approach in quickly developing hypotheses of language evolution.

V. A Basic Methed for Inferring Phylogenies from Linguistic Data

In this section, the results reported above are synthesized into a basic method for
analyzing linguistic data with biological software. This method consists of two parts: 1.
Using the Neighbor-Net analysis of the SplitsTree program to check the data for a
coherent “phylogenetic signal” and, if found, 2. using MrBayes to infer the single
phylogeny which most probably represents the data. While only two steps are involved,
there are a number of methodological and software-based decisions that need to be made
appropriately and consistently for meaningful comparative results. My goal is to identify
those methodological issues and provide suggested solutions when possible. In walking
through the application of this method, the whole data set, including outliers, will be

used.

i. Step 1: NeighborNet Analysis
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What is NeighborNet, how are its graphs interpreted and when should data be
considered “phylogenetic” enough to justify tree building? The NeighborNet algorithm
was introduced by Bryant and Moulton in 2004 and implemented in the .SplitsTree
software package (Hulton and Bryant, 2005). NeighborNet is a network variation of the
Neighbor Joining Distance method and operates similarly from an initial distance matrix.
The output of Neighbor-Net is called a splits graph. To interpret how a splits graph
represents alternative relationships within the data the mechanisms of the Neighbor-Net

algorithm are briefly explained.

Recall from the discussion of the symmetrical difference test that a tree can be
defined in terms of a series of partitions for each tree branch which divide the taxa into
two non-empty parts. When building a tree, it is vital that only compatible partitions {or
splits) are included; with networks however, the condition for the inclusion of splits is
weaker than compatibility (Bryant and Moulton, 2004).\ In NeighborNet, this condition is
defined by a weight-measure equal to the length of the branch. For both compatible and
non-compatible splits, it is then possible to calculate a revised distance matrix for a
modified NJ algorithm to operate on. These distances are the sum of all of the splits
connecting any two taxa (x and y). In a splits graph, this summed distance is equal to the

shortest possible path connecting x and y.

To illustrate how these incompatible and non-incompatible distances are used,
recall the basic mechanics of NJ: 1. create a taxon for each node. 2. collapse the two
closest nodes into one. 3. re-adjust the pair-wise distance matrix to account for the new
node and reiterate the process. NeighborNet differs slightly in agglomerative framework.
Instead of collapsing a pair of nodes, the algorithm waits for a second pairing of one of
the nodes (a third “neighbor”), at which point the three nodes are collapsed into two.
Those two nodes are replaced in the distance matrix and the 3-way NI process continues
(figure 15). When only three nodes remain, the process is reversed and the nodes are
fully expanded. This is identical to NJ, except for the number of nodes being replaced: in
NI, a single node is expanded in to two; in Neighbor-Net, two nodes are expanded to

three (figure 16).
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Figure 15. A schematic of the agglomerative process used by Neighbor-Net, Once two nodes have been
identified as neighbors (it}, the are not immediately collapsed. After finding a third “neighbor” (iii) the
three nodes are collapsed into two (x and y) which are reincorporated into the distance matrix (taken from
Bryant and Moulton, 2004).

Y e s S
: r

- -
SeighboriNet v W ;

Figure 16. NJ and Neighbor-Net expansion after agglomeration (taken from Bryant and Moulton, 2004).

The final product (a splits graph) represents the collection of weighted splits. A
clear way to interpret these splits graphs is articulated by Bryant and Moulton (2004): In
the case where a sub-set of this collection is compatible, it corresponds precisely to a tree,
since each edge matches a splir with a length equal to the weight éf the split.
Incompatible splits are represented by boxes, where a single split corresponds to a
collection of parallel edges all with the same length. These correspondences can be
simplified with the following heuristic: the more boxes, the more incompatible splits, the

less tree-like the data.

Bryant and Moulton (2004) impress that Neighbor-Net is an exploratory tool for
data representation. As such, there are no quantitative statistical tests for determining

whether data are significantly tree-like to justify using traditional tree building methods.
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Perhaps such a test, amenable to language, will be available at some point. Until then,
linguists must trace signal conflicts back to the original data (Bryant ez al., 2004). If non-
phylogenetic trends appear between groups of characters and taxa, this may suggest
contact events resulting in borrowing. If no trends appear, the incompatible splits are
most likely the result of noise inherent in the data or sampling error (Bryant and Moulton,

2004).

Splits graphs are useful for comparing the phylogenetic signals from different
data types in detail. Here a splits graphs comparison between lexical and structural data
reveals an abundance of potentially informative differences (figure 17 and 18). Take for
example two conspicuous deviations: 1. The Philippines languages appear highly
conserved both lexically and structurally, except for Tagalog, which appears structurally
like the Formosan languages (figure 17b and 18b) and 2. Structurally, Paamese and
Lenakel, Oceanic languages of Vanuatu, are paired together under a large node
containing the Central Malaku languages (Alune and Paulohi} and Maanyan, a Borneo
WMP language (figure 17¢ and 18c¢). In terms of lexicon, Paamese and Lenakel and
Maanyan and Malagasy are grouped together with both the Oceanic languages and the
non-Philippines WMP languages respectively; a more “traditionally” accurate grouping.
SplitsTree provides tools to visualize and highlight the splits underlying these
differences, which can then be traced back to the original data to identify the characters

responsible for certain splits (Bryant et al., 2004).

A similar comparison of splits graphs can help pinpoint the “tweaking ” effect
caused by combining data of different types. Neighbor-Net analysis clearly demonstrates
that lexical data (451 binary characters) as opposed to the structural data (27 multi-state
characters) is driving the structure of the network. Careful examination reveals the
inclusion of the structural data has only a subtle effect: only when the most detailed
interior splits are examined can some potential “tweaking” effects be observed (figur19a

and b).

To summarize, Neighbor-Net provides a valuable first-perspective on modeling

language evolution by allowing the researcher to qualitatively assess how “phylogenetic”
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the data are. Additionally, splits graphs can be used generate hypotheses about language
contact situations since trends based on incompatible splits can be pursued at the level of

character comparisons.
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ii. Step 2: Bayesian Inference of Phylogeny

Bayesian inference of phylogeny, as implemented through MrBayes, was

| empirically demonstrated in section IV to be both accurate and precise for modeling the
evolution of a small sample of the Austronesian Family. Not only did Bayesian inference
outperform both Distance and MP methods, but the tree produced was astonishingly
historically accurate. Furthermore, the consensus approach inherent in MrBayes proved
less prone to generating unsupported trees; a faculty which is especially important when
comparing data of different types. Though MrBayes was run primarily on default
settings, in this section the parameters for the evolutionary model used in MrBayes will
be discussed. Understanding the role of these parameters is essential, since the Bayesian
approach rests critically on these assumptions. Before tackling the details of MrBayes, a
general explanation of how the Bayes’ Theorem is applied to phylogenetic inference is
provided (adapted from Felsenstein, 2004; www.egg.isu.edu/biocourses/bios599/projects/
Walter_html). Note that Maximum Likelihood, a method statistically related to Bayesian

analysis is not reviewed here due to its restrictive computation cost (Lewis, 2001).

iii. The Nuts and Bolts of Bayesian Inference of Phylogenies

Understanding the advantage of Bayesian inference in tree building requires some

familiarity with basic terminology:

1. P (A) = probability of A occurring

2. P (A, B) = probability of A and B occurring (joint probability)

3.a P (AIB) = probability of A occurring given that B has occurred (conditional probability)
b. P(AIB) = the likelihood of B given A
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In 3a, the probability of an event A is based on the assumption of B. In 3b, the
same conditional probability function is present, but the first argument (A) is fixed. The
relation between B to A is now one of likelihood.

Extending this simple example to phylogenetics, take now the basic formulation

of Maximum Likelihood:
1. P(datal model + tree)

While this statement can be read as the likelihood of the model+tree given the data, the
meaning in terms of probability has a problematic flipside: If we express the statement in
probalisitc terms, we uncover an unsuitable dependency: “the probability of the data
occurring given the tree + model,” To avoid having the data dependent oﬁ the tree we

can reformulate the statement to ensure independence:

2. P(model+treeldata)

To understand the role of Bayes’ Theorem in calculating this value, the above
formulation will once again be simplified as P(AIB), where A = model + treec and B =
data. We are back to the following:

3. P(AIB)

We can then use the above statement and an intuitive knowledge of conditional

probability to formulate the following equation using the product rule:
4. P(AB) = P(AIB) P(B)

Since in the construction of trees, the two “events” of A and B have no explicit temporal

order, we can write the following:
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5. P(AB) = P(BA) = P(AIB) P(A)

Rearranging the above equation brings us to a common form of Bayes” Theorem, where
the probability of one event (A) can be computed from the observations of another event

and the knowledge of the joint distributions:
6. P(AIB) = P(BIA) x P(A) / P(B)

Now let us once again replace our simplified variables. This replacement shows

the phylogenetic incarnation of Bayes’ Theorem:
7. P(tree+modelldata) = P(dataltree+model) x P(tree+model) / P(data)

We can calculate P (dataltree + model) using the established ML methods. The term P
(tree+model) has to be assumed, as it is the prior probability of the tree and model. In
most cases, all trees are equally probable. The difficult term is P(data), which through
rearrangement can be shown to equal the sum of the likelihood x prior probability of the

tree+model for all possible trees:
8. P{(data)= Sum P(dataltree+model) x P(tree+model)

To estimate this term, which is impossible to directly calculate, phylogeneticists have
adopted the Metropolis-Hastings algorithm, a type of Markov chain Monte Carlo
(MCMC). As a class, these algorithms are commonly used to calculate multi-
dimensional integrals. This feat is accomplished by a set of “walkers” (“chains” in
MrBayes terms) that move throughout tree space and sample from those areas with high
posterior probabilities; a value equal to the term P(tree+modelldata) in equation 7. This

process is accomplished by the Metropolis-Hastings algorithm in 7 steps:

1. Start at some tree T,

2. Pick a neighbor of this tree, T,
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3. Calculate the ratio of likelihood for T, and T,

(This ratio is taken from equation 7 above, where the P(data) term is identical for every

sample and thus cancels out)
R = likelihood (T)) / likelihood (T}

4. If R>1, accept new tree
If R < 1, pick random number between O and 1; if random number is < R, accept
new tree

6. If not, reject new tree and continue with T,

7. Return to step 2

MrBayes uses multiple algorithmic searching “chains” simultaneously (the default
is four). The basic strategy for finding optimal tree space is to have one locally
constrained ‘cold’ chain, which picks only its close neighbors, and multiple ‘hot’
chains which are free to ma];e larger jumps in tree space. After every generation, the
posterior probability scores are compared so that the chain with the highest score
becomes the ‘cold’ chain.

Tree samples are taken from the ‘cold’ chain after a number of iterated
generations. The distance between samples should ensure sample independence. As
the program runs, the four chains start to converge on areas of high posterior
probability; as a result, the standard deviations between them begin to close. Once
the chains have converged on the area of tree space with the highest posterior
probability, they continue to sample, compiling a set of optimal trees. The pre-
optimal trees, sampled before chain convergence, are thrown out through an operation
called the ‘burnin’.

From that set of optimal trees, support indices are calculated. These values are
easy to interpret. They simply correspond to the probability of a specific clad given

the set of optimal trees. From the optimal tree set, MrBayes produces a Majority
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Rule Consensus Tree, where only those nodes that appear in 50% or more of the

optimal trees are realized.
iv. MrBayes and Language Data

Bayesian methods have been employed by a large number of researchers to tackle
a diverse set of issues related to inferring phylogeny (Felsenstein, 2004). In the faﬁe of
this complexity, perhaps the clearest way to illustrate the Bayesian approach is to walk
through the most essential settings of MrBayes, thus introducing the program in specific
as well as the method in general. Additionally, the statistical assumptions underlying the

analysis of discreet standard data, such as that of language, will be discussed.

MrBayes has two main groups of settings, one for specifying the structure of the
model (Isef) and a second for defining the prior probability distributions (prsef) necessary
for Bayesian inference. The model determines how character states change for a given
character. For discreet standard data the model is quite simple since all characters of
comparison occur only once. But when the same characters occur repeatedly in a given
data set, as is the case for molecular (DNA or protein) data, more complicated models are
available to account for the behavior of these dynamic, “building-block™ type characters.
This difference underlies the discreet versus continuous distinction of data type and
- correspondingly determines whether a symbol representing a character state is or is not
equivalent to the same symbol for a different character. For discreet standard data, the

tatter is assumed under a condition called arbitrary state labels.

Prior probability distributions (priors) are equivalently necessary no matter the
data type. Itis in determining the priors where Bayesian methods become controversial.
Take this example adapted from Felsenstein (2004): Imagine we send a scout to MIT to
find nerds. No nerds are found. Assume our scout was not perfectly diligent so we have
only a 1/3 chance of finding them if they were there. If my prior belief was 4:1 that nerds
do not exist at MIT, then the posterior odds ratio for nerds at MIT is 1/4x 1/3=1/12. If
my prior belief was different, say 4:1 in favor of nerds at MIT, then the posterior odds

ratio would change dramatically: 4/1 x 1/3 =4/3. In terms of the phylogenetic incarnation
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of Bayes Theorem presented above, priors need to be estimated for the trees and model

term (shown in bold below):
7. P(tree+modelldata) = P(dataltree+model) x P(tree+model) / P(data)

In effect, the priors of the model determine the how the MCMC algorithms move through
tree space and the priors of the tree determine the parameters of tree space in terms of

possible topologies and branch lengths (Huelsenbeck, ez al., 2001).
v. The Structure of the Model

For standard discreet data, MrBayes uses a model borrowed from Lewis (2001) in
which all substitution rates between characters states are equal. This assumption neatly
skirts the need for arbitrary state labels, since the rates for individual character sfate
changeé represented by the same numeric will not differ depending on the character.

Figure (20a) shows an example of this model for 3 character states:

[a] 110 12 far i 12]
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Figure 20. A. The model used by MrBayes for substitution rates of unordered character states. B. The
model for ordered character staies (0 > 1 -> 2->1 ->0). All rates must be equal to satisfy the arbirrary
state labels assumption (taken from Rohnquist, 2005).

Forcing the characters through an order is also possible (figure 20b) though this option is

not implemented here.

With continuous data, MrBayes can estimate a number of different model
parameters which allow for greater flexibility and therefore a higher potential for
accuracy. Two such parameters are unequal state frequencies and substitution rates
between character states; the latter is dependent on the former and both are unavailable
for discreet data due to the arbitrary state labels condition (Rohnquist ez al., 2005).

MrBayes does however allow for inter-character variation, meaning that the overall rate



at which a given character is allowed to change its character states can vary. This
parameter seems especially appropriate for structurai language data where there is little
expectation that (for example) phonological and word-order characters would evolve at
the same rate. In this study, the inter-character rates of change were allowed to vary by
Dirichlet distribution for multi-state or a beta-distribution for binary-state data (Iset rates

= gamma) (figure 21).

Dirichlet proposal
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Figure 21. The Dirichlet or analogous Beta-distribution curves. Values are centered arcund “x “and
allowed to vary to a lesser (o large) or greater (o small) extent (from Rohnquist ef al., 2005).

Distributions are one way to provide mathematical structure for the estimation of a

parameter.
vi. Setting the Model’s Priors

The priors available for the discreet data mode! are only a sub-set of those
available for continuous data models, If inter-character rate variation is activated, there
are four relevant parameters. Each is described with their default priors in parentheses:
the state frequencies (all are equal), the shape of the state frequency distribution (uniform
gamma or beta distribution), the topology (all equally probable) and the branch lengths
(unconstrained). The role of the first two parameters was described above so only the

latter two are described below.

b4

When defining the tree topologies available for sampling by the MCMC “chains,’
the normal procedure is to assume all topologies are equally probable a priori. This
follows similarly for language data. However, in some cases one may wish to force

certain nodes together based on other evidence; this option is available in MrBayes, but
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only in an all-or-none fashion; future versions of MrBayes should incorporate a

probability measure for pairing nodés a priori (Rohnquist et al., 2005).

Branch length are also estimated as part of the model. The two basic options are
unconstrained or constrained; the latter of which is a setting appropriate for a molecular
clock or lexicostatistics type approach. In this analysis the unconstrained option is used,
along with the default setting for how much variability to allow in branch length

determination (exponential: 10}.

In Bayesian Analysis branch lengths have a different meaning then in either NJ or
MP. In NJ, branch lengths directly reflect the pair-wise distance scores. In MP they
represent discreet number of character state-changes. In Bayesian analysis however,
branch lengths are just another aspect of the posterior probability value, maximized by

the MCMC algorithms as they search through tree space.

vii. The Results: Bayesian Phylogenies for the Full Data Sets

The approach outlined above was implemented in MrBayes for three data sets
containing all 27 languages: Lexical, multi-state structural, and lexical and multi-state
structural combined. In each case the run lasted for 10 million generations with a sample
taken every 100 trees. Of the 100,000 trees collected, only the 25,000 most optimal were
kept (a “burnin’ of 75,000 trees). Convergence of the chains toward a tree space of equal
probability was judged by the lack of trends associated with the posterior probability
values displayed after the completion of the run. Consensus trees were then compiled
from those 25,000 trees; only those nodes occurring in at least 50% of the optimal set

were included. The results are presented in Figure 22, 23 and 24.
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Lexical Data

10,000,000 generations
every 100 sampled
burnin = 75.000

Al

._- Seidiy

- Figure 22. A Bayesian phylogeny inferred from lexical data. The run lasted 10 million generations and
samples were taken every 100, A majority rule consensus tree was then created from the 25,000 most
probable trees. Numbers at each node (from1.0 to 0.50) represent the probability of finding that node in the
set of optimal trees and are thus a measure of nodal support.
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Structural Data (multi-state)
103,000,000 generations
every 100 sampled
burnin = 75.000
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Figure 23. A Bayesian phylogeny inferred from multi-state structural data. The run lasted 10 million
generations and samples were taken every 100. A majority rule consensus tree was then created from the
25,000 most probable trees. Numbers at each node (from1.0 to 0.50) represent the probability of finding

that node in the set of optimal trees and are thus a measure of nodal support.
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Lexical + Structural (Multi-State) Data
10,000,000 generations
every 100 sampled
hurnin = 75,000
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Figure 24. A Bayesian phylogeny inferred from a combined lexical and multi-state structural data set. The
run fasted 10 million generations and samples were taken every 100. A majority rule consensus tree was
then created from the 25,000 most probable trees. Numbers at each node (from1.0 1o 0.50) represent the
probability of finding that node in the set of optimal trees and are thus a measure of nodal support. Purple
values represent the support for the node with the combined data set. Blue values represent the support for
the identical node in the lexical phylogeny. Red values indicate new nodes indaced by the presence of the
structural data.
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The comparative results between full data sets are similar with and without the
WMP outliers (Palauan, Chamorro, and Yapese). The format used for displaying the
phylogenetic results of the full data sets is different, however. When methods were
compared earlier, only cladograms were presented. Here branch lengths are included and
thus the trees are phylograms. Additionally, support values are reported for each node.
As described previously, these values correspond to the probability of finding this node in
the optimal set. This means that the higher the value (the closer to 1.0), the more a given

node is supported.

The structural tree is obviously not as resolved as the lexical tree. In terms of
mechanism, this means that many of the nodes suggested by the lexical data were not
found in 50% or more of the 25,000 optimal structural trees. Nevertheless, the effect of
combining data sets produced some importance differences, detectable by both changes
in topology (the creation of new nodes) and the changes in support values for nodes
present in both lexical and combined trees. An examination of these differences
highlighted in figure 24 demonstrates some of the “tweaking” effects induced by
combining data which lead to a more historically accurate tree. In this figure, new nodes
induced by the presence of structural data are colored in red. Nodes that are present in
both lexical and combined trees are represented in blue and purple respectively. The

nodes in bold have the higher value.

Most conspicuously, the combined data set creates a ubiquitous node found in all
optimal trees which accurately splits the Formosan languages from everything else. Thus
a wholly accurate higher-order WMP grouping is present only in the combined data set.
Secondly, in the combined data set Yapese, a known Oceanic outlier, is placed as the first
branching member off of a node corresponding explicitly to the Oceanic languages.

With the lexical data, Yapese is less resolved, branching off of the tree alongside (but not
within) the other Oceanic languages. This lexical-tree position incorrectly places Yapese
and the other Oceanic languages as the first two splits from the Formosan langunages.
This is historically inaccurate, since the Oceanic languages are known to be the last group

to diverge (Ross, 1995). In other words, the lexical tree suggests that the Oceanic group
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is the “oldest” (after the Formosan languages), when in fact they are the youngest. The
1ast topological change groups two outlier languages, Chamorro and Palauan under a
single node. I am unaware about any hypotheses purporting relatedness between these
two languages. But if experts do believe they are related, the data presented here suggest

that relationship is supported by structural rather than lexical similarity.

In terms of support values, combining data had the effect of weakening 5 nodes
while strengthening 3. In terms of total nodal absolute differences, combining data
resulted in an increase of 55 probability units (46 came stemming from a single node) and
a decrease in 34 probability units with a much smaller distribution (from 2-15 points per
node). These grouped values for nodal support are hard to interpret without referring to

the nodes themselves, since increased support is not always a sign of increased accuracy.

The most drastic change in nodal support was seen for the approximate WMP
node. With lexical data, this node, which separates the Formosan languages from
everything else, was at the threshold probability of inclusion (0.50). In the combined
data, when Paiwan was kicked out and thus an accurate WMP node was formed, the
support value sky-rocketed by 46 points to 0.96. This increase in probability is one

manifestation of increased accuracy due to “tweaking.”

The most drastic decrease in support (15 probability units) was seen at the node
connecting Lenakel and Paamese. This suggests that Lenakel and Paamese are more
closely related in terms of lexicon than structure; a support node correlate to those same

differences detected in the SplitsTree analysis above (see Step I: NeighborNet Analysis).

In comparing support values for the nodes of a given family, a speculative set of
hypotheses can be drawn about the lexical vs. structural nature of the evolution of certain
groups. For instance, the high resolution of the Northern/Meso Philippines languages in
both data sets suggest the group evolved relatively equally in terms of both lexicon and
structure. Somewhat differently, the Philippines languages of Borneo, Sulawesi and
Sumatra (Malagasy, Maanyan, Y akan, and Batak Toba) seem slightly more Iexically

conservative in their evolution.
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In conclusion, despite the fact that there were far fewer structural versus lexical
characters of comparison, the inclusion of structural data resulted in a “tweaking” which
increased the accuracy of the tree. This improvement is reflected in both changes in
topology (the inclusion of new nodes) and changes in the support for certain nodes, as
evidenced by shifts in node support values. Additionally, the results from NeighborNet
- analysis have distinguishable coirelates in the Bayesian tree, establishing a critical link
between interpreting both representations of relatedness. And perhaps most importantly,
a run of MrBayes for 10 million generations produced a tree which resolved all the major
nodes of the ‘known’ tree. Interestingly, the inclusion of the outliers did in fact lead to a
less resolved structure for the higher order nodes: a comparison of the Bayesian trees
generated with a combined data set with and without outliers (figures 24 and 12) shows
that without outliers, there are no multifurcations; that is, all nodesr are binary, with the
Meso/Northern Philippines languages splitting off from the Formosan languages first, _
followed by the other Philippine languages, with the last major split between the CMP
languages and the Oceanic family. This non-outlier tree reflects the dynamics of the

migration proposed by Ross (1995).

V1. Mapping Characters to Trees: the Association of Structural Features through

Evolution

The basic method introduced in the last section demonstrated one productive
application of how biological methods and software can be applied to model language
evolution. The results reported that under appropriate conditions of analysis, a data set
that included character comparisons for two different components of language produced a
tree which mirrored the established tree remarkably well. This convergence of results
from radically different methods suggests strong support for the current account of the
natural history of Austronesian Family. In this section, I want to introduce how questions

and methods previously restricted to biological evolution may provide new types of
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insights into language evolution. This goal will be pursued through a specific example:

how characters of comparison can be mapped to trees.

For an overview of the type of questions now being entertained about biological
evolution, and the resulting software used to address them, interested linguists should
visit Dr. Joseph Felsenstein’s website: http://evolution.genetics.washington.edu/phylip/
software.html. Reviewing some of the descriptions of the huge number of programs
available should alert linguists to the vastness of the field and the variety of methods
which may have applications to language data. The results of one such program

SIMMAP (Bollback, 2005) are reported here.

SIMMAP provides a Bayesian framework for mapping the evolution of
independent characters. In general, character mapping involves modeling the changes of
individual characters onto an established tree. While originally done with MP, the advent
of a Bayesian approach allows uncertainty to be taken account both in terms of the trees
to which characters are mapped and the mapping process itself (Ronquist, 2004). This
type of analysis has recently driven much progress in biology; by modeling the ancestral
states of certain characters, a wide range of questions can be entertained, including the
identification of ancient behaviors, the structure of proto-hormone receptors, and
inference of past dispersal patterns (Ronquist, 2004). In terms of language evolution,
inferring ancestral character states could provide insights into the approximate lexicon
grammatical structures of Proto-languages; data which could then be compared to more

conservative accounts provided by the comparative method.

SIMMAP was chosen because of both the solid performance of Bayesian methods -
in general and the fact that the program conveniently works hand in hand with MrBayes.
In fact, the optimal set of trees which MrBayes outputs serves as one half of the input for
SIMMAP; the second half of the input is the data matrix itself. Once SIMMAP has
loaded the trees and the data a variety of analyses can be performed. Most basically,
SIMMAP uses a process called posterior mapping (Neilsen, 2002) to evaluate the how

characters change over the given set of most probable trees. For each tree in the set, the
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character of interest is mapped. For example, take the mapping of WALS Feature 88: the

Order of the Demonstrative and Noun, to 1 of the 25,000 most optimal trees (figure 25).

Mapping Structural Features in SIMMAP:
Feature 88: Order of Demonstrative and Noun
s NoUn-Dlemonsirative bataktoba

: yaikan
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and after Noun : i malagasy
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Figure 25. An example of a WALS feature mapped to one of a set of most probable trees. The character
states of the feature are color coded to show where on the tree the changes take place.

The degree to which characters associate can be thought of as how linked those
characters are in the evolutionary process. In this report, the linkage between structural
characters is evaluated for the combined data set. In terms of language evolution, linkage
can occur for three non-mutually exclusive reasons: 1. The biological basis of language
results in psychological constraints which force elements of language to change in
concert. 2. The social, political and geographical context of the development of the
Austronesian Family resulted in unique character associations unrelated to language
universals. 3. The characters associated are not independent of each other in a
methodological sense. While the third reason is identifiable, the first two cannot be
teased apart without comparison to other data sets comprised of the same structural

characters.
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SIMMAP calculates the association between two characters at both the character
state and whole-character level. In the latter case, the equation used to calculate the pair-
wise character state associations is modified to resolve the character as a whole“i._ In this
report, characters associations were evaluated at the whole character level. For each pair
of the 26 structural characiers, SIMMAP analysis produced a numerical value
representing the degree of association. (Currently SIMMARP can only handle up to seven
character states; for this reason, five characters were excluded). The distances were then

compiled in a matrix. To visualize the associations, the 35 dimensional association space

was lowered to two dimensions using a multi-dimensional scale (figure 26).

The results show a single area of clustering involving approximately fifteen
features. What does this group have in common? Firstly, two pairs of features are
obviously methodologically linked: Features 14 and 15, which corresponding to fixed and
weight-sensitive stress categories respectively, each use “other” categories to code the
languages detailed in the complimentary feature. Similarly, features 87 (order of
adjective and noun) and 97 (relationship between the order of object and verb and order
of adjective and noun) also suffer from this previously described “trashcan” problem.

For this set of pairs, evolutionary association is methodological in origin and thus trivial.

Of the remaining ten features, seven pertain to order in either the noun or the verb
phrase. The presence of this “ordering” cluster suggests that the changes in the relative
positions of words or affixes may exert an evolutionary influence on each other. But if
“order” is the theme of the cluster, what should be made of the association of the stress
(features 14 and 15) and case (feature 28: case syncretism) features? Unfortunately
pursuing this question theoretically is outside the scope of this report. Nevertheless,

theories relating order to stress have been put forth (Strauss, 1983; Inkelas, in press).

While in isolation these associations remain difficult to interpret, they do present
a new type of result much in the need of comparison. If data from a wide variety of
language families were assembled into sets of similar size and content, and if structural

characters of comparison were identical, then feature association results may provide the
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basis for a typology of language evolution. Such comparisons may suggest preliminary
hypotheses for inferring the differences and similarities of how languages change over

time.

Character mapping is only one of many methodological inspirations borrowed
from biology. Others include the identification of characters likely attained through
horizontal transfer, the ability to combine partially overlapping phylogenies into
‘supertrees’ and the use of host-parasite models to account for language change with
respect to other processes of divergence (e.g. population geneti.cs data). In sum, I hope
the mention of a few of these possibilities will catalyze an interest in establishing
standardized methodologies, since only through comparisoh will these new types-of

analyses gain meaning.

VII. Conclusion

The body of this report was devoted to outlining a method for the phylogenetic
inference of language evolution. After first introducing the concept of linguistic
phylogenetics and the sample fanguages, the processes of data collection and enceding
were described. Next, four methods, two data types, and two encoding schemes were
performance-evaluated against a ‘*known’ tree. The results were synth;sized into a two-
step method which was then described in detail. Lastly, the association of structural
features through evolution was modeled using software built for biology, thus
demonstrating one of many possible productive intersections between biological methods

and linguistic data.

The method proposed produced a tree that was strikingly historically accurate.
While an important proof of concept, the topology of the final tree should not distract

from other informative trends about the data type and robustness of method.

One such trend was that the most accurate data sets were those with combined

lexical and structural data. In these cases, despite contributing only a small number of
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total characters of comparison, the structural data had a traceable “tweaking” effect
toward greater accuracy, especially noticeable in the two-step method put forth. With
NeighborNet analysis, this “tweaking” was defined by comparing the architecture of
splits between separate and combined data sets. With MrBayes, these changes were
detected by comparing the topologies and node support values for the lexical and
combined data trees. This ability to associated changes in input data across methods of
representation helps NeighborNet and Bayesian analyses work in compliment to evaluate
the details of a phylogenetic signal. At its best, this type of inter-data inter-method
comparison may be able to distinguish groups of characters based on evolutionary

behavior.

One important parameter-of behavior is likely to be evolutionary stability.
Though not attempted in this report, if structural data is to be used to deepen the time
barrier of reliable phylogenetic inference, it should be theoretically possible to use only
those structural characters whose phylogenetic signal most closely matches that of the
lexical data. While the results from the incongruence length difference test suggest that
two data sets do express significantly different phylogenetic signals, this difference is
based on the principal of minimum change inherent in MP and thus may have limited
applicability, especially considering the poor performance of MP presented in this
analysis. Nevertheless, other measures of assessing differences in phylogenetic signal
more conducive to language data will undoubtedly be developed and those may help
identify sub-sets of structural features which share the same phylogenetic signal as the

“shallower” and more numerous lexical characters of comparison.

In this study, structural characters were chosen from WALS based largely on their
“P-Value,” a measure of world-wide stability within a genus. Despite the empirical merit
of the P-Value (Wichmann and Kamholtz, unpublished), this measure has obvious
drawbacks and is likely to be controversial. While it will be helpful to have some criteria
for establishing the most conserved structural characters a priori, I hope that the
methodological options presented here demonstrate that there is more information in

modeling structural and lexical data than just a simple tree.
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Taken together, navigating the interaction of language as a component system is
as vital to understanding evolution as it is to studying cognition. So while biological data
destined for phylogeny may be understood in reductionist fashion, by guiding principals
like natural selection and the rules of chemical interaction, linguistic data cannot escape
the complexities of cognition and social living. As Enfield (2005) put it, “although
integrated into a structured system in the cognition of individual speakers, a language’s
constituent items are separable, each with their own careers across the community of
minds” (p.195). Thus studying language history straddles disciplines, a fact which
reiterates the importance for the integration of multiple perspectives. After all, more than
organisms, the evolutions of languages are grounded in places and events with other
detectable correlates. For this reason, piecing together the natural history of a language
should not only involve resolving component histories, but should also incorporate data

from meta-language studies involving archaeology and population genetics.

These differences between evolutions suggest that not all questions pursued by
biologists have direct or equivalent application to language. Nevertheless, linguists
should draw inspiration from the statistical, computational, and infrastructural
developments of biological phylogenetics, since many of the mathematical,

philosophical, and practical considerations of inferring phylogeny are shared.

For example, the careful coordination of comparative analyses has been greatly
aided through biologists establishing an unrivaled system of databases. Since only an
Internet connection is required to access data which is both abundant and exceedingly
complex, the presence of these databases has fostered a haven for interdisciplinary
research, most notably for computer scientists and mathematicians. The results of this
open-market, interdisciplinary approach are self-evident: profound progress and immense

popularity.

In linguistics however, progress is primarily made by those who have invested a
lifetime in research. Their knowledge should not be devalued, just recorded, reformatted

and made accessible for all. This amounts to setting standards for databases and software
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programs. Before concluding, I want to make several suggestions toward this end which

stem from my own experience trying to compile the data for this study.

For lexical information, databases should be systematic both in terms of word
selection and format. Conserved word lists allow for large-scale comparisons and avoid
error due to patchy sampling. Words should be formatted on multiple levels including
constituent sounds and morphemes, to facilitate phonological, structural (morpheme-
level) and cognate comparisons. If done consistently, this approach may allow

computational approaches to bridge the gap with the comparative method.

Structural databases should be similarly organized on a series of different levels.
This most likely means coding data in terms of both language specific morphemes and
typologically categories. Importantly, the construction of these typological parameters
should fit with the mandate of the type of analysis in mind. In terms of phylogenetics,
this translates to structural characters which avoid the ‘independence’, ‘apples and
oranges’, and ‘trashcan’ problems; in other words, homogenous and independent

characters of comparison.

Phylogenetics software should also be designed explicitly for language data.
Ideaily this software would support a variety of data types: from the IPA for phonological
comparisons to data coded as numbers of structural comparisons. For cognate
comparisons, the software should be able to align words, assign cognate classes and
produce summaries of types of sound change. Functionally, the software package should
be general enough to incorporate a number of different analyses, all of which should be
tailored for language. As an example from the results presented here, one might
conceivably run a network analysis, phylogenetic analysis and association of feature

analysis at the touch of a button after setting several general parameters.

In the long term, I hope the promising results of this report convince historical
linguists that the direction taken by biologists over the last 30 years is worth following.
In the short term, 1 hope these results demonstrate that current methods of phylogenetic
biology have productive applications for the modeling of language evolution. I also hope

biologists, computer scientists and mathematicians interested in evolutionary processes
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may see language evolution as viable system worth exploring. After all, compared to

organisms, the natural histories of languages are thoroughly untold.
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' Comparisons of language borrowing situations suggest that all aspects of language can
be borrowed (Curnow, 2003). However, not all language components may be borrowed
readily, thus some may prove more helpful for phylogenetic inference.

 As Gray (2005) points out, the purpose of this graphic is to show that given a model
which takes different rates of lexical evolution into account, it is clear that while the
majority of shared words between related languages will quickly disappear, there are
some which may still be shared after 20,000 years. Hence, different words are
constrained differently through the evolutionary process.

“ The P-Value is a measure of the stability of a feature within its WALS Genus.
Calculations took all of the language data into account, thus the P-Value is not specific to
the Austronesian Family.

The P-Value is represented by the three formulae below. For a detailed explanation of
the logic and justification of the P-Value, see Wichmann and Kamholtz, 2005.
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¥ Only continuous data can be individually compared to a consensus tree. Fore example,
the large number of characters (in the form of nucleotide bases) which make up a gene
make it feasible to compare the phylogeny of an individual gene versus the phylogeny of
the organism. This type of comparison is impossible with discreet data however, since
each coherent comparable unit is comprised of only a single character.

¥ Dunn et al. (2005) used MP to build trees for Oceanic and Papuan languages based
solely on structural data. They justify using their method and data type on the Papuan
data, about which little is known, by first attempting to demonstrate that their
experimental Oceanic tree is topologically close to the known tree. Using the
symmetrical differences test, Wichmann and colleagues (the author included) showed that
a tree produced with Bayesian analysis on the same data set was closer to the known than
the Dunn ef al.”s MP tree (SD of 6 vs. 8). One thousand random trees were then
generated by a model which accounts for language change (Wichmann, unpublished) to
assay whether these results occurred by chance. These random trees were then compared
to each other using the symmetric difference test. The results show that while Dunn ez
al’s MP tree was significantly uniikely to be due to chance, the tree based on Bayesian
analysis more accurately reflects the known; thus in another context MP was
outperformed by Bayesian analysis for modeling language evolution.

"™ The equation below is used by SIMMAP to calculate the association between any two
discreet characters states i and j where the terms e and o correspond to “expected” and
“observed” association respectively. The amount of association is defined by the
proportion of time along the tree which is shared by the two states, where more
association than expected gives a positive value, and less association than expected gives
a negative value (Bollback, 2005).

() _ gte)

] v7

The association of two characters in total is thus the summation of the association for
each individual character state. This summation is represented by the equation below:

dijma,
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Appendix

Tabie . The complete sub-groups for WMP by Ross (1995)

WMP Subgroup Location WMP Subgroup Location

1. Batanic (not explicitly 13. North-West North-west
listed) Borneo Borneo

2. Northern Northemn 14. Land Dayak Inland south-

Philippines Philippines west Borneo

3. Meso-Philippines (not explicitly 15. East Barito South-east
listed) Borneo and

Madagascar

4. Southern Southern 16. Barito-Mahakam | South-east

Philippines Philippines Borneo

5. South Mindanao (not explicitly 17. West Barito Southern
listed) Borneo

6. Chamorro and Mariana 18. Lampung South-east

Palauan Islands and Sumatra

' Belau

7. Sangiric (not explicitly 19. North-west North-west

listed) Sumatra/Barrier Sumatra/Barrier
Islands Islands

8. Minahasan North-eastern 20. Java-Bali-Sasak | Java and Bali
Sulawesi

9. Gorontalo- Northern 21. Central Sulawesi | Central

Mongondic Sulawesi Sulawesi

10. Sama-Bajaw Sulu 22. South Sulawesi | South Sulawesi
Archipelago
and other
locations in
Philippines

11. Malayo-Chamic

(not explicitly
listed)

23. Muna-Buton

Islands off of
south-east
Sulawesi

12. Moken and
Mokien

Islands off the
coast of
Thailand and
Myanmar

24. Tamanic

Central Borneo




Table 2. The complete sub-groups for WMP by Ross (1995)

Subgroup

Location

. Bima-Sumba

Eastern part of Sumbawa,
Sumba, Flores

2. Timor Timor

3. Scuth-East Maluku South-East Maluku

4. Aru (not explicitly listed)

5. Central Maluku Seram, Buru and their
offshore islands

6. North Bomberai South ceast of MacCluer
Gulf, Trian Jaya

7. Koiwai South coast of Bird’s

Neck, Irian Jaya

Table 3. The complete sub-groups for Oceanic by Ross (1993)

Subgroup Location Location

1. Admiralty Admiralty Islands North/Central

Islands Vanuatu

2. St. Matthias St. Matthias Islands South Vanuatu

Islands .

3. Western Papua New Guinea New Caledonia

Oceanic and the western and the Loyalty

Solomon Islands Islands

4. Sarmi/Jayapura Bay Micronesia

Sarmi/Jayapura

Bay

5. Southeast Southeast Solomon Rotuma, Fiji,

Solomonic Islands Polynesia, New
: Zealand

6. Utupua and Te Motu Province, Yap

Vantkoro

Solomon Islands
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Genus Diversity in the Austronesian Languages of WALS

:EChamarro
i@ Palauan ;
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ilPaiwanic
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| M Southern Philippines
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!B Northern Philippines

W Borneo
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B Central Malayo-Polynesian
B Sundic

H Oceanic

Figure I. The Number of Languages in Each of the 17 WALS Designated Genera
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Themed Feature Diversity in WALS (lexicon theme excluded)

. BPhonalegy BMorphology
| BNominal Cat. Bnom, Sy

| Mverd Cat. Tword Order

! WSimple Clauses BComplex Sent.

Themed Feature Diversity in Sample

B Phonciogy B Morphology
B MNominal Cat. BNom. Syn.
WVvert Cat. Bword Order

ESimple Clauses BComplex Sent.

B.

Figure 2. The Themed Diversity of Features in the WALS Database (A.) and the Language Sample (B.)

87



38

SIIAISAS suay sAlIEuas-1giea u sioped piAms a1 Aoyl
Bl rep Unsdad JHQIan ¢ot sasnEy apcdung
SRl DAHISURS - LERA 5T ’ ARy
SLIGIRRS0] S98415 PIKIS b1 Abiojouoid
£l LRI E S E AT TR B
Favs sasnery adus
il P TEN IOV
A oroygda ogy (euoByul u Buxiyng sa fuixysig T4 Afajoyd dop
5304 ) Lidyy Fat Alojouoyd
It g WUEETHA Y 55 REOTEN o B T REE Y
SPHANG |BUIISHDI $0 U5 S3dNT 1601 sasney] Adung
WSRRIIUAS Ise] F T4 Abojoyd 1o
SUSINIISI0D anjesne) aseaduadusy) 111 sasne) I duns
Aty AEOW 10 PR AT PUE Qaas BUR B0 S0 DRI BYT URDAng GRSUINE ay Fa (ALY T34
FaXy 1235 -H5uny, )0 UTS Gy 649 TEVRTY L
SBUR AT IRNELN )
SAR Y RAlEITIEa wunl] |a i5
i % Tir
FUISROT) 02 a11
1A B G Ny ]
U mumdnpang 0 T ar
SRS UET SO A O BoUaNT L &l
HPIBUA KDY pad g0 r Afathamd
SHAIREIIY aARPE Y ar1 sosny a|dus
FIRIALETA HAIGIIE] 1%
™ JE
A T (BERA LTSIt [Ty e
HAN] S ua ary |5 4apa 53]
: )
i PR £y
By
8]
ik
USR] SUE SapBsdeEg] e s
WA BUR ASHR SRR §8 IO a6
SYYRHASLIC] UBLLUDT |0 B3RSy . ar AGaautd
! anep-d| mimeadg| 4395 (euld Woy papnpxa] Iquiny ar simead STYM| S E]

(uorrelsane asteds = 9 ‘Juspusdap = £ ‘saljRuULIOIIUN = )
"PRIEIIPUI OS[R SJB SAINIED] PAPI[XH ,, DU, § TV M A POPOd 10[0D pUur dteA-J S POYURI aJu SaM1Bay]

"SISA[RUY I0] PA1OS[OS SOIMEd,] STVM UL 'V o1qel



Number of Cognate Classes Per Language
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Figure 3. The number of cognate classes belonging to each language in the sample

References

Adelaar, N. 1991. New Ideas on the early history of Malagasy. In: Steinhauer. Ed. Papers
in Austronesian Linguistics No.I. Pacific Linguistics, A-81.

Allard and Carpenter, 1996. On weighting and congruence. Cladistics 12: 183-198.

Atkinson, Q., Nicholls, G., Welch, D. and Gray, R. 2005. From words to dates: water into
wine, mathemagic or phylogenetic inference? TransPhilSoc. 103(2): 193-219.

Attesson, K.1999. The performance of Neighbor-Joining methods of phylogenetic
reconstruction. Algorithmica 25. 251-278.

Baker, R. and Gatesy, J. 2002. Is morphology still relevant? In Molecular Systematics:
Theory and Practice. DeSalle, R., Giribet, G. and Wheeler, W. Eds. Switzerland:
Birkhaiiser Verlag.

Bauer, Winfred. 1993. Maori. London: Routledge
Berg, van den, R. 1991. Muna dialects and the Munic langunages: towards a
reconstruction: In: Harlow and Clark. Eds. VICAL 2: Western Austronesian

languages: Papers from the fifth International Conference on Austronesian
Linguistics. Auckland: Linguistic Society of New Zealand.

89



Bledsoe, A and Raikow, R. 1990. A quantitative assessment of congruence between
molecular and nonmolecular estimates of phylogeny. J. of Mol. Evel. 30: 247-259

Blust, R. 1978, Eastern Malayo-Polynesian: A sub-grouping argument. In: Wurm and
Carrington. Eds. pp. 181-234. (Summary of the 130pp paper presented at the
conference).

Blust, R. 1977. The Proto-Austronesian pronouns and Austronesian sub-grouping: a
preliminary report. WPLUH 9(2): 1-15.

Blust, R. 1987. The linguistic study of Indonesia. Archipel. 34: 27-47.

Blust, R. 1990. Central and Central-Eastern Malayo-Polynesian (Paper presented at
Conference on Moluccan Linguistics, University of Hawaii, March 1990).

Blust, R. 1998. Beyond the Austronesian homeland: the Austric hypothesis and its
implications ofr archaeology. In: Goodenough, W. Ed. Prehistoric Settlement of
the Pacific. Philadelphia: American Philosophical Society.

Bollback J. 2005. SIMMAP: Stochastic character mapping of discrete traits on
phylogenies. Software available from http://brahms.ucsd.edu/simmap.html.
Verision 1.0 Beta 2.0.

Brainard, S. and Behrins, D. 2002. A Grammar of Yakan. Manilla: Linguistic Society of
the Philippines.

Bryant, D., Filimon, F. and Gray, R. (in press). Untangling our past: Languages, trees,
splits and networks. in R, Mace, C. Holden, S. Shennan. Eds. The Evolution of
Cultural Diversity: Phylogenetic Approaches. UCL Press.

Bull, 1., Huelsenbeck, J, Cunningham, C., Swofford, D., and Waddell, P. 1993,
Partitioning and combining data in phylogenetic analyses. Syst. Biol 42: 384-397.

Cavalli-Sforza, L. and Feldman, M. The application of molecular genetic approaches to
the study of human evolution. Nature Genetics Supplement. 33:266-275.

Cavalli-Sforza, L., Piazza, A., Menozzi, P. and Mountain, J. 1988. Reconstruction of
human evolution: bringing together genetic, archaeological, and linguistic data.
Proceedings of the National Academy of Science USA 85:6002-6.

Chippindale P. and Wiens, J. 1994. Weighting, partitioning, and combining characters in
phylogenetic analysis. Systematic Biology. 43: 278-287

Clark, R. 1985. Languages of north and central Vanuatu: groups, chains, clusters and

waves. In: Pawley and Carrington. Eds. Austronesian linguistics at the 15"
Pacific Science Congress. Pacific Linguistics, C-88. pp. 199-236.

S0



Collins, J. 1983. The historical relationships of the languages of Central Maluku,
Indonesia. Pacific Linguistics, D-47. Canberra: Australian National University
Press.

Crowley, T. 1982. The Paamese Language of Vanuatu. Canberra: The Australian
National University Press.

Cunningham, C.W. 1997. Can three incongruence tests predict when data should be
combined? Mol Biol Evol 14: 733-740.

Curnow, T. 2001. What Language Features Can be ‘Borrowed’?. In: Aikhenvald, A. and
Dixon, R. Eds. Areal Diffusion and Genetic Inheritance: Problems in

Comparative Linguistics. New York: Oxford University Press, 2001. pp. 412-435.

Dahl, O. 1977. La subdivision de la famille barito et la place du malgache. Acta
Orientalia (Copenhagen) 38: 77-134.

De Queiroz, A., Donoghue, M., and Kim, J. 1995. Separate versus combined analysis of
phylogenetic evidence. Annual Review of Ecology and Systematics. 26: 657-681

Djawanai, S and Grimes, C. 1995. Ngada. In: Darryl Tryon. Ed. Austronesian
Comparative Dictionary. New Y ork: Mouton de Gruyter. pp. 593-99.

Dobson, A. 1969. Lexicostatistical grouping. Anthropological Linguistics 11: 216-221.
Dunn, M., Terill, A., Reesink, G., Foley, R., and Levinson, S. 2005. Structural
Phylogenetics and the reconstruction of ancient language history. Science 309:

2072-5

Elbert, S. and Pukui, M. 1979. Hawaiian Grammar. Honolulu: University of Hawaii
Press ‘

Egerod, S.1980. Atayal-English Dictionary. London: Curzon Press.

Enfield, N. 2005. Areal Linguistics and Mainland Southeast Asia. Annu.Rev.Anthropol
34:181-206. '

Ethnologue Online. 2005. www.ethnologue.com

Farias, Izeni P., Orti, G., and Meyer, A. 2000. Total Evidence: Molecules, Morphology
and the Phylogenetics of Cichlid Fishes.J.Fxp.Zoo 288:76-92.

Farris, 1., Killersjo, M., Kluge, A. and Bult, C. 1995. Constructing a significance test for
incongruence. Syst Biol 44: 570-572.

91



Farris, J., Killersjo, M., Kluge, A. and Bult, C. 1994. Testing significance of
incongruence. Cladistics 10:315-319.

Felsenstein, J. 2005. PHY LIP (Phylogeny Inference Package) version 3.6. Distributed by
the author. Department of Genome Sciences, University of Washington, Seattle.

Forman, Michael L. 1971. Kapampangan Grammar Notes. Honolulu: University of
Hawaii Press.

Forster, P., Toth, A. and Bandelt, H. 1998. Evolutionary network analysis of word lists:
Visualising the relationships between Alpine Romance languages. J.Quant,
Linguist. 3. 174-187.

Forster, P and Toth, A. 2003. Towards a Phylogenetic chronology of ancient Gaulish,
Celtic, and Indo-European. Proc.Natl.Acad.Sci. 100: 9079-9084.

Foundation for Endangered Languages. www.ogmios.org/143. htm

Fukuda, Takashi. 1997. A Discourse-Oriented Grammar of Eastern Bontoc. Studies in
Philippine Linguistics. 10(1).

Global Chinese Language and Culture.
http://fedu.ocac.gov.tw/local/tour_aboriginal/english/a/07.htm

Gray, R. 2005. Pushing the Time Barrier in the Quest for Language Roots. Science. 309:
2007-8.

Gray, R. and Atkinson, Q. Language-tree divergence times support the Anatolian theory
of Indo-European origin. Nature. 426: 435-439,

Gray, R. and Jordan, F. 2000. Language trees support the express-train sequence of
Austronesian expansion. Nature. 405: 1052-1055.

Gray, R. and Greenhill, S. (in press) Ch. 3: Testing Population Dispersal Hypotheses:
Pacific Settlement, Phylogenetic Trees and Austronesian Languages.

Greenhill, S. and Gray, R. 2005. Austronesian Basic Vocabulary Database.
http://language.psy.auckland.ac.nz/index.php.

Griffiths, Carole. 1999. Phylogeny of the Falconidae Inferred from Molecular and
Morphological Data. The Auk. 116 (1): 116-130.

Grimes, C. 1990. Notes on Central Malayo-Polynesian (Mimeo)

Gudai, D. 1988. A Grammar of Maanyan: A Language of Central Kalimantan. Canberra:
Australian National University.

92



Hallet, M. and Lagergren, J. 2001. Efficient algorithms for lateral gene transfer
problems. In: Proceedings of the 5" Ann. Int.Conf.Compt.Mol.Biol (RECOMB
01). New York: ASM Press, pp. 149-156.

Hall, B. Phylogenetic Trees Made Easy: A How-To Manual. Sunderland, MA: Sinauer
Inc., 2004.

Haspelmath, M., Dryer, M., and Comrie, B. Eds. 2005. WALS: World Atlas of Linguistic
Structures. Oxford: Oxford University Press.

Hoenigswald, H. 1987. Language family tree, topological and metrical. In: Hoenigswald,
Henry M. and Linda F. Wiener (eds.), Bioloigcal metaphor and cladistic
classification: an interdisciplinary perspective, pp. 257-267. Philadelphia:
University of Pennsylvania Press.

Holden, C. 2002. Bantu language trees reflect the spread of farming across sub-Saharan
Africa: a maximum-parsimony analysis. Proceedings of the Royal Society:
Biological Sciences. 269(493): 793-799.

Holmer, A. 1996. A Parametric Grammar of Seediq. Lund: Lund University Press.

Hooker, B., Behrens, B., and Hartung P. 1975. Papers in Philippine Linguistics No. 7.
Pacific Linguistics, Series A: 44

Hsn, R. 1969. Phonology and Morphophonemics of Yapese. Ann Arbor: University of
Michigan Dissertation Services.

Huelsenbeck, J., Buil, J. and Cunningham, C. 1996. Combining data in phylogenetic
analysis. Trends in Ecology and Evolution. 11: 152-158.

Huelsenbeck, J., Nielsen, R., and Bollpack, J.2003. Stochastic Mapping of Morphological
Characters. Syst. Biol. 52(2): 131-158.

Huelsenbeck, J., Ronquist, F., Nielsen, R., and Bollback, J. 2001. Bayesian inference of
phylogeny and its impact on evolutionary biology. Science. 294: 2310-2314

Huelsenbeck, J. and Ronquist, F. N.d. MrBayes: Bayesian inference of phylogeny
http://morphbank.ebc.uu.se/mrbayes/.

Huson, D. and Bryant, D. Application of Phylogenetic Networks in Evolutionary Studies,
to appear in: Molecular Biology and Evolution, 2005.

Huson, D.1998. SplitsTree: A program for analyzing and visualizing evolutionary data.
Bioinformatics, 14(10): 68-73.

93



Inkelas, Sharon (forthcoming). Exceptional stress attracting suffixes in Turkish:
Representations vs. the grammar. to appear in R. Kager, H. van der Hulst & W.
Zonneveld (eds.), The Prosody Morphology Interface, Cambridge University
Press.

Josephs, L. 1984. Palauan Reference Grammar. Honolulu: The Universify of Hawati
Press.

Klamer, Marian. 1998. A Grammar of Kambera. New Y ork: Mouton de Gruyter

Kroeger, Paul. 1993. Phrase Structure and Grammatical Relations in Tagalog. Stanford:
CSLI Publications.

Larget, B. and Simon, D. 1999. Markov Chain Monte Carlo Algorithms for the Bayesian
Analysis of Phylogenetic Trees. Mol.Bio.Evol. 16(6): 750-9.

Larson, A. 1994. The comparison of morphological and molecular data in phylogenetic
systematics. In: B. Schierwater, B. Streit, G.P. Wagner and R. DeSalle (eds.),
Molecular Ecology and Evolution: Approaches and Applications. Basel:
Birkhduser, pp. 371-390.

Lawrence, J. and Ochman, H. 2002. Reconciling the Many Faces of Lateral Gene
Transfer. Trends in Microbiology. 10 (1). 1-4.

Lawrence, J. and Hartl, D. 1992. Inference of horizontal genetic transfer from molecular
data: An approach using the bootstrap. Genetics 131: 753-760.

Lewis, P. 2001. A likelihood Approach to Estimating Phylogeny from Discrete
Morphological Character Data. Syst. Biol. 50(6):913-925.

Lohr, M. 1999. Methods for the genetic classification of languages. PhD thesis,
University of Cambridge.

Losos, J. 1999. Uncertainty in the reconstruction of ancestral character states and
limitations on the use of phylogenetic comparative methods. Animal Behaviour.
58: 1319-1324.

Lutzoni, F. and Vilgalys, R. 1995. Integration of morphological and molecular data sets
in estimating fungal phylogenies. Canadian Journal of Botany. 73 (Supplement
1): S649-656. :

Lynch, I. 1978. A Grammar of Lenakel. Canberra: Pacific Linguistics

Lynch, J. and Tryon, D. 1985. Central-Eastern Oceanic: a subgrouping hypothesis. In: |

Pawley and Carrington. Eds. Austronesian Linguistics at the 15" Pacific Science
Congress. Pacific Linguistics, C-88.

94



Maddison, W. 2000. Testing Character Correlation Using Pairwise Comparisons on
Phylogeny. J.Theor.Bio. 202: 195-204.

Makarenkov, V., Kevorkov, D. and Legendre, P. 2005. Phylogenetic Network
Reconstruction Approaches, to appear in Applied Mycology and Biotechnology,
v. 6, Genes, Genomics and Bioinformatics, Elsevier Science.

McMahon, R. 2004. Genes and Languages. Community Genetics. T:2-13.

McMahon, A. and McMahon, R. 2003. Finding Families: Quantitative methods in
language classification. Trans. Philol. Soc. 101: 7-55.

McMahon, A. and McMahon, R. Climbing down from the trees: Network representation
for language families, in preparation.

Mintz, M. 1971a. Bikol Grarrimar Notes. Honolulu: University .of Hawaii Press.
Mintz, M. 1971b. Bikol Dictionary. Honolulu: University of Hawaii Press.

Mintz, M. 1973. Case and Semantic Affixes of Bikol Verbs. Ann Arbor: University of
Michigan Dissertation Services.

Nababan, P. 1981. A Grammar of Toba-Batak. Canberra: Pacific Linguistics.

Nakhleh, L. 2004. Phylogenenc Networks in Biology and Historical ngmsncs Ph.D,
dissertation, The University of Texas at Austin.

Nakhleh, L., Ringe, D. and Warnow, T. 2005. Perfect phylogenetic networks: A new
methodology for reconstructing the evolutionary history of natural langunages.
Language 81(2):382-420.

Nakhleh, 1., Wanow, T., Ringe, D. and Evans, S. 2005. A comparison of phylogenetic
reconstruction methods on an IE data set. TransPhilSoc 3(2): 171-192.,

Nei, M. and Kumar, S. Molecular Evolution and Phylogenetics. New Y ork: Oxford
University Press, 2000.

Nielsen, R. 2002. Mapping Mutations on Phylogenies. Svst.Biol 51(5): 729-739.
Nylander, J., Ronquist, F., Huelsenbeck, I., and Nieves-Aldrey, J. 2004. Bayesian
Phylogenetic Analysis of Combined Data. SystBio 33(1): 47-67.

Ochmann, H., Lawrence, J., and Groisman, E. 2000. Lateral gene transfer among.
genomes. Nature 405: 299-304.

95



Pagel, M., Meade, A. and Barker, D. 2004. Bayesian Estimation of Ancestral Character
States on Phylogenies. Syst.Bio.53(5):673-684.

Pagel, M. 2000. New approaches to lexicostatistics and glottochronology. In: Renfrew,
C., McMahon, A., Trask, L. Eds. Time Depth in Historical Linguistics.
Cambridge: McDonald Institute for Archaelogical Research, pp. 189-207.

Pallesen, A. 1985. Culture contact and language convergence. Linguistic Society of the
Philippines Monograph 24. 1977 PhD diss., University of California, Berkeley.
Manila: SIL.

Pawley, A. and Ross, M. 1993. Austronesian Historical Linguistics and Culture History.
Ann.Rev. Anthr. 22: 425-59,

Rasoloson, J. and Rubino, C. 2005. Malagasy. In: Himmelmann, N. and Adelaar, K. Eds.
The Austronesian Languages of Asia and Madagascar.l.ondon: Curzon Press

Rau, Der-Hwa V.1992. A Grammar of Atayal. Ann Arbor: University of Michigan
Dissertation Services.

Reid, L. 1976. Bontok-English Dictionary. Canberra: Pacific Linguistics

Reid, L. 1982. The demise of Proto-Philippines. In: Halim, Carrington, and Wurm. Eds.
Papers from the 3" International Conference on Austronesian Linguistics, vol. 2:
Tracking the travellers. Pacific Linguistics, C-75.

Ringe, D., Warnow, T., and Taylor, A. 2002. Indo-European and computational
cladistics. Transactions of the Philological Society 100: 59-129.

Ringe, D., Warmow, T., and Taylor, A Michailov, A. and Levison, L. 1998.
Computational cladistics and the position of Tocharian. In: Mair, V. The Bronze
Age and Early Iron Age Peoples of Eastern Central Asia, pp. 391-414.
Washington: Institute for the Study of Man.

Robinson, D. and Foulds, 1.. 1981, Comparison of Phylogenetic Trees. Mathematical
‘Biosciences 53: 131-147.

Ronquist, F. 2004. Bayesian Inference of Character Evolution. Trends.Eco.Evol.
19(9):475-481.

Ronquist, F. 2005. MrBayes User Manual. http://mrbayes.csit.fsu.edu/manual.php.

Ross, M. 1988. Proto-Oceanic and the Austronesian languages of western Melanesia.
Pacific Linguistics, C-98. Canberra: Australian National University Press.

96



Ross, M. 1995, Some Current Issues in Austronesian Linguistics. In: Tryon, D. Ed.

Austronesian Comparative Dictionary. New Y ork: Mouton de Gruyter. pp. 45-
120.

Ross, M. Contact-Induced Change in Oceanic Languages in North-West Melanesia. In:
Aikhenvald, A. and Dixon, R. Eds. Areal Diffusion and Genetic Inheritance:
Problems in Comparative Linguistics. New York: Oxford University Press, 2001.
pp- 134-163.

Ruhien, M. 1987. A guide to the world’s languages. L.ondon: Stanford University Press.

Ruvolo, Maryellen. 1987. Reconstructing genetic and linguistic trees: phonetic and
cladistic approaches. In: Hoenigswald, H. and Wiener, L. Eds. Biological
metaphor and cladistic classification: an interdisciplinary yperspective..
Philadelphia: University of Pennsylvania Press.

Saitou, N. and M. Nei. 1987. The neighbor-joining method: A new method for
reconstructing phylogenetic tree. Mol. Biol. Evol. 4. 406-425.

Schachter, P. and Otanes, F. 1972. Tagalog Reference Grammar. Los Angeles:
University of California Press

Schiitz, A. 1985. The Fijian Language. Honolulu: University of Hawaii Press.

Semuin, A.1993. The basic grammar of Manggarai: Kempo Subdialect M.A. Thesis, La
Trobe University Press

Senft, G. 1986. Kilivila: The language of the Trobriand Islanders. New Y ork: Mouton
de Gruyter.

Sokal, R., Oden, N. and Thomsen, B. 1988. Genetic changes across language boundaries
in Europe. American Journal of Physical Anthropology 76: 337-61.

Sokal, R., Oden, N. and Thomsen, B. 1992. Origins of the Indo-Europeans: genetic
evidence. Proceedings of the National Academy of Science USA 89: 7669-73.

Strauss, S. 1983, Stress assignment as morphological adjustment in English. Linguistic
Analysis 11, 419-427.

Swofford, D.L. PAUP*: Phylogenetic Analysis under Parsimony (and Other Methods). .
Version 4.0. Sinauer Associates, Sunderland, Mass. '

Swofford, D.L., G.J. Olsen, P.J. Waddell, and D.M. Hillis. 1996. Phylogenetic inference.

In: Hillis, D.M., B.K. Mable, and C. Moritz {(eds.), Molecular Systematics, pp.
407-514. Sunderland, Mass.: Sinauer Assoc.

97



Swofford, D. L. 2003. PAUP*. Phylogenetic Analysis Using Parsimony (*and Other
Methods). Version 4, Sinauer Associates, Sunderland, Massachusetts.

Topping, D. 1973. Chamorro Reference Grammar. Honolulu: The University of Hawaii
Press.

Topping, D. 1975. Chamrro-English Dictionary. Honolulu: The University of Hawaii
Press.

Tryon, D. 1995. Introduction. In: Tryon, D. Ed. Austronesian Comparative Dictionary.
New York: Mouton de Gruyter. pp. 1-44.

Valkama, K. 2000. Grammatical Relations in Cebuano. Helsinki: University of Helsinki
Publications.

Verheijen, J. and Grimes, C. 1995. Manggarai. In: Tryon, D. Ed. Austronesian
Comparative Dictionary. New York: Mouton de Gruyter. pp. 585-95.

Warnow, T., Ringe, D. and Taylor, A. 1995. Reconstructing the evolutionary history of
natural languages. IRCS Report 95-16. Philadelphia: Institute for Research in
Cognitive Science, University of Pennsylvania.

Warnow, T., Evans, S., Ringe, D. and Nakhleh, L 2004. A stochastic model of language
evolution and incorporates homoplasy and borrowing. In: Phylogenetic Methods

and the Prehistory of Languages.

Warnow, T. 1997. Mathematical Approaches to Comparative Linguistics. Proc.
Natl.Acad.Sci. 94: 6585-6590.

Wiens, J. Ed. Phylogenetic Analysis of Morphological Data. Washington: Smithsonian
Institution Press, 2000.

Wiens, John J. 1998. Combining Data Sets with Different Phylogenetic Histories.
Syst.Bio. 47(4): 568-581.

Wichmann, S. 2005. On the power-law distribution of language family sizes. Journal of
Linguistics 41.2.

Wichmann, S. and Kamholz, D. unpublished. Evaluating the strength of typological
Jeatures for phylogenetic analyses.

Wolff, J. 1966. Beginning Cebuano. Ann Arbor: UMI Books on Demand.

98



Other Websites
Explanation of Application of Bayesian Theorem to Phylogenetics:

www.egg.isu.edu/biocourses/bios599/projects/Walter_html

99



	saunders_arpy_1.pdf
	saunders_arpy_2.pdf
	saunders_arpy_3.pdf
	saunders_arpy_4.pdf
	saunders_arpy_5.pdf

